mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 10:43:57 +08:00
37f3fa7f16
Add to the btree scrubber the ability to check that the keys and records are in the right order and actually call out to our record iterator to do actual checking of the records. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
471 lines
12 KiB
C
471 lines
12 KiB
C
/*
|
|
* Copyright (C) 2017 Oracle. All Rights Reserved.
|
|
*
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_alloc.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/btree.h"
|
|
#include "scrub/trace.h"
|
|
|
|
/* btree scrubbing */
|
|
|
|
/*
|
|
* Check for btree operation errors. See the section about handling
|
|
* operational errors in common.c.
|
|
*/
|
|
bool
|
|
xfs_scrub_btree_process_error(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *error)
|
|
{
|
|
if (*error == 0)
|
|
return true;
|
|
|
|
switch (*error) {
|
|
case -EDEADLOCK:
|
|
/* Used to restart an op with deadlock avoidance. */
|
|
trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error);
|
|
break;
|
|
case -EFSBADCRC:
|
|
case -EFSCORRUPTED:
|
|
/* Note the badness but don't abort. */
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
*error = 0;
|
|
/* fall through */
|
|
default:
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
|
|
trace_xfs_scrub_ifork_btree_op_error(sc, cur, level,
|
|
*error, __return_address);
|
|
else
|
|
trace_xfs_scrub_btree_op_error(sc, cur, level,
|
|
*error, __return_address);
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Record btree block corruption. */
|
|
void
|
|
xfs_scrub_btree_set_corrupt(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
|
|
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
|
|
trace_xfs_scrub_ifork_btree_error(sc, cur, level,
|
|
__return_address);
|
|
else
|
|
trace_xfs_scrub_btree_error(sc, cur, level,
|
|
__return_address);
|
|
}
|
|
|
|
/*
|
|
* Make sure this record is in order and doesn't stray outside of the parent
|
|
* keys.
|
|
*/
|
|
STATIC void
|
|
xfs_scrub_btree_rec(
|
|
struct xfs_scrub_btree *bs)
|
|
{
|
|
struct xfs_btree_cur *cur = bs->cur;
|
|
union xfs_btree_rec *rec;
|
|
union xfs_btree_key key;
|
|
union xfs_btree_key hkey;
|
|
union xfs_btree_key *keyp;
|
|
struct xfs_btree_block *block;
|
|
struct xfs_btree_block *keyblock;
|
|
struct xfs_buf *bp;
|
|
|
|
block = xfs_btree_get_block(cur, 0, &bp);
|
|
rec = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
|
|
|
|
trace_xfs_scrub_btree_rec(bs->sc, cur, 0);
|
|
|
|
/* If this isn't the first record, are they in order? */
|
|
if (!bs->firstrec && !cur->bc_ops->recs_inorder(cur, &bs->lastrec, rec))
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, 0);
|
|
bs->firstrec = false;
|
|
memcpy(&bs->lastrec, rec, cur->bc_ops->rec_len);
|
|
|
|
if (cur->bc_nlevels == 1)
|
|
return;
|
|
|
|
/* Is this at least as large as the parent low key? */
|
|
cur->bc_ops->init_key_from_rec(&key, rec);
|
|
keyblock = xfs_btree_get_block(cur, 1, &bp);
|
|
keyp = xfs_btree_key_addr(cur, cur->bc_ptrs[1], keyblock);
|
|
if (cur->bc_ops->diff_two_keys(cur, &key, keyp) < 0)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, 1);
|
|
|
|
if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
|
|
return;
|
|
|
|
/* Is this no larger than the parent high key? */
|
|
cur->bc_ops->init_high_key_from_rec(&hkey, rec);
|
|
keyp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[1], keyblock);
|
|
if (cur->bc_ops->diff_two_keys(cur, keyp, &hkey) < 0)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, 1);
|
|
}
|
|
|
|
/*
|
|
* Make sure this key is in order and doesn't stray outside of the parent
|
|
* keys.
|
|
*/
|
|
STATIC void
|
|
xfs_scrub_btree_key(
|
|
struct xfs_scrub_btree *bs,
|
|
int level)
|
|
{
|
|
struct xfs_btree_cur *cur = