mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
ac687e6e8c
There is a need to distinguish geniune per-cpu kthreads from kthreads that happen to have a single CPU affinity. Geniune per-cpu kthreads are kthreads that are CPU affine for correctness, these will obviously have PF_KTHREAD set, but must also have PF_NO_SETAFFINITY set, lest userspace modify their affinity and ruins things. However, these two things are not sufficient, PF_NO_SETAFFINITY is also set on other tasks that have their affinities controlled through other means, like for instance workqueues. Therefore another bit is needed; it turns out kthread_create_per_cpu() already has such a bit: KTHREAD_IS_PER_CPU, which is used to make kthread_park()/kthread_unpark() work correctly. Expose this flag and remove the implicit setting of it from kthread_create_on_cpu(); the io_uring usage of it seems dubious at best. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210121103506.557620262@infradead.org
484 lines
12 KiB
C
484 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Common SMP CPU bringup/teardown functions
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/export.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/smpboot.h>
|
|
|
|
#include "smpboot.h"
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
|
|
/*
|
|
* For the hotplug case we keep the task structs around and reuse
|
|
* them.
|
|
*/
|
|
static DEFINE_PER_CPU(struct task_struct *, idle_threads);
|
|
|
|
struct task_struct *idle_thread_get(unsigned int cpu)
|
|
{
|
|
struct task_struct *tsk = per_cpu(idle_threads, cpu);
|
|
|
|
if (!tsk)
|
|
return ERR_PTR(-ENOMEM);
|
|
init_idle(tsk, cpu);
|
|
return tsk;
|
|
}
|
|
|
|
void __init idle_thread_set_boot_cpu(void)
|
|
{
|
|
per_cpu(idle_threads, smp_processor_id()) = current;
|
|
}
|
|
|
|
/**
|
|
* idle_init - Initialize the idle thread for a cpu
|
|
* @cpu: The cpu for which the idle thread should be initialized
|
|
*
|
|
* Creates the thread if it does not exist.
|
|
*/
|
|
static inline void idle_init(unsigned int cpu)
|
|
{
|
|
struct task_struct *tsk = per_cpu(idle_threads, cpu);
|
|
|
|
if (!tsk) {
|
|
tsk = fork_idle(cpu);
|
|
if (IS_ERR(tsk))
|
|
pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
|
|
else
|
|
per_cpu(idle_threads, cpu) = tsk;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* idle_threads_init - Initialize idle threads for all cpus
|
|
*/
|
|
void __init idle_threads_init(void)
|
|
{
|
|
unsigned int cpu, boot_cpu;
|
|
|
|
boot_cpu = smp_processor_id();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (cpu != boot_cpu)
|
|
idle_init(cpu);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* #ifdef CONFIG_SMP */
|
|
|
|
static LIST_HEAD(hotplug_threads);
|
|
static DEFINE_MUTEX(smpboot_threads_lock);
|
|
|
|
struct smpboot_thread_data {
|
|
unsigned int cpu;
|
|
unsigned int status;
|
|
struct smp_hotplug_thread *ht;
|
|
};
|
|
|
|
enum {
|
|
HP_THREAD_NONE = 0,
|
|
HP_THREAD_ACTIVE,
|
|
HP_THREAD_PARKED,
|
|
};
|
|
|
|
/**
|
|
* smpboot_thread_fn - percpu hotplug thread loop function
|
|
* @data: thread data pointer
|
|
*
|
|
* Checks for thread stop and park conditions. Calls the necessary
|
|
* setup, cleanup, park and unpark functions for the registered
|
|
* thread.
|
|
*
|
|
* Returns 1 when the thread should exit, 0 otherwise.
|
|
*/
|
|
static int smpboot_thread_fn(void *data)
|
|
{
|
|
struct smpboot_thread_data *td = data;
|
|
struct smp_hotplug_thread *ht = td->ht;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
preempt_disable();
|
|
if (kthread_should_stop()) {
|
|
__set_current_state(TASK_RUNNING);
|
|
preempt_enable();
|
|
/* cleanup must mirror setup */
|
|
if (ht->cleanup && td->status != HP_THREAD_NONE)
|
|
ht->cleanup(td->cpu, cpu_online(td->cpu));
|
|
kfree(td);
|
|
return 0;
|
|
}
|
|
|
|
if (kthread_should_park()) {
|
|
__set_current_state(TASK_RUNNING);
|
|
preempt_enable();
|
|
if (ht->park && td->status == HP_THREAD_ACTIVE) {
|
|
BUG_ON(td->cpu != smp_processor_id());
|
|
ht->park(td->cpu);
|
|
td->status = HP_THREAD_PARKED;
|
|
}
|
|
kthread_parkme();
|
|
/* We might have been woken for stop */
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(td->cpu != smp_processor_id());
|
|
|
|
/* Check for state change setup */
|
|
switch (td->status) {
|
|
case HP_THREAD_NONE:
|
|
__set_current_state(TASK_RUNNING);
|
|
preempt_enable();
|
|
if (ht->setup)
|
|
ht->setup(td->cpu);
|
|
td->status = HP_THREAD_ACTIVE;
|
|
continue;
|
|
|
|
case HP_THREAD_PARKED:
|
|
__set_current_state(TASK_RUNNING);
|
|
preempt_enable();
|
|
if (ht->unpark)
|
|
ht->unpark(td->cpu);
|
|
td->status = HP_THREAD_ACTIVE;
|
|
continue;
|
|
}
|
|
|
|
if (!ht->thread_should_run(td->cpu)) {
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
} else {
|
|
__set_current_state(TASK_RUNNING);
|
|
preempt_enable();
|
|
ht->thread_fn(td->cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
|
|
{
|
|
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
|
|
struct smpboot_thread_data *td;
|
|
|
|
if (tsk)
|
|
return 0;
|
|
|
|
td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!td)
|
|
return -ENOMEM;
|
|
td->cpu = cpu;
|
|
td->ht = ht;
|
|
|
|
tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
|
|
ht->thread_comm);
|
|
if (IS_ERR(tsk)) {
|
|
kfree(td);
|
|
return PTR_ERR(tsk);
|
|
}
|
|
kthread_set_per_cpu(tsk, cpu);
|
|
/*
|
|
* Park the thread so that it could start right on the CPU
|
|
* when it is available.
|
|
*/
|
|
kthread_park(tsk);
|
|
get_task_struct(tsk);
|
|
*per_cpu_ptr(ht->store, cpu) = tsk;
|
|
if (ht->create) {
|
|
/*
|
|
* Make sure that the task has actually scheduled out
|
|
* into park position, before calling the create
|
|
* callback. At least the migration thread callback
|
|
* requires that the task is off the runqueue.
|
|
*/
|
|
if (!wait_task_inactive(tsk, TASK_PARKED))
|
|
WARN_ON(1);
|
|
else
|
|
ht->create(cpu);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int smpboot_create_threads(unsigned int cpu)
|
|
{
|
|
struct smp_hotplug_thread *cur;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&smpboot_threads_lock);
|
|
list_for_each_entry(cur, &hotplug_threads, list) {
|
|
ret = __smpboot_create_thread(cur, cpu);
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&smpboot_threads_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
|
|
{
|
|
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
|
|
|
|
if (!ht->selfparking)
|
|
kthread_unpark(tsk);
|
|
}
|
|
|
|
int smpboot_unpark_threads(unsigned int cpu)
|
|
{
|
|
struct smp_hotplug_thread *cur;
|
|
|
|
mutex_lock(&smpboot_threads_lock);
|
|
list_for_each_entry(cur, &hotplug_threads, list)
|
|
smpboot_unpark_thread(cur, cpu);
|
|
mutex_unlock(&smpboot_threads_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
|
|
{
|
|
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
|
|
|
|
if (tsk && !ht->selfparking)
|
|
kthread_park(tsk);
|
|
}
|
|
|
|
int smpboot_park_threads(unsigned int cpu)
|
|
{
|
|
struct smp_hotplug_thread *cur;
|
|
|
|
mutex_lock(&smpboot_threads_lock);
|
|
list_for_each_entry_reverse(cur, &hotplug_threads, list)
|
|
smpboot_park_thread(cur, cpu);
|
|
mutex_unlock(&smpboot_threads_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/* We need to destroy also the parked threads of offline cpus */
|
|
for_each_possible_cpu(cpu) {
|
|
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
|
|
|
|
if (tsk) {
|
|
kthread_stop(tsk);
|
|
put_task_struct(tsk);
|
|
*per_cpu_ptr(ht->store, cpu) = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* smpboot_register_percpu_thread - Register a per_cpu thread related
|
|
* to hotplug
|
|
* @plug_thread: Hotplug thread descriptor
|
|
*
|
|
* Creates and starts the threads on all online cpus.
|
|
*/
|
|
int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
|
|
{
|
|
unsigned int cpu;
|
|
int ret = 0;
|
|
|
|
get_online_cpus();
|
|
mutex_lock(&smpboot_threads_lock);
|
|
for_each_online_cpu(cpu) {
|
|
ret = __smpboot_create_thread(plug_thread, cpu);
|
|
if (ret) {
|
|
smpboot_destroy_threads(plug_thread);
|
|
goto out;
|
|
}
|
|
smpboot_unpark_thread(plug_thread, cpu);
|
|
}
|
|
list_add(&plug_thread->list, &hotplug_threads);
|
|
out:
|
|
mutex_unlock(&smpboot_threads_lock);
|
|
put_online_cpus();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
|
|
|
|
/**
|
|
* smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
|
|
* @plug_thread: Hotplug thread descriptor
|
|
*
|
|
* Stops all threads on all possible cpus.
