2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/include/linux/mmzone.h
Dan Williams 97500a4a54 mm: maintain randomization of page free lists
When freeing a page with an order >= shuffle_page_order randomly select
the front or back of the list for insertion.

While the mm tries to defragment physical pages into huge pages this can
tend to make the page allocator more predictable over time.  Inject the
front-back randomness to preserve the initial randomness established by
shuffle_free_memory() when the kernel was booted.

The overhead of this manipulation is constrained by only being applied
for MAX_ORDER sized pages by default.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:48 -07:00

1398 lines
41 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H
#ifndef __ASSEMBLY__
#ifndef __GENERATING_BOUNDS_H
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <linux/seqlock.h>
#include <linux/nodemask.h>
#include <linux/pageblock-flags.h>
#include <linux/page-flags-layout.h>
#include <linux/atomic.h>
#include <linux/mm_types.h>
#include <linux/page-flags.h>
#include <asm/page.h>
/* Free memory management - zoned buddy allocator. */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
/*
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
* costly to service. That is between allocation orders which should
* coalesce naturally under reasonable reclaim pressure and those which
* will not.
*/
#define PAGE_ALLOC_COSTLY_ORDER 3
enum migratetype {
MIGRATE_UNMOVABLE,
MIGRATE_MOVABLE,
MIGRATE_RECLAIMABLE,
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
/*
* MIGRATE_CMA migration type is designed to mimic the way
* ZONE_MOVABLE works. Only movable pages can be allocated
* from MIGRATE_CMA pageblocks and page allocator never
* implicitly change migration type of MIGRATE_CMA pageblock.
*
* The way to use it is to change migratetype of a range of
* pageblocks to MIGRATE_CMA which can be done by
* __free_pageblock_cma() function. What is important though
* is that a range of pageblocks must be aligned to
* MAX_ORDER_NR_PAGES should biggest page be bigger then
* a single pageblock.
*/
MIGRATE_CMA,
#endif
#ifdef CONFIG_MEMORY_ISOLATION
MIGRATE_ISOLATE, /* can't allocate from here */
#endif
MIGRATE_TYPES
};
/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
extern const char * const migratetype_names[MIGRATE_TYPES];
#ifdef CONFIG_CMA
# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
#else
# define is_migrate_cma(migratetype) false
# define is_migrate_cma_page(_page) false
#endif
static inline bool is_migrate_movable(int mt)
{
return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
}
#define for_each_migratetype_order(order, type) \
for (order = 0; order < MAX_ORDER; order++) \
for (type = 0; type < MIGRATE_TYPES; type++)
extern int page_group_by_mobility_disabled;
#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
#define get_pageblock_migratetype(page) \
get_pfnblock_flags_mask(page, page_to_pfn(page), \
PB_migrate_end, MIGRATETYPE_MASK)
struct free_area {
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;
};
/* Used for pages not on another list */
static inline void add_to_free_area(struct page *page, struct free_area *area,
int migratetype)
{
list_add(&page->lru, &area->free_list[migratetype]);
area->nr_free++;
}
/* Used for pages not on another list */
static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
int migratetype)
{
list_add_tail(&page->lru, &area->free_list[migratetype]);
area->nr_free++;
}
#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
/* Used to preserve page allocation order entropy */
void add_to_free_area_random(struct page *page, struct free_area *area,
int migratetype);
#else
static inline void add_to_free_area_random(struct page *page,
struct free_area *area, int migratetype)
{
add_to_free_area(page, area, migratetype);
}
#endif
/* Used for pages which are on another list */
static inline void move_to_free_area(struct page *page, struct free_area *area,
int migratetype)
{
list_move(&page->lru, &area->free_list[migratetype]);
}
static inline struct page *get_page_from_free_area(struct free_area *area,
int migratetype)
{
return list_first_entry_or_null(&area->free_list[migratetype],
struct page, lru);
}
static inline void del_page_from_free_area(struct page *page,
struct free_area *area)
{
list_del(&page->lru);
__ClearPageBuddy(page);
set_page_private(page, 0);
area->nr_free--;
}
static inline bool free_area_empty(struct free_area *area, int migratetype)
{
return list_empty(&area->free_list[migratetype]);
}
struct pglist_data;
/*
* zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
* So add a wild amount of padding here to ensure that they fall into separate
* cachelines. There are very few zone structures in the machine, so space
* consumption is not a concern here.
*/
#if defined(CONFIG_SMP)
struct zone_padding {
char x[0];
} ____cacheline_internodealigned_in_smp;
#define ZONE_PADDING(name) struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif
#ifdef CONFIG_NUMA
enum numa_stat_item {
NUMA_HIT, /* allocated in intended node */
NUMA_MISS, /* allocated in non intended node */
NUMA_FOREIGN, /* was intended here, hit elsewhere */
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
NUMA_LOCAL, /* allocation from local node */
NUMA_OTHER, /* allocation from other node */
NR_VM_NUMA_STAT_ITEMS
};
#else
#define NR_VM_NUMA_STAT_ITEMS 0
#endif
enum zone_stat_item {
/* First 128 byte cacheline (assuming 64 bit words) */
NR_FREE_PAGES,
NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
NR_ZONE_ACTIVE_ANON,
NR_ZONE_INACTIVE_FILE,
NR_ZONE_ACTIVE_FILE,
NR_ZONE_UNEVICTABLE,
NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
NR_MLOCK, /* mlock()ed pages found and moved off LRU */
NR_PAGETABLE, /* used for pagetables */
NR_KERNEL_STACK_KB, /* measured in KiB */
/* Second 128 byte cacheline */
NR_BOUNCE,
#if IS_ENABLED(CONFIG_ZSMALLOC)
NR_ZSPAGES, /* allocated in zsmalloc */
#endif
NR_FREE_CMA_PAGES,
NR_VM_ZONE_STAT_ITEMS };
enum node_stat_item {
NR_LRU_BASE,
NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
NR_ACTIVE_ANON, /* " " " " " */
NR_INACTIVE_FILE, /* " " " " " */
NR_ACTIVE_FILE, /* " " " " " */
NR_UNEVICTABLE, /* " " " " " */
NR_SLAB_RECLAIMABLE,
NR_SLAB_UNRECLAIMABLE,
NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
WORKINGSET_NODES,
WORKINGSET_REFAULT,
WORKINGSET_ACTIVATE,
WORKINGSET_RESTORE,
WORKINGSET_NODERECLAIM,
NR_ANON_MAPPED, /* Mapped anonymous pages */
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
only modified from process context */
NR_FILE_PAGES,
NR_FILE_DIRTY,
NR_WRITEBACK,
NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
NR_SHMEM_THPS,
NR_SHMEM_PMDMAPPED,
NR_ANON_THPS,
NR_UNSTABLE_NFS, /* NFS unstable pages */
NR_VMSCAN_WRITE,
NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
NR_DIRTIED, /* page dirtyings since bootup */
NR_WRITTEN, /* page writings since bootup */
NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
NR_VM_NODE_STAT_ITEMS
};
/*
* We do arithmetic on the LRU lists in various places in the code,
* so it is important to keep the active lists LRU_ACTIVE higher in
* the array than the corresponding inactive lists, and to keep
* the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
*
* This has to be kept in sync with the statistics in zone_stat_item
* above and the descriptions in vmstat_text in mm/vmstat.c
*/
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2
enum lru_list {
LRU_INACTIVE_ANON = LRU_BASE,
LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
LRU_UNEVICTABLE,
NR_LRU_LISTS
};
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
static inline int is_file_lru(enum lru_list lru)
{
return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
}
static inline int is_active_lru(enum lru_list lru)
{
return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
}
struct zone_reclaim_stat {
/*
* The pageout code in vmscan.c keeps track of how many of the
* mem/swap backed and file backed pages are referenced.
* The higher the rotated/scanned ratio, the more valuable
* that cache is.
*
* The anon LRU stats live in [0], file LRU stats in [1]
*/
unsigned long recent_rotated[2];
unsigned long recent_scanned[2];
};
struct lruvec {
struct list_head lists[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
/* Evictions & activations on the inactive file list */
atomic_long_t inactive_age;
/* Refaults at the time of last reclaim cycle */
unsigned long refaults;
#ifdef CONFIG_MEMCG
struct pglist_data *pgdat;
#endif
};
/* Isolate unmapped file */
#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
/* Isolate for asynchronous migration */
#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
/* Isolate unevictable pages */
#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
/* LRU Isolation modes. */
typedef unsigned __bitwise isolate_mode_t;
enum zone_watermarks {
WMARK_MIN,
WMARK_LOW,
WMARK_HIGH,
NR_WMARK
};
#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
struct per_cpu_pages {
int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */
/* Lists of pages, one per migrate type stored on the pcp-lists */
struct list_head lists[MIGRATE_PCPTYPES];
};
struct per_cpu_pageset {
struct per_cpu_pages pcp;
#ifdef CONFIG_NUMA
s8 expire;
u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
#endif
#ifdef CONFIG_SMP
s8 stat_threshold;
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
};
struct per_cpu_nodestat {
s8 stat_threshold;
s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
};
#endif /* !__GENERATING_BOUNDS.H */
enum zone_type {
#ifdef CONFIG_ZONE_DMA
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
*
* Some examples
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
* s390, powerpc <2G
* arm Various
* alpha Unlimited or 0-16MB.
*
* i386, x86_64 and multiple other arches
* <16M.
*/
ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
#endif
/*
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
* performed on pages in ZONE_NORMAL if the DMA devices support
* transfers to all addressable memory.
*/
ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
/*
* A memory area that is only addressable by the kernel through
* mapping portions into its own address space. This is for example
* used by i386 to allow the kernel to address the memory beyond
* 900MB. The kernel will set up special mappings (page
* table entries on i386) for each page that the kernel needs to
* access.
*/
ZONE_HIGHMEM,
#endif
ZONE_MOVABLE,
#ifdef CONFIG_ZONE_DEVICE
ZONE_DEVICE,
#endif
__MAX_NR_ZONES
};
#ifndef __GENERATING_BOUNDS_H
struct zone {
/* Read-mostly fields */
/* zone watermarks, access with *_wmark_pages(zone) macros */
unsigned long _watermark[NR_WMARK];
unsigned long watermark_boost;
unsigned long nr_reserved_highatomic;
/*
* We don't know if the memory that we're going to allocate will be
* freeable or/and it will be released eventually, so to avoid totally
* wasting several GB of ram we must reserve some of the lower zone
* memory (otherwise we risk to run OOM on the lower zones despite
* there being tons of freeable ram on the higher zones). This array is
* recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
* changes.
*/
long lowmem_reserve[MAX_NR_ZONES];
#ifdef CONFIG_NUMA
int node;
#endif
struct pglist_data *zone_pgdat;
struct per_cpu_pageset __percpu *pageset;
#ifndef CONFIG_SPARSEMEM
/*
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
* In SPARSEMEM, this map is stored in struct mem_section
*/
unsigned long *pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
unsigned long zone_start_pfn;
/*
* spanned_pages is the total pages spanned by the zone, including
* holes, which is calculated as:
* spanned_pages = zone_end_pfn - zone_start_pfn;
*
* present_pages is physical pages existing within the zone, which
* is calculated as:
* present_pages = spanned_pages - absent_pages(pages in holes);
*
* managed_pages is present pages managed by the buddy system, which
* is calculated as (reserved_pages includes pages allocated by the
* bootmem allocator):
* managed_pages = present_pages - reserved_pages;
*
* So present_pages may be used by memory hotplug or memory power
* management logic to figure out unmanaged pages by checking
* (present_pages - managed_pages). And managed_pages should be used
* by page allocator and vm scanner to calculate all kinds of watermarks
* and thresholds.
*
* Locking rules:
*
* zone_start_pfn and spanned_pages are protected by span_seqlock.
* It is a seqlock because it has to be read outside of zone->lock,
* and it is done in the main allocator path. But, it is written
* quite infrequently.
*
* The span_seq lock is declared along with zone->lock because it is
* frequently read in proximity to zone->lock. It's good to
* give them a chance of being in the same cacheline.
*
* Write access to present_pages at runtime should be protected by
* mem_hotplug_begin/end(). Any reader who can't tolerant drift of
* present_pages should get_online_mems() to get a stable value.
*/
atomic_long_t managed_pages;
unsigned long spanned_pages;
unsigned long present_pages;
const char *name;
#ifdef CONFIG_MEMORY_ISOLATION
/*
* Number of isolated pageblock. It is used to solve incorrect
* freepage counting problem due to racy retrieving migratetype
* of pageblock. Protected by zone->lock.
*/
unsigned long nr_isolate_pageblock;
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
/* see spanned/present_pages for more description */
seqlock_t span_seqlock;
#endif
int initialized;
/* Write-intensive fields used from the page allocator */
ZONE_PADDING(_pad1_)
/* free areas of different sizes */
struct free_area free_area[MAX_ORDER];
/* zone flags, see below */
unsigned long flags;
/* Primarily protects free_area */
spinlock_t lock;
/* Write-intensive fields used by compaction and vmstats. */
ZONE_PADDING(_pad2_)
/*
* When free pages are below this point, additional steps are taken
* when reading the number of free pages to avoid per-cpu counter
* drift allowing watermarks to be breached
*/
unsigned long percpu_drift_mark;
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/* pfn where compaction free scanner should start */
unsigned long compact_cached_free_pfn;
/* pfn where async and sync compaction migration scanner should start */
unsigned long compact_cached_migrate_pfn[2];
unsigned long compact_init_migrate_pfn;
unsigned long compact_init_free_pfn;
#endif
#ifdef CONFIG_COMPACTION
/*
* On compaction failure, 1<<compact_defer_shift compactions
* are skipped before trying again. The number attempted since
* last failure is tracked with compact_considered.
*/
unsigned int compact_considered;
unsigned int compact_defer_shift;
int compact_order_failed;
#endif
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/* Set to true when the PG_migrate_skip bits should be cleared */
bool compact_blockskip_flush;
#endif
bool contiguous;
ZONE_PADDING(_pad3_)
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
} ____cacheline_internodealigned_in_smp;
enum pgdat_flags {
PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
* a congested BDI
*/
PGDAT_DIRTY, /* reclaim scanning has recently found
* many dirty file pages at the tail
* of the LRU.
*/
PGDAT_WRITEBACK, /* reclaim scanning has recently found
* many pages under writeback
*/
PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
};
enum zone_flags {
ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
* Cleared when kswapd is woken.
*/
};
static inline unsigned long zone_managed_pages(struct zone *zone)
{
return (unsigned long)atomic_long_read(&zone->managed_pages);
}
static inline unsigned long zone_end_pfn(const struct zone *zone)
{
return zone->zone_start_pfn + zone->spanned_pages;
}
static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
{
return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
}
static inline bool zone_is_initialized(struct zone *zone)
{
return zone->initialized;
}
static inline bool zone_is_empty(struct zone *zone)
{
return zone->spanned_pages == 0;
}
/*
* Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
* intersection with the given zone
*/
static inline bool zone_intersects(struct zone *zone,
unsigned long start_pfn, unsigned long nr_pages)
{
if (zone_is_empty(zone))
return false;
if (start_pfn >= zone_end_pfn(zone) ||
start_pfn + nr_pages <= zone->zone_start_pfn)
return false;
return true;
}
/*
* The "priority" of VM scanning is how much of the queues we will scan in one
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
* queues ("queue_length >> 12") during an aging round.
*/
#define DEF_PRIORITY 12
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
enum {
ZONELIST_FALLBACK, /* zonelist with fallback */
#ifdef CONFIG_NUMA
/*
* The NUMA zonelists are doubled because we need zonelists that
* restrict the allocations to a single node for __GFP_THISNODE.
*/
ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
#endif
MAX_ZONELISTS
};
/*
* This struct contains information about a zone in a zonelist. It is stored
* here to avoid dereferences into large structures and lookups of tables
*/
struct zoneref {
struct zone *zone; /* Pointer to actual zone */
int zone_idx; /* zone_idx(zoneref->zone) */
};
/*
* One allocation request operates on a zonelist. A zonelist
* is a list of zones, the first one is the 'goal' of the
* allocation, the other zones are fallback zones, in decreasing
* priority.
*
* To speed the reading of the zonelist, the zonerefs contain the zone index
* of the entry being read. Helper functions to access information given
* a struct zoneref are
*
* zonelist_zone() - Return the struct zone * for an entry in _zonerefs
* zonelist_zone_idx() - Return the index of the zone for an entry
* zonelist_node_idx() - Return the index of the node for an entry
*/
struct zonelist {
struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
};
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif
/*
* On NUMA machines, each NUMA node would have a pg_data_t to describe
* it's memory layout. On UMA machines there is a single pglist_data which
* describes the whole memory.
*
* Memory statistics and page replacement data structures are maintained on a
* per-zone basis.
*/
struct bootmem_data;
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
struct page *node_mem_map;
#ifdef CONFIG_PAGE_EXTENSION
struct page_ext *node_page_ext;
#endif
#endif
#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
/*
* Must be held any time you expect node_start_pfn,
* node_present_pages, node_spanned_pages or nr_zones to stay constant.
*
* pgdat_resize_lock() and pgdat_resize_unlock() are provided to
* manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
* or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
*
* Nests above zone->lock and zone->span_seqlock
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
wait_queue_head_t kswapd_wait;
wait_queue_head_t pfmemalloc_wait;
struct task_struct *kswapd; /* Protected by
mem_hotplug_begin/end() */
int kswapd_order;
enum zone_type kswapd_classzone_idx;
int kswapd_failures; /* Number of 'reclaimed == 0' runs */
#ifdef CONFIG_COMPACTION
int kcompactd_max_order;
enum zone_type kcompactd_classzone_idx;
wait_queue_head_t kcompactd_wait;
struct task_struct *kcompactd;
#endif
/*
* This is a per-node reserve of pages that are not available
* to userspace allocations.
*/
unsigned long totalreserve_pages;
#ifdef CONFIG_NUMA
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
unsigned long min_slab_pages;
#endif /* CONFIG_NUMA */
/* Write-intensive fields used by page reclaim */
ZONE_PADDING(_pad1_)
spinlock_t lru_lock;
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/*
* If memory initialisation on large machines is deferred then this
* is the first PFN that needs to be initialised.
*/
unsigned long first_deferred_pfn;
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
spinlock_t split_queue_lock;
struct list_head split_queue;
unsigned long split_queue_len;
#endif
/* Fields commonly accessed by the page reclaim scanner */
struct lruvec lruvec;
unsigned long flags;
ZONE_PADDING(_pad2_)
/* Per-node vmstats */
struct per_cpu_nodestat __percpu *per_cpu_nodestats;
atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
} pg_data_t;
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
#ifdef CONFIG_FLAT_NODE_MEM_MAP
#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
#else
#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
{
return &pgdat->lruvec;
}
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
{
return pgdat->node_start_pfn + pgdat->node_spanned_pages;
}
static inline bool pgdat_is_empty(pg_data_t *pgdat)
{
return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
}
#include <linux/memory_hotplug.h>
void build_all_zonelists(pg_data_t *pgdat);
void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
enum zone_type classzone_idx);
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
int classzone_idx, unsigned int alloc_flags,
long free_pages);
bool zone_watermark_ok(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx,
unsigned int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx);
enum memmap_context {
MEMMAP_EARLY,
MEMMAP_HOTPLUG,
};
extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
unsigned long size);
extern void lruvec_init(struct lruvec *lruvec);
static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
{
#ifdef CONFIG_MEMCG
return lruvec->pgdat;
#else
return container_of(lruvec, struct pglist_data, lruvec);
#endif
}
extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif
#if defined(CONFIG_SPARSEMEM)
void memblocks_present(void);
#else
static inline void memblocks_present(void) {}
#endif
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
int local_memory_node(int node_id);
#else
static inline int local_memory_node(int node_id) { return node_id; };
#endif
/*
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
*/
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
#ifdef CONFIG_ZONE_DEVICE
static inline bool is_dev_zone(const struct zone *zone)
{
return zone_idx(zone) == ZONE_DEVICE;
}
#else
static inline bool is_dev_zone(const struct zone *zone)
{
return false;
}
#endif
/*
* Returns true if a zone has pages managed by the buddy allocator.
