2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 15:14:03 +08:00
linux-next/arch/powerpc/kernel/process.c
Cyril Bur 8e96a87c54 powerpc/tm: Always reclaim in start_thread() for exec() class syscalls
Userspace can quite legitimately perform an exec() syscall with a
suspended transaction. exec() does not return to the old process, rather
it load a new one and starts that, the expectation therefore is that the
new process starts not in a transaction. Currently exec() is not treated
any differently to any other syscall which creates problems.

Firstly it could allow a new process to start with a suspended
transaction for a binary that no longer exists. This means that the
checkpointed state won't be valid and if the suspended transaction were
ever to be resumed and subsequently aborted (a possibility which is
exceedingly likely as exec()ing will likely doom the transaction) the
new process will jump to invalid state.

Secondly the incorrect attempt to keep the transactional state while
still zeroing state for the new process creates at least two TM Bad
Things. The first triggers on the rfid to return to userspace as
start_thread() has given the new process a 'clean' MSR but the suspend
will still be set in the hardware MSR. The second TM Bad Thing triggers
in __switch_to() as the processor is still transactionally suspended but
__switch_to() wants to zero the TM sprs for the new process.

This is an example of the outcome of calling exec() with a suspended
transaction. Note the first 700 is likely the first TM bad thing
decsribed earlier only the kernel can't report it as we've loaded
userspace registers. c000000000009980 is the rfid in
fast_exception_return()

  Bad kernel stack pointer 3fffcfa1a370 at c000000000009980
  Oops: Bad kernel stack pointer, sig: 6 [#1]
  CPU: 0 PID: 2006 Comm: tm-execed Not tainted
  NIP: c000000000009980 LR: 0000000000000000 CTR: 0000000000000000
  REGS: c00000003ffefd40 TRAP: 0700   Not tainted
  MSR: 8000000300201031 <SF,ME,IR,DR,LE,TM[SE]>  CR: 00000000  XER: 00000000
  CFAR: c0000000000098b4 SOFTE: 0
  PACATMSCRATCH: b00000010000d033
  GPR00: 0000000000000000 00003fffcfa1a370 0000000000000000 0000000000000000
  GPR04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
  GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
  GPR12: 00003fff966611c0 0000000000000000 0000000000000000 0000000000000000
  NIP [c000000000009980] fast_exception_return+0xb0/0xb8
  LR [0000000000000000]           (null)
  Call Trace:
  Instruction dump:
  f84d0278 e9a100d8 7c7b03a6 e84101a0 7c4ff120 e8410170 7c5a03a6 e8010070
  e8410080 e8610088 e8810090 e8210078 <4c000024> 48000000 e8610178 88ed023b

  Kernel BUG at c000000000043e80 [verbose debug info unavailable]
  Unexpected TM Bad Thing exception at c000000000043e80 (msr 0x201033)
  Oops: Unrecoverable exception, sig: 6 [#2]
  CPU: 0 PID: 2006 Comm: tm-execed Tainted: G      D
  task: c0000000fbea6d80 ti: c00000003ffec000 task.ti: c0000000fb7ec000
  NIP: c000000000043e80 LR: c000000000015a24 CTR: 0000000000000000
  REGS: c00000003ffef7e0 TRAP: 0700   Tainted: G      D
  MSR: 8000000300201033 <SF,ME,IR,DR,RI,LE,TM[SE]>  CR: 28002828  XER: 00000000
  CFAR: c000000000015a20 SOFTE: 0
  PACATMSCRATCH: b00000010000d033
  GPR00: 0000000000000000 c00000003ffefa60 c000000000db5500 c0000000fbead000
  GPR04: 8000000300001033 2222222222222222 2222222222222222 00000000ff160000
  GPR08: 0000000000000000 800000010000d033 c0000000fb7e3ea0 c00000000fe00004
  GPR12: 0000000000002200 c00000000fe00000 0000000000000000 0000000000000000
  GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
  GPR20: 0000000000000000 0000000000000000 c0000000fbea7410 00000000ff160000
  GPR24: c0000000ffe1f600 c0000000fbea8700 c0000000fbea8700 c0000000fbead000
  GPR28: c000000000e20198 c0000000fbea6d80 c0000000fbeab680 c0000000fbea6d80
  NIP [c000000000043e80] tm_restore_sprs+0xc/0x1c
  LR [c000000000015a24] __switch_to+0x1f4/0x420
  Call Trace:
  Instruction dump:
  7c800164 4e800020 7c0022a6 f80304a8 7c0222a6 f80304b0 7c0122a6 f80304b8
  4e800020 e80304a8 7c0023a6 e80304b0 <7c0223a6> e80304b8 7c0123a6 4e800020

This fixes CVE-2016-5828.

Fixes: bc2a9408fa ("powerpc: Hook in new transactional memory code")
Cc: stable@vger.kernel.org # v3.9+
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-27 20:35:17 +10:00

1952 lines
48 KiB
C

/*
* Derived from "arch/i386/kernel/process.c"
* Copyright (C) 1995 Linus Torvalds
*
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
* Paul Mackerras (paulus@cs.anu.edu.au)
*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
#include <linux/utsname.h>
#include <linux/ftrace.h>
#include <linux/kernel_stat.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/uaccess.h>
#include <linux/elf-randomize.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/runlatch.h>
#include <asm/syscalls.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/debug.h>
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
#include <asm/code-patching.h>
#include <asm/exec.h>
#include <asm/livepatch.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif
extern unsigned long _get_SP(void);
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static void check_if_tm_restore_required(struct task_struct *tsk)
{
/*
* If we are saving the current thread's registers, and the
* thread is in a transactional state, set the TIF_RESTORE_TM
* bit so that we know to restore the registers before
* returning to userspace.