|
|
*/
|
|
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
|
|
{
|
|
get_online_cpus();
|
|
mutex_lock(&smpboot_threads_lock);
|
|
list_del(&plug_thread->list);
|
|
smpboot_destroy_threads(plug_thread);
|
|
mutex_unlock(&smpboot_threads_lock);
|
|
put_online_cpus();
|
|
}
|
|
EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
|
|
|
|
static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
|
|
|
|
/*
|
|
* Called to poll specified CPU's state, for example, when waiting for
|
|
* a CPU to come online.
|
|
*/
|
|
int cpu_report_state(int cpu)
|
|
{
|
|
return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
|
|
}
|
|
|
|
/*
|
|
* If CPU has died properly, set its state to CPU_UP_PREPARE and
|
|
* return success. Otherwise, return -EBUSY if the CPU died after
|
|
* cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
|
|
* if cpu_wait_death() timed out and the CPU still hasn't gotten around
|
|
* to dying. In the latter two cases, the CPU might not be set up
|
|
* properly, but it is up to the arch-specific code to decide.
|
|
* Finally, -EIO indicates an unanticipated problem.
|
|
*
|
|
* Note that it is permissible to omit this call entirely, as is
|
|
* done in architectures that do no CPU-hotplug error checking.
|
|
*/
|
|
int cpu_check_up_prepare(int cpu)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
|
|
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
|
|
return 0;
|
|
}
|
|
|
|
switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
|
|
|
|
case CPU_POST_DEAD:
|
|
|
|
/* The CPU died properly, so just start it up again. */
|
|
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
|
|
return 0;
|
|
|
|
case CPU_DEAD_FROZEN:
|
|
|
|
/*
|
|
* Timeout during CPU death, so let caller know.
|
|
* The outgoing CPU completed its processing, but after
|
|
* cpu_wait_death() timed out and reported the error. The
|
|
* caller is free to proceed, in which case the state
|
|
* will be reset properly by cpu_set_state_online().
|
|
* Proceeding despite this -EBUSY return makes sense
|
|
* for systems where the outgoing CPUs take themselves
|
|
* offline, with no post-death manipulation required from
|
|
* a surviving CPU.
|
|
*/
|
|
return -EBUSY;
|
|
|
|
case CPU_BROKEN:
|
|
|
|
/*
|
|
* The most likely reason we got here is that there was
|
|
* a timeout during CPU death, and the outgoing CPU never
|
|
* did complete its processing. This could happen on
|
|
* a virtualized system if the outgoing VCPU gets preempted
|
|
* for more than five seconds, and the user attempts to
|
|
* immediately online that same CPU. Trying again later
|
|
* might return -EBUSY above, hence -EAGAIN.
|
|
*/
|
|
return -EAGAIN;
|
|
|
|
default:
|
|
|
|
/* Should not happen. Famous last words. */
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the specified CPU online.
|
|
*
|
|
* Note that it is permissible to omit this call entirely, as is
|
|
* done in architectures that do no CPU-hotplug error checking.
|
|
*/
|
|
void cpu_set_state_online(int cpu)
|
|
{
|
|
(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
/*
|
|
* Wait for the specified CPU to exit the idle loop and die.
|
|
*/
|
|
bool cpu_wait_death(unsigned int cpu, int seconds)
|
|
{
|
|
int jf_left = seconds * HZ;
|
|
int oldstate;
|
|
bool ret = true;
|
|
int sleep_jf = 1;
|
|
|
|
might_sleep();
|
|
|
|
/* The outgoing CPU will normally get done quite quickly. */
|
|
if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
|
|
goto update_state;
|
|
udelay(5);
|
|
|
|
/* But if the outgoing CPU dawdles, wait increasingly long times. */
|
|
while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
|
|
schedule_timeout_uninterruptible(sleep_jf);
|
|
jf_left -= sleep_jf;
|
|
if (jf_left <= 0)
|
|
break;
|
|
sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
|
|
}
|
|
update_state:
|
|
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
|
|
if (oldstate == CPU_DEAD) {
|
|
/* Outgoing CPU died normally, update state. */
|
|
smp_mb(); /* atomic_read() before update. */
|
|
atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
|
|
} else {
|
|
/* Outgoing CPU still hasn't died, set state accordingly. */
|
|
if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
|
|
oldstate, CPU_BROKEN) != oldstate)
|
|
goto update_state;
|
|
ret = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called by the outgoing CPU to report its successful death. Return
|
|
* false if this report follows the surviving CPU's timing out.
|
|
*
|
|
* A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
|
|
* timed out. This approach allows architectures to omit calls to
|
|
* cpu_check_up_prepare() and cpu_set_state_online() without defeating
|
|
* the next cpu_wait_death()'s polling loop.
|
|
*/
|
|
bool cpu_report_death(void)
|
|
{
|
|
int oldstate;
|
|
int newstate;
|
|
int cpu = smp_processor_id();
|
|
|
|
do {
|
|
oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
|
|
if (oldstate != CPU_BROKEN)
|
|
newstate = CPU_DEAD;
|
|
else
|
|
newstate = CPU_DEAD_FROZEN;
|
|
} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
|
|
oldstate, newstate) != oldstate);
|
|
return newstate == CPU_DEAD;
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
|