* All the reclaim decisions have to use this function rather than
* populated_zone(). If the whole zone is reserved then we can easily
* end up with populated_zone() && !managed_zone().
*/
static inline bool managed_zone(struct zone *zone)
{
return zone_managed_pages(zone);
}
/* Returns true if a zone has memory */
static inline bool populated_zone(struct zone *zone)
{
return zone->present_pages;
}
#ifdef CONFIG_NUMA
static inline int zone_to_nid(struct zone *zone)
{
return zone->node;
}
static inline void zone_set_nid(struct zone *zone, int nid)
{
zone->node = nid;
}
#else
static inline int zone_to_nid(struct zone *zone)
{
return 0;
}
static inline void zone_set_nid(struct zone *zone, int nid) {}
#endif
extern int movable_zone;
#ifdef CONFIG_HIGHMEM
static inline int zone_movable_is_highmem(void)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
return movable_zone == ZONE_HIGHMEM;
#else
return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
#endif
}
#endif
static inline int is_highmem_idx(enum zone_type idx)
{
#ifdef CONFIG_HIGHMEM
return (idx == ZONE_HIGHMEM ||
(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
#else
return 0;
#endif
}
/**
* is_highmem - helper function to quickly check if a struct zone is a
* highmem zone or not. This is an attempt to keep references
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
* @zone - pointer to struct zone variable
*/
static inline int is_highmem(struct zone *zone)
{
#ifdef CONFIG_HIGHMEM
return is_highmem_idx(zone_idx(zone));
#else
return 0;
#endif
}
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern int numa_zonelist_order_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16
#ifndef CONFIG_NEED_MULTIPLE_NODES
extern struct pglist_data contig_page_data;
#define NODE_DATA(nid) (&contig_page_data)
#define NODE_MEM_MAP(nid) mem_map
#else /* CONFIG_NEED_MULTIPLE_NODES */
#include <asm/mmzone.h>
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
/**
* for_each_online_pgdat - helper macro to iterate over all online nodes
* @pgdat - pointer to a pg_data_t variable
*/
#define for_each_online_pgdat(pgdat) \
for (pgdat = first_online_pgdat(); \
pgdat; \
pgdat = next_online_pgdat(pgdat))
/**
* for_each_zone - helper macro to iterate over all memory zones
* @zone - pointer to struct zone variable
*
* The user only needs to declare the zone variable, for_each_zone
* fills it in.
*/
#define for_each_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone))
#define for_each_populated_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone)) \
if (!populated_zone(zone)) \
; /* do nothing */ \
else
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
return zoneref->zone;
}
static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
return zoneref->zone_idx;
}
static inline int zonelist_node_idx(struct zoneref *zoneref)
{
return zone_to_nid(zoneref->zone);
}
struct zoneref *__next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes);
/**
* next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
* @z - The cursor used as a starting point for the search
* @highest_zoneidx - The zone index of the highest zone to return
* @nodes - An optional nodemask to filter the zonelist with
*
* This function returns the next zone at or below a given zone index that is
* within the allowed nodemask using a cursor as the starting point for the
* search. The zoneref returned is a cursor that represents the current zone
* being examined. It should be advanced by one before calling
* next_zones_zonelist again.