*/
if (tsk == current && tsk->thread.regs &&
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
!test_thread_flag(TIF_RESTORE_TM)) {
tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
set_thread_flag(TIF_RESTORE_TM);
}
}
#else
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);
static int __init enable_strict_msr_control(char *str)
{
strict_msr_control = true;
pr_info("Enabling strict facility control\n");
return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);
void msr_check_and_set(unsigned long bits)
{
unsigned long oldmsr = mfmsr();
unsigned long newmsr;
newmsr = oldmsr | bits;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
newmsr |= MSR_VSX;
#endif
if (oldmsr != newmsr)
mtmsr_isync(newmsr);
}
void __msr_check_and_clear(unsigned long bits)
{
unsigned long oldmsr = mfmsr();
unsigned long newmsr;
newmsr = oldmsr & ~bits;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
newmsr &= ~MSR_VSX;
#endif
if (oldmsr != newmsr)
mtmsr_isync(newmsr);
}
EXPORT_SYMBOL(__msr_check_and_clear);
#ifdef CONFIG_PPC_FPU
void __giveup_fpu(struct task_struct *tsk)
{
save_fpu(tsk);
tsk->thread.regs->msr &= ~MSR_FP;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}
void giveup_fpu(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_FP);
__giveup_fpu(tsk);
msr_check_and_clear(MSR_FP);
}
EXPORT_SYMBOL(giveup_fpu);
/*
* Make sure the floating-point register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_fp_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
/*
* We need to disable preemption here because if we didn't,
* another process could get scheduled after the regs->msr
* test but before we have finished saving the FP registers
* to the thread_struct. That process could take over the
* FPU, and then when we get scheduled again we would store
* bogus values for the remaining FP registers.
*/
preempt_disable();
if (tsk->thread.regs->msr & MSR_FP) {
/*
* This should only ever be called for current or
* for a stopped child process. Since we save away
* the FP register state on context switch,
* there is something wrong if a stopped child appears
* to still have its FP state in the CPU registers.
*/
BUG_ON(tsk != current);
giveup_fpu(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
void enable_kernel_fp(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_FP);
if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
check_if_tm_restore_required(current);
__giveup_fpu(current);
}
}
EXPORT_SYMBOL(enable_kernel_fp);
static int restore_fp(struct task_struct *tsk) {
if (tsk->thread.load_fp) {
load_fp_state(&current->thread.fp_state);
current->thread.load_fp++;
return 1;
}
return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_PPC_FPU */
#ifdef CONFIG_ALTIVEC
#define loadvec(thr) ((thr).load_vec)
static void __giveup_altivec(struct task_struct *tsk)
{
save_altivec(tsk);
tsk->thread.regs->msr &= ~MSR_VEC;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}
void giveup_altivec(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_VEC);
__giveup_altivec(tsk);
msr_check_and_clear(MSR_VEC);
}
EXPORT_SYMBOL(giveup_altivec);
void enable_kernel_altivec(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_VEC);
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
check_if_tm_restore_required(current);
__giveup_altivec(current);
}
}
EXPORT_SYMBOL(enable_kernel_altivec);
/*
* Make sure the VMX/Altivec register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_altivec_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VEC) {
BUG_ON(tsk != current);
giveup_altivec(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
static int restore_altivec(struct task_struct *tsk)
{
if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
load_vr_state(&tsk->thread.vr_state);
tsk->thread.used_vr = 1;
tsk->thread.load_vec++;
return 1;
}
return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
static void __giveup_vsx(struct task_struct *tsk)
{
if (tsk->thread.regs->msr & MSR_FP)
__giveup_fpu(tsk);
if (tsk->thread.regs->msr & MSR_VEC)
__giveup_altivec(tsk);
tsk->thread.regs->msr &= ~MSR_VSX;
}
static void giveup_vsx(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
__giveup_vsx(tsk);
msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
}
static void save_vsx(struct task_struct *tsk)
{
if (tsk->thread.regs->msr & MSR_FP)
save_fpu(tsk);
if (tsk->thread.regs->msr & MSR_VEC)
save_altivec(tsk);
}
void enable_kernel_vsx(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
check_if_tm_restore_required(current);
if (current->thread.regs->msr & MSR_FP)
__giveup_fpu(current);
if (current->thread.regs->msr & MSR_VEC)
__giveup_altivec(current);
__giveup_vsx(current);
}
}
EXPORT_SYMBOL(enable_kernel_vsx);
void flush_vsx_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VSX) {
BUG_ON(tsk != current);
giveup_vsx(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
static int restore_vsx(struct task_struct *tsk)
{
if (cpu_has_feature(CPU_FTR_VSX)) {
tsk->thread.used_vsr = 1;
return 1;
}
return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
static inline void save_vsx(struct task_struct *tsk) { }
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
void giveup_spe(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_SPE);
__giveup_spe(tsk);
msr_check_and_clear(MSR_SPE);
}
EXPORT_SYMBOL(giveup_spe);
void enable_kernel_spe(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_SPE);
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
check_if_tm_restore_required(current);
__giveup_spe(current);
}
}
EXPORT_SYMBOL(enable_kernel_spe);
void flush_spe_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_SPE) {
BUG_ON(tsk != current);
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
giveup_spe(tsk);
}
preempt_enable();
}
}
#endif /* CONFIG_SPE */
static unsigned long msr_all_available;
static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE))
msr_all_available |= MSR_SPE;
#endif
return 0;
}
early_initcall(init_msr_all_available);
void giveup_all(struct task_struct *tsk)
{
unsigned long usermsr;
if (!tsk->thread.regs)
return;
usermsr = tsk->thread.regs->msr;
if ((usermsr & msr_all_available) == 0)
return;
msr_check_and_set(msr_all_available);
#ifdef CONFIG_PPC_FPU
if (usermsr & MSR_FP)
__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
if (usermsr & MSR_VEC)
__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
if (usermsr & MSR_VSX)
__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
if (usermsr & MSR_SPE)
__giveup_spe(tsk);
#endif
msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);
void restore_math(struct pt_regs *regs)
{
unsigned long msr;
if (!current->thread.load_fp && !loadvec(current->thread))
return;
msr = regs->msr;
msr_check_and_set(msr_all_available);
/*
* Only reload if the bit is not set in the user MSR, the bit BEING set
* indicates that the registers are hot
*/
if ((!(msr & MSR_FP)) && restore_fp(current))
msr |= MSR_FP | current->thread.fpexc_mode;
if ((!(msr & MSR_VEC)) && restore_altivec(current))
msr |= MSR_VEC;
if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
restore_vsx(current)) {
msr |= MSR_VSX;
}
msr_check_and_clear(msr_all_available);
regs->msr = msr;
}
void save_all(struct task_struct *tsk)
{
unsigned long usermsr;
if (!tsk->thread.regs)
return;
usermsr = tsk->thread.regs->msr;
if ((usermsr & msr_all_available) == 0)
return;
msr_check_and_set(msr_all_available);
/*
* Saving the way the register space is in hardware, save_vsx boils
* down to a save_fpu() and save_altivec()
*/
if (usermsr & MSR_VSX) {
save_vsx(tsk);
} else {
if (usermsr & MSR_FP)
save_fpu(tsk);
if (usermsr & MSR_VEC)
save_altivec(tsk);
}
if (usermsr & MSR_SPE)
__giveup_spe(tsk);
msr_check_and_clear(msr_all_available);
}
void flush_all_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
BUG_ON(tsk != current);
save_all(tsk);
#ifdef CONFIG_SPE
if (tsk->thread.regs->msr & MSR_SPE)
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif
preempt_enable();
}
}
EXPORT_SYMBOL(flush_all_to_thread);
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
unsigned long error_code, int signal_code, int breakpt)
{
siginfo_t info;
current->thread.trap_nr = signal_code;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = breakpt; /* breakpoint or watchpoint id */
info.si_code = signal_code;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
void do_break (struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
siginfo_t info;
current->thread.trap_nr = TRAP_HWBKPT;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
if (debugger_break_match(regs))
return;
/* Clear the breakpoint */
hw_breakpoint_disable();
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_HWBKPT;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* Set the debug registers back to their default "safe" values.
*/
static void set_debug_reg_defaults(struct thread_struct *thread)
{
thread->debug.iac1 = thread->debug.iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
thread->debug.iac3 = thread->debug.iac4 = 0;
#endif
thread->debug.dac1 = thread->debug.dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
thread->debug.dvc1 = thread->debug.dvc2 = 0;
#endif
thread->debug.dbcr0 = 0;
#ifdef CONFIG_BOOKE
/*
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
*/
thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
DBCR1_IAC3US | DBCR1_IAC4US;
/*
* Force Data Address Compare User/Supervisor bits to be User-only
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
*/
thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
thread->debug.dbcr1 = 0;
#endif
}
static void prime_debug_regs(struct debug_reg *debug)
{
/*
* We could have inherited MSR_DE from userspace, since
* it doesn't get cleared on exception entry. Make sure
* MSR_DE is clear before we enable any debug events.
*/
mtmsr(mfmsr() & ~MSR_DE);
mtspr(SPRN_IAC1, debug->iac1);
mtspr(SPRN_IAC2, debug->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
mtspr(SPRN_IAC3, debug->iac3);
mtspr(SPRN_IAC4, debug->iac4);
#endif
mtspr(SPRN_DAC1, debug->dac1);
mtspr(SPRN_DAC2, debug->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
mtspr(SPRN_DVC1, debug->dvc1);
mtspr(SPRN_DVC2, debug->dvc2);
#endif
mtspr(SPRN_DBCR0, debug->dbcr0);
mtspr(SPRN_DBCR1, debug->dbcr1);
#ifdef CONFIG_BOOKE
mtspr(SPRN_DBCR2, debug->dbcr2);
#endif
}
/*
* Unless neither the old or new thread are making use of the
* debug registers, set the debug registers from the values
* stored in the new thread.
*/
void switch_booke_debug_regs(struct debug_reg *new_debug)
{
if ((current->thread.debug.dbcr0 & DBCR0_IDM)
|| (new_debug->dbcr0 & DBCR0_IDM))
prime_debug_regs(new_debug);
}
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
static void set_debug_reg_defaults(struct thread_struct *thread)
{
thread->hw_brk.address = 0;
thread->hw_brk.type = 0;
set_breakpoint(&thread->hw_brk);
}
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
mtspr(SPRN_DAC1, dabr);
#ifdef CONFIG_PPC_47x
isync();
#endif
return 0;
}
#elif defined(CONFIG_PPC_BOOK3S)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
mtspr(SPRN_DABR, dabr);
if (cpu_has_feature(CPU_FTR_DABRX))
mtspr(SPRN_DABRX, dabrx);
return 0;
}
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
return -EINVAL;
}
#endif
static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
unsigned long dabr, dabrx;
dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
dabrx = ((brk->type >> 3) & 0x7);
if (ppc_md.set_dabr)
return ppc_md.set_dabr(dabr, dabrx);
return __set_dabr(dabr, dabrx);
}
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
unsigned long dawr, dawrx, mrd;
dawr = brk->address;
dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
<< (63 - 58); //* read/write bits */
dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
<< (63 - 59); //* translate */
dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
>> 3; //* PRIM bits */
/* dawr length is stored in field MDR bits 48:53. Matches range in
doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
0b111111=64DW.
brk->len is in bytes.
This aligns up to double word size, shifts and does the bias.
*/
mrd = ((brk->len + 7) >> 3) - 1;
dawrx |= (mrd & 0x3f) << (63 - 53);
if (ppc_md.set_dawr)
return ppc_md.set_dawr(dawr, dawrx);
mtspr(SPRN_DAWR, dawr);
mtspr(SPRN_DAWRX, dawrx);
return 0;
}
void __set_breakpoint(struct arch_hw_breakpoint *brk)
{
memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
if (cpu_has_feature(CPU_FTR_DAWR))
set_dawr(brk);
else
set_dabr(brk);
}
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
preempt_disable();
__set_breakpoint(brk);
preempt_enable();
}
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
struct arch_hw_breakpoint *b)
{
if (a->address != b->address)
return false;
if (a->type != b->type)
return false;
if (a->len != b->len)
return false;
return true;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static void tm_reclaim_thread(struct thread_struct *thr,
struct thread_info *ti, uint8_t cause)
{
unsigned long msr_diff = 0;
/*
* If FP/VSX registers have been already saved to the
* thread_struct, move them to the transact_fp array.
* We clear the TIF_RESTORE_TM bit since after the reclaim
* the thread will no longer be transactional.
*/
if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
if (msr_diff & MSR_FP)
memcpy(&thr->transact_fp, &thr->fp_state,
sizeof(struct thread_fp_state));
if (msr_diff & MSR_VEC)
memcpy(&thr->transact_vr, &thr->vr_state,
sizeof(struct thread_vr_state));
clear_ti_thread_flag(ti, TIF_RESTORE_TM);
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
}
/*
* Use the current MSR TM suspended bit to track if we have
* checkpointed state outstanding.
* On signal delivery, we'd normally reclaim the checkpointed
* state to obtain stack pointer (see:get_tm_stackpointer()).
* This will then directly return to userspace without going
* through __switch_to(). However, if the stack frame is bad,
* we need to exit this thread which calls __switch_to() which
* will again attempt to reclaim the already saved tm state.
* Hence we need to check that we've not already reclaimed
* this state.
* We do this using the current MSR, rather tracking it in
* some specific thread_struct bit, as it has the additional
* benifit of checking for a potential TM bad thing exception.
*/
if (!MSR_TM_SUSPENDED(mfmsr()))
return;
tm_reclaim(thr, thr->regs->msr, cause);
/* Having done the reclaim, we now have the checkpointed
* FP/VSX values in the registers. These might be valid
* even if we have previously called enable_kernel_fp() or
* flush_fp_to_thread(), so update thr->regs->msr to
* indicate their current validity.
*/
thr->regs->msr |= msr_diff;
}
void tm_reclaim_current(uint8_t cause)
{
tm_enable();
tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}
static inline void tm_reclaim_task(struct task_struct *tsk)
{
/* We have to work out if we're switching from/to a task that's in the
* middle of a transaction.
*
* In switching we need to maintain a 2nd register state as
* oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
* checkpointed (tbegin) state in ckpt_regs and saves the transactional
* (current) FPRs into oldtask->thread.transact_fpr[].
*
* We also context switch (save) TFHAR/TEXASR/TFIAR in here.
*/
struct thread_struct *thr = &tsk->thread;
if (!thr->regs)
return;
if (!MSR_TM_ACTIVE(thr->regs->msr))
goto out_and_saveregs;
/* Stash the original thread MSR, as giveup_fpu et al will
* modify it. We hold onto it to see whether the task used
* FP & vector regs. If the TIF_RESTORE_TM flag is set,
* ckpt_regs.msr is already set.
*/
if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
thr->ckpt_regs.msr = thr->regs->msr;
TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
"ccr=%lx, msr=%lx, trap=%lx)\n",
tsk->pid, thr->regs->nip,
thr->regs->ccr, thr->regs->msr,
thr->regs->trap);
tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
TM_DEBUG("--- tm_reclaim on pid %d complete\n",
tsk->pid);
out_and_saveregs:
/* Always save the regs here, even if a transaction's not active.
* This context-switches a thread's TM info SPRs. We do it here to
* be consistent with the restore path (in recheckpoint) which
* cannot happen later in _switch().
*/
tm_save_sprs(thr);
}
extern void __tm_recheckpoint(struct thread_struct *thread,
unsigned long orig_msr);
void tm_recheckpoint(struct thread_struct *thread,
unsigned long orig_msr)
{
unsigned long flags;
/* We really can't be interrupted here as the TEXASR registers can't
* change and later in the trecheckpoint code, we have a userspace R1.
* So let's hard disable over this region.
*/
local_irq_save(flags);
hard_irq_disable();
/* The TM SPRs are restored here, so that TEXASR.FS can be set
* before the trecheckpoint and no explosion occurs.
*/
tm_restore_sprs(thread);
__tm_recheckpoint(thread, orig_msr);
local_irq_restore(flags);
}
static inline void tm_recheckpoint_new_task(struct task_struct *new)
{
unsigned long msr;
if (!cpu_has_feature(CPU_FTR_TM))
return;
/* Recheckpoint the registers of the thread we're about to switch to.
*
* If the task was using FP, we non-lazily reload both the original and
* the speculative FP register states. This is because the kernel
* doesn't see if/when a TM rollback occurs, so if we take an FP
* unavoidable later, we are unable to determine which set of FP regs
* need to be restored.
*/
if (!new->thread.regs)
return;
if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
tm_restore_sprs(&new->thread);
return;
}
msr = new->thread.ckpt_regs.msr;
/* Recheckpoint to restore original checkpointed register state. */
TM_DEBUG("*** tm_recheckpoint of pid %d "
"(new->msr 0x%lx, new->origmsr 0x%lx)\n",
new->pid, new->thread.regs->msr, msr);
/* This loads the checkpointed FP/VEC state, if used */
tm_recheckpoint(&new->thread, msr);
/* This loads the speculative FP/VEC state, if used */
if (msr & MSR_FP) {
do_load_up_transact_fpu(&new->thread);
new->thread.regs->msr |=
(MSR_FP | new->thread.fpexc_mode);
}
#ifdef CONFIG_ALTIVEC
if (msr & MSR_VEC) {
do_load_up_transact_altivec(&new->thread);
new->thread.regs->msr |= MSR_VEC;
}
#endif
/* We may as well turn on VSX too since all the state is restored now */
if (msr & MSR_VSX)
new->thread.regs->msr |= MSR_VSX;
TM_DEBUG("*** tm_recheckpoint of pid %d complete "
"(kernel msr 0x%lx)\n",
new->pid, mfmsr());
}
static inline void __switch_to_tm(struct task_struct *prev)
{
if (cpu_has_feature(CPU_FTR_TM)) {
tm_enable();
tm_reclaim_task(prev);
}
}
/*
* This is called if we are on the way out to userspace and the
* TIF_RESTORE_TM flag is set. It checks if we need to reload
* FP and/or vector state and does so if necessary.
* If userspace is inside a transaction (whether active or
* suspended) and FP/VMX/VSX instructions have ever been enabled
* inside that transaction, then we have to keep them enabled
* and keep the FP/VMX/VSX state loaded while ever the transaction
* continues. The reason is that if we didn't, and subsequently
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
* we don't know whether it's the same transaction, and thus we
* don't know which of the checkpointed state and the transactional
* state to use.
*/
void restore_tm_state(struct pt_regs *regs)
{
unsigned long msr_diff;
clear_thread_flag(TIF_RESTORE_TM);
if (!MSR_TM_ACTIVE(regs->msr))
return;
msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
restore_math(regs);
regs->msr |= msr_diff;
}
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
if (cpu_has_feature(CPU_FTR_DSCR))
t->dscr = mfspr(SPRN_DSCR);
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
t->bescr = mfspr(SPRN_BESCR);
t->ebbhr = mfspr(SPRN_EBBHR);
t->ebbrr = mfspr(SPRN_EBBRR);
t->fscr = mfspr(SPRN_FSCR);
/*
* Note that the TAR is not available for use in the kernel.
* (To provide this, the TAR should be backed up/restored on
* exception entry/exit instead, and be in pt_regs. FIXME,
* this should be in pt_regs anyway (for debug).)
*/
t->tar = mfspr(SPRN_TAR);
}
#endif
}
static inline void restore_sprs(struct thread_struct *old_thread,
struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
old_thread->vrsave != new_thread->vrsave)
mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
if (cpu_has_feature(CPU_FTR_DSCR)) {
u64 dscr = get_paca()->dscr_default;
u64 fscr = old_thread->fscr & ~FSCR_DSCR;
if (new_thread->dscr_inherit) {
dscr = new_thread->dscr;
fscr |= FSCR_DSCR;
}
if (old_thread->dscr != dscr)
mtspr(SPRN_DSCR, dscr);
if (old_thread->fscr != fscr)
mtspr(SPRN_FSCR, fscr);
}
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
if (old_thread->bescr != new_thread->bescr)
mtspr(SPRN_BESCR, new_thread->bescr);
if (old_thread->ebbhr != new_thread->ebbhr)
mtspr(SPRN_EBBHR, new_thread->ebbhr);
if (old_thread->ebbrr != new_thread->ebbrr)
mtspr(SPRN_EBBRR, new_thread->ebbrr);
if (old_thread->tar != new_thread->tar)
mtspr(SPRN_TAR, new_thread->tar);
}
#endif
}
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *new)
{
struct thread_struct *new_thread, *old_thread;
struct task_struct *last;
#ifdef CONFIG_PPC_BOOK3S_64
struct ppc64_tlb_batch *batch;
#endif
new_thread = &new->thread;
old_thread = &current->thread;
WARN_ON(!irqs_disabled());
#ifdef CONFIG_PPC64
/*
* Collect processor utilization data per process
*/
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
long unsigned start_tb, current_tb;
start_tb = old_thread->start_tb;
cu->current_tb = current_tb = mfspr(SPRN_PURR);
old_thread->accum_tb += (current_tb - start_tb);
new_thread->start_tb = current_tb;
}
#endif /* CONFIG_PPC64 */
#ifdef CONFIG_PPC_STD_MMU_64
batch = this_cpu_ptr(&ppc64_tlb_batch);
if (batch->active) {
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
if (batch->index)
__flush_tlb_pending(batch);
batch->active = 0;
}
#endif /* CONFIG_PPC_STD_MMU_64 */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
switch_booke_debug_regs(&new->thread.debug);
#else
/*
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
* schedule DABR
*/
#ifndef CONFIG_HAVE_HW_BREAKPOINT
if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif
/*
* We need to save SPRs before treclaim/trecheckpoint as these will
* change a number of them.
*/
save_sprs(&prev->thread);
__switch_to_tm(prev);
/* Save FPU, Altivec, VSX and SPE state */
giveup_all(prev);
/*
* We can't take a PMU exception inside _switch() since there is a
* window where the kernel stack SLB and the kernel stack are out
* of sync. Hard disable here.
*/
hard_irq_disable();
tm_recheckpoint_new_task(new);
/*
* Call restore_sprs() before calling _switch(). If we move it after
* _switch() then we miss out on calling it for new tasks. The reason
* for this is we manually create a stack frame for new tasks that
* directly returns through ret_from_fork() or
* ret_from_kernel_thread(). See copy_thread() for details.
*/
restore_sprs(old_thread, new_thread);
last = _switch(old_thread, new_thread);
#ifdef CONFIG_PPC_STD_MMU_64
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
batch = this_cpu_ptr(&ppc64_tlb_batch);
batch->active = 1;
}
if (current_thread_info()->task->thread.regs)
restore_math(current_thread_info()->task->thread.regs);
#endif /* CONFIG_PPC_STD_MMU_64 */
return last;
}
static int instructions_to_print = 16;
static void show_instructions(struct pt_regs *regs)
{
int i;
unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
sizeof(int));
printk("Instruction dump:");
for (i = 0; i < instructions_to_print; i++) {
int instr;
if (!(i % 8))
printk("\n");
#if !defined(CONFIG_BOOKE)
/* If executing with the IMMU off, adjust pc rather
* than print XXXXXXXX.
*/
if (!(regs->msr & MSR_IR))
pc = (unsigned long)phys_to_virt(pc);
#endif
if (!__kernel_text_address(pc) ||
probe_kernel_address((unsigned int __user *)pc, instr)) {
printk(KERN_CONT "XXXXXXXX ");
} else {
if (regs->nip == pc)
printk(KERN_CONT "<%08x> ", instr);
else
printk(KERN_CONT "%08x ", instr);
}
pc += sizeof(int);
}
printk("\n");
}
struct regbit {
unsigned long bit;
const char *name;
};
static struct regbit msr_bits[] = {
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
{MSR_SF, "SF"},
{MSR_HV, "HV"},
#endif
{MSR_VEC, "VEC"},
{MSR_VSX, "VSX"},
#ifdef CONFIG_BOOKE
{MSR_CE, "CE"},
#endif
{MSR_EE, "EE"},
{MSR_PR, "PR"},
{MSR_FP, "FP"},
{MSR_ME, "ME"},
#ifdef CONFIG_BOOKE
{MSR_DE, "DE"},
#else
{MSR_SE, "SE"},
{MSR_BE, "BE"},
#endif
{MSR_IR, "IR"},
{MSR_DR, "DR"},
{MSR_PMM, "PMM"},
#ifndef CONFIG_BOOKE
{MSR_RI, "RI"},
{MSR_LE, "LE"},
#endif
{0, NULL}
};
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
{
const char *s = "";
for (; bits->bit; ++bits)
if (val & bits->bit) {
printk("%s%s", s, bits->name);
s = sep;
}
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
{MSR_TS_T, "T"},
{MSR_TS_S, "S"},
{MSR_TM, "E"},
{0, NULL}
};
static void print_tm_bits(unsigned long val)
{
/*
* This only prints something if at least one of the TM bit is set.
* Inside the TM[], the output means:
* E: Enabled (bit 32)
* S: Suspended (bit 33)
* T: Transactional (bit 34)
*/
if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
printk(",TM[");
print_bits(val, msr_tm_bits, "");
printk("]");
}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif
static void print_msr_bits(unsigned long val)
{
printk("<");
print_bits(val, msr_bits, ",");
print_tm_bits(val);
printk(">");
}
#ifdef CONFIG_PPC64
#define REG "%016lx"
#define REGS_PER_LINE 4
#define LAST_VOLATILE 13
#else
#define REG "%08lx"
#define REGS_PER_LINE 8
#define LAST_VOLATILE 12
#endif
void show_regs(struct pt_regs * regs)
{
int i, trap;
show_regs_print_info(KERN_DEFAULT);
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
regs->nip, regs->link, regs->ctr);
printk("REGS: %p TRAP: %04lx %s (%s)\n",
regs, regs->trap, print_tainted(), init_utsname()->release);
printk("MSR: "REG" ", regs->msr);
print_msr_bits(regs->msr);
printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
trap = TRAP(regs);
if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
printk("CFAR: "REG" ", regs->orig_gpr3);
if (trap == 0x200 || trap == 0x300 || trap == 0x600)
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
#else
printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (MSR_TM_ACTIVE(regs->msr))
printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
#endif
for (i = 0; i < 32; i++) {
if ((i % REGS_PER_LINE) == 0)
printk("\nGPR%02d: ", i);
printk(REG " ", regs->gpr[i]);
if (i == LAST_VOLATILE && !FULL_REGS(regs))
break;
}
printk("\n");
#ifdef CONFIG_KALLSYMS
/*
* Lookup NIP late so we have the best change of getting the
* above info out without failing
*/
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
#endif
show_stack(current, (unsigned long *) regs->gpr[1]);
if (!user_mode(regs))
show_instructions(regs);
}
void flush_thread(void)
{
#ifdef CONFIG_HAVE_HW_BREAKPOINT
flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}
void
release_thread(struct task_struct *t)
{
}
/*
* this gets called so that we can store coprocessor state into memory and
* copy the current task into the new thread.
*/
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
flush_all_to_thread(src);
/*
* Flush TM state out so we can copy it. __switch_to_tm() does this
* flush but it removes the checkpointed state from the current CPU and
* transitions the CPU out of TM mode. Hence we need to call
* tm_recheckpoint_new_task() (on the same task) to restore the
* checkpointed state back and the TM mode.
*/
__switch_to_tm(src);
tm_recheckpoint_new_task(src);
*dst = *src;
clear_task_ebb(dst);
return 0;
}
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
unsigned long sp_vsid;
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
if (radix_enabled())
return;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
<< SLB_VSID_SHIFT_1T;
else
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
<< SLB_VSID_SHIFT;
sp_vsid |= SLB_VSID_KERNEL | llp;
p->thread.ksp_vsid = sp_vsid;
#endif
}
/*
* Copy a thread..
*/
/*
* Copy architecture-specific thread state
*/
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long kthread_arg, struct task_struct *p)
{
struct pt_regs *childregs, *kregs;
extern void ret_from_fork(void);
extern void ret_from_kernel_thread(void);
void (*f)(void);
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
struct thread_info *ti = task_thread_info(p);
klp_init_thread_info(ti);
/* Copy registers */
sp -= sizeof(struct pt_regs);
childregs = (struct pt_regs *) sp;
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
childregs->gpr[1] = sp + sizeof(struct pt_regs);
/* function */
if (usp)
childregs->gpr[14] = ppc_function_entry((void *)usp);
#ifdef CONFIG_PPC64
clear_tsk_thread_flag(p, TIF_32BIT);
childregs->softe = 1;
#endif
childregs->gpr[15] = kthread_arg;
p->thread.regs = NULL; /* no user register state */
ti->flags |= _TIF_RESTOREALL;
f = ret_from_kernel_thread;
} else {
/* user thread */
struct pt_regs *regs = current_pt_regs();
CHECK_FULL_REGS(regs);
*childregs = *regs;
if (usp)
childregs->gpr[1] = usp;
p->thread.regs = childregs;
childregs->gpr[3] = 0; /* Result from fork() */
if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
if (!is_32bit_task())
childregs->gpr[13] = childregs->gpr[6];
else
#endif
childregs->gpr[2] = childregs->gpr[6];
}
f = ret_from_fork;
}
childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
sp -= STACK_FRAME_OVERHEAD;
/*
* The way this works is that at some point in the future
* some task will call _switch to switch to the new task.
* That will pop off the stack frame created below and start
* the new task running at ret_from_fork. The new task will
* do some house keeping and then return from the fork or clone
* system call, using the stack frame created above.
*/
((unsigned long *)sp)[0] = 0;
sp -= sizeof(struct pt_regs);
kregs = (struct pt_regs *) sp;
sp -= STACK_FRAME_OVERHEAD;
p->thread.ksp = sp;
#ifdef CONFIG_PPC32
p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
_ALIGN_UP(sizeof(struct thread_info), 16);
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
p->thread.ptrace_bps[0] = NULL;
#endif
p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
p->thread.vr_save_area = NULL;
#endif
setup_ksp_vsid(p, sp);
#ifdef CONFIG_PPC64
if (cpu_has_feature(CPU_FTR_DSCR)) {
p->thread.dscr_inherit = current->thread.dscr_inherit;
p->thread.dscr = mfspr(SPRN_DSCR);
}
if (cpu_has_feature(CPU_FTR_HAS_PPR))
p->thread.ppr = INIT_PPR;
#endif
kregs->nip = ppc_function_entry(f);
return 0;
}
/*
* Set up a thread for executing a new program
*/
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
#endif
/*
* If we exec out of a kernel thread then thread.regs will not be
* set. Do it now.
*/
if (!current->thread.regs) {
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
current->thread.regs = regs - 1;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
* Clear any transactional state, we're exec()ing. The cause is
* not important as there will never be a recheckpoint so it's not
* user visible.
*/
if (MSR_TM_SUSPENDED(mfmsr()))
tm_reclaim_current(0);
#endif
memset(regs->gpr, 0, sizeof(regs->gpr));
regs->ctr = 0;
regs->link = 0;
regs->xer = 0;
regs->ccr = 0;
regs->gpr[1] = sp;
/*
* We have just cleared all the nonvolatile GPRs, so make
* FULL_REGS(regs) return true. This is necessary to allow
* ptrace to examine the thread immediately after exec.
*/
regs->trap &= ~1UL;
#ifdef CONFIG_PPC32
regs->mq = 0;
regs->nip = start;
regs->msr = MSR_USER;
#else
if (!is_32bit_task()) {
unsigned long entry;
if (is_elf2_task()) {
/* Look ma, no function descriptors! */
entry = start;
/*
* Ulrich says:
* The latest iteration of the ABI requires that when
* calling a function (at its global entry point),
* the caller must ensure r12 holds the entry point
* address (so that the function can quickly
* establish addressability).
*/
regs->gpr[12] = start;
/* Make sure that's restored on entry to userspace. */
set_thread_flag(TIF_RESTOREALL);
} else {
unsigned long toc;
/* start is a relocated pointer to the function
* descriptor for the elf _start routine. The first
* entry in the function descriptor is the entry
* address of _start and the second entry is the TOC
* value we need to use.
*/
__get_user(entry, (unsigned long __user *)start);
__get_user(toc, (unsigned long __user *)start+1);
/* Check whether the e_entry function descriptor entries
* need to be relocated before we can use them.
*/
if (load_addr != 0) {
entry += load_addr;
toc += load_addr;
}
regs->gpr[2] = toc;
}
regs->nip = entry;
regs->msr = MSR_USER64;
} else {
regs->nip = start;
regs->gpr[2] = 0;
regs->msr = MSR_USER32;
}
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = 0;
#endif
memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
current->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vr_save_area = NULL;
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
memset(current->thread.evr, 0, sizeof(current->thread.evr));
current->thread.acc = 0;
current->thread.spefscr = 0;
current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (cpu_has_feature(CPU_FTR_TM))
regs->msr |= MSR_TM;
current->thread.tm_tfhar = 0;
current->thread.tm_texasr = 0;
current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
}
EXPORT_SYMBOL(start_thread);
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
| PR_FP_EXC_RES | PR_FP_EXC_INV)
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
/* This is a bit hairy. If we are an SPE enabled processor
* (have embedded fp) we store the IEEE exception enable flags in
* fpexc_mode. fpexc_mode is also used for setting FP exception
* mode (asyn, precise, disabled) for 'Classic' FP. */
if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
/*
* When the sticky exception bits are set
* directly by userspace, it must call prctl
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
* in the existing prctl settings) or
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
* the bits being set). <fenv.h> functions
* saving and restoring the whole
* floating-point environment need to do so
* anyway to restore the prctl settings from
* the saved environment.
*/
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
tsk->thread.fpexc_mode = val &
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
return 0;
} else {
return -EINVAL;
}
#else
return -EINVAL;
#endif
}
/* on a CONFIG_SPE this does not hurt us. The bits that
* __pack_fe01 use do not overlap with bits used for
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
* on CONFIG_SPE implementations are reserved so writing to
* them does not change anything */
if (val > PR_FP_EXC_PRECISE)
return -EINVAL;
tsk->thread.fpexc_mode = __pack_fe01(val);
if (regs != NULL && (regs->msr & MSR_FP) != 0)
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
| tsk->thread.fpexc_mode;
return 0;
}
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
unsigned int val;
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
/*
* When the sticky exception bits are set
* directly by userspace, it must call prctl
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
* in the existing prctl settings) or
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
* the bits being set). <fenv.h> functions
* saving and restoring the whole
* floating-point environment need to do so
* anyway to restore the prctl settings from
* the saved environment.
*/
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
val = tsk->thread.fpexc_mode;
} else
return -EINVAL;
#else
return -EINVAL;
#endif
else
val = __unpack_fe01(tsk->thread.fpexc_mode);
return put_user(val, (unsigned int __user *) adr);
}
int set_endian(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (val == PR_ENDIAN_BIG)
regs->msr &= ~MSR_LE;
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
regs->msr |= MSR_LE;
else
return -EINVAL;
return 0;
}
int get_endian(struct task_struct *tsk, unsigned long adr)
{
struct pt_regs *regs = tsk->thread.regs;
unsigned int val;
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
!cpu_has_feature(CPU_FTR_REAL_LE))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (regs->msr & MSR_LE) {
if (cpu_has_feature(CPU_FTR_REAL_LE))
val = PR_ENDIAN_LITTLE;
else
val = PR_ENDIAN_PPC_LITTLE;
} else
val = PR_ENDIAN_BIG;
return put_user(val, (unsigned int __user *)adr);
}
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
tsk->thread.align_ctl = val;
return 0;
}
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page;
unsigned long cpu = task_cpu(p);
/*
* Avoid crashing if the stack has overflowed and corrupted
* task_cpu(p), which is in the thread_info struct.
*/
if (cpu < NR_CPUS && cpu_possible(cpu)) {
stack_page = (unsigned long) hardirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
stack_page = (unsigned long) softirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
}
return 0;
}
int validate_sp(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page = (unsigned long)task_stack_page(p);
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
return valid_irq_stack(sp, p, nbytes);
}
EXPORT_SYMBOL(validate_sp);
unsigned long get_wchan(struct task_struct *p)
{
unsigned long ip, sp;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
sp = p->thread.ksp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
do {
sp = *(unsigned long *)sp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
if (count > 0) {
ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
if (!in_sched_functions(ip))
return ip;
}
} while (count++ < 16);
return 0;
}
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
void show_stack(struct task_struct *tsk, unsigned long *stack)
{
unsigned long sp, ip, lr, newsp;
int count = 0;
int firstframe = 1;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
int curr_frame = current->curr_ret_stack;
extern void return_to_handler(void);
unsigned long rth = (unsigned long)return_to_handler;
#endif
sp = (unsigned long) stack;
if (tsk == NULL)
tsk = current;
if (sp == 0) {
if (tsk == current)
sp = current_stack_pointer();
else
sp = tsk->thread.ksp;
}
lr = 0;
printk("Call Trace:\n");
do {
if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
return;
stack = (unsigned long *) sp;
newsp = stack[0];
ip = stack[STACK_FRAME_LR_SAVE];
if (!firstframe || ip != lr) {
printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if ((ip == rth) && curr_frame >= 0) {
printk(" (%pS)",
(void *)current->ret_stack[curr_frame].ret);
curr_frame--;
}
#endif
if (firstframe)
printk(" (unreliable)");
printk("\n");
}
firstframe = 0;
/*
* See if this is an exception frame.
* We look for the "regshere" marker in the current frame.
*/
if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
&& stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
struct pt_regs *regs = (struct pt_regs *)
(sp + STACK_FRAME_OVERHEAD);
lr = regs->link;
printk("--- interrupt: %lx at %pS\n LR = %pS\n",
regs->trap, (void *)regs->nip, (void *)lr);
firstframe = 1;
}
sp = newsp;
} while (count++ < kstack_depth_to_print);
}
#ifdef CONFIG_PPC64
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_on(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ctrl = mfspr(SPRN_CTRLF);
ctrl |= CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
ti->local_flags |= _TLF_RUNLATCH;
}
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_off(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ti->local_flags &= ~_TLF_RUNLATCH;
ctrl = mfspr(SPRN_CTRLF);
ctrl &= ~CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
}
#endif /* CONFIG_PPC64 */
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
static inline unsigned long brk_rnd(void)
{
unsigned long rnd = 0;
/* 8MB for 32bit, 1GB for 64bit */
if (is_32bit_task())
rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
else
rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
return rnd << PAGE_SHIFT;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long base = mm->brk;
unsigned long ret;
#ifdef CONFIG_PPC_STD_MMU_64
/*
* If we are using 1TB segments and we are allowed to randomise
* the heap, we can put it above 1TB so it is backed by a 1TB
* segment. Otherwise the heap will be in the bottom 1TB
* which always uses 256MB segments and this may result in a
* performance penalty. We don't need to worry about radix. For
* radix, mmu_highuser_ssize remains unchanged from 256MB.
*/
if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif
ret = PAGE_ALIGN(base + brk_rnd());
if (ret < mm->brk)
return mm->brk;
return ret;
}