*/
static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes)
{
if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
return z;
return __next_zones_zonelist(z, highest_zoneidx, nodes);
}
/**
* first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
* @zonelist - The zonelist to search for a suitable zone
* @highest_zoneidx - The zone index of the highest zone to return
* @nodes - An optional nodemask to filter the zonelist with
* @return - Zoneref pointer for the first suitable zone found (see below)
*
* This function returns the first zone at or below a given zone index that is
* within the allowed nodemask. The zoneref returned is a cursor that can be
* used to iterate the zonelist with next_zones_zonelist by advancing it by
* one before calling.
*
* When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
* never NULL). This may happen either genuinely, or due to concurrent nodemask
* update due to cpuset modification.
*/
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
enum zone_type highest_zoneidx,
nodemask_t *nodes)
{
return next_zones_zonelist(zonelist->_zonerefs,
highest_zoneidx, nodes);
}
/**
* for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
* @zone - The current zone in the iterator
* @z - The current pointer within zonelist->zones being iterated
* @zlist - The zonelist being iterated
* @highidx - The zone index of the highest zone to return
* @nodemask - Nodemask allowed by the allocator
*
* This iterator iterates though all zones at or below a given zone index and
* within a given nodemask
*/
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
zone; \
z = next_zones_zonelist(++z, highidx, nodemask), \
zone = zonelist_zone(z))
#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
for (zone = z->zone; \
zone; \
z = next_zones_zonelist(++z, highidx, nodemask), \
zone = zonelist_zone(z))
/**
* for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
* @zone - The current zone in the iterator
* @z - The current pointer within zonelist->zones being iterated
* @zlist - The zonelist being iterated
* @highidx - The zone index of the highest zone to return
*
* This iterator iterates though all zones at or below a given zone index.
*/
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
return 0;
}
#endif
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn) (0)
#endif
#ifdef CONFIG_SPARSEMEM
/*
* SECTION_SHIFT #bits space required to store a section #
*
* PA_SECTION_SHIFT physical address to/from section number
* PFN_SECTION_SHIFT pfn to/from section number
*/
#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
#define SECTION_BLOCKFLAGS_BITS \
((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif
static inline unsigned long pfn_to_section_nr(unsigned long pfn)
{
return pfn >> PFN_SECTION_SHIFT;
}
static inline unsigned long section_nr_to_pfn(unsigned long sec)
{
return sec << PFN_SECTION_SHIFT;
}
#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
struct page;
struct page_ext;
struct mem_section {
/*
* This is, logically, a pointer to an array of struct
* pages. However, it is stored with some other magic.
* (see sparse.c::sparse_init_one_section())
*
* Additionally during early boot we encode node id of
* the location of the section here to guide allocation.
* (see sparse.c::memory_present())
*
* Making it a UL at least makes someone do a cast
* before using it wrong.
*/
unsigned long section_mem_map;
/* See declaration of similar field in struct zone */
unsigned long *pageblock_flags;
#ifdef CONFIG_PAGE_EXTENSION
/*
* If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
* section. (see page_ext.h about this.)
*/
struct page_ext *page_ext;
unsigned long pad;
#endif
/*
* WARNING: mem_section must be a power-of-2 in size for the
* calculation and use of SECTION_ROOT_MASK to make sense.
*/
};
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT 1
#endif
#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section **mem_section;
#else
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
#ifdef CONFIG_SPARSEMEM_EXTREME
if (!mem_section)
return NULL;
#endif
if (!mem_section[SECTION_NR_TO_ROOT(nr)])
return NULL;
return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
}
extern int __section_nr(struct mem_section* ms);
extern unsigned long usemap_size(void);
/*
* We use the lower bits of the mem_map pointer to store
* a little bit of information. The pointer is calculated
* as mem_map - section_nr_to_pfn(pnum). The result is
* aligned to the minimum alignment of the two values:
* 1. All mem_map arrays are page-aligned.
* 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
* lowest bits. PFN_SECTION_SHIFT is arch-specific
* (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
* worst combination is powerpc with 256k pages,
* which results in PFN_SECTION_SHIFT equal 6.
* To sum it up, at least 6 bits are available.
*/
#define SECTION_MARKED_PRESENT (1UL<<0)
#define SECTION_HAS_MEM_MAP (1UL<<1)
#define SECTION_IS_ONLINE (1UL<<2)
#define SECTION_MAP_LAST_BIT (1UL<<3)
#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
#define SECTION_NID_SHIFT 3
static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
unsigned long map = section->section_mem_map;
map &= SECTION_MAP_MASK;
return (struct page *)map;
}
static inline int present_section(struct mem_section *section)
{
return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
}
static inline int present_section_nr(unsigned long nr)
{
return present_section(__nr_to_section(nr));
}
static inline int valid_section(struct mem_section *section)
{
return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
}
static inline int valid_section_nr(unsigned long nr)
{
return valid_section(__nr_to_section(nr));
}
static inline int online_section(struct mem_section *section)
{
return (section && (section->section_mem_map & SECTION_IS_ONLINE));
}
static inline int online_section_nr(unsigned long nr)
{
return online_section(__nr_to_section(nr));
}
#ifdef CONFIG_MEMORY_HOTPLUG
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
#ifdef CONFIG_MEMORY_HOTREMOVE
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
#endif
#endif
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
return __nr_to_section(pfn_to_section_nr(pfn));
}
extern int __highest_present_section_nr;
#ifndef CONFIG_HAVE_ARCH_PFN_VALID
static inline int pfn_valid(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
}
#endif
static inline int pfn_present(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}
/*
* These are _only_ used during initialisation, therefore they
* can use __initdata ... They could have names to indicate
* this restriction.
*/
#ifdef CONFIG_NUMA
#define pfn_to_nid(pfn) \
({ \
unsigned long __pfn_to_nid_pfn = (pfn); \
page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
})
#else
#define pfn_to_nid(pfn) (0)
#endif
#define early_pfn_valid(pfn) pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init() do {} while (0)
#define sparse_index_init(_sec, _nid) do {} while (0)
#define pfn_present pfn_valid
#endif /* CONFIG_SPARSEMEM */
/*
* During memory init memblocks map pfns to nids. The search is expensive and
* this caches recent lookups. The implementation of __early_pfn_to_nid
* may treat start/end as pfns or sections.
*/
struct mminit_pfnnid_cache {
unsigned long last_start;
unsigned long last_end;
int last_nid;
};
#ifndef early_pfn_valid
#define early_pfn_valid(pfn) (1)
#endif
void memory_present(int nid, unsigned long start, unsigned long end);
/*
* If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
* need to check pfn validity within that MAX_ORDER_NR_PAGES block.
* pfn_valid_within() should be used in this case; we optimise this away
* when we have no holes within a MAX_ORDER_NR_PAGES block.
*/
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
/*
* pfn_valid() is meant to be able to tell if a given PFN has valid memmap
* associated with it or not. This means that a struct page exists for this
* pfn. The caller cannot assume the page is fully initialized in general.
* Hotplugable pages might not have been onlined yet. pfn_to_online_page()
* will ensure the struct page is fully online and initialized. Special pages
* (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
*
* In FLATMEM, it is expected that holes always have valid memmap as long as
* there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
* that a valid section has a memmap for the entire section.
*
* However, an ARM, and maybe other embedded architectures in the future
* free memmap backing holes to save memory on the assumption the memmap is
* never used. The page_zone linkages are then broken even though pfn_valid()
* returns true. A walker of the full memmap must then do this additional
* check to ensure the memmap they are looking at is sane by making sure
* the zone and PFN linkages are still valid. This is expensive, but walkers
* of the full memmap are extremely rare.
*/
bool memmap_valid_within(unsigned long pfn,
struct page *page, struct zone *zone);
#else
static inline bool memmap_valid_within(unsigned long pfn,
struct page *page, struct zone *zone)
{
return true;
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
#endif /* !__GENERATING_BOUNDS.H */
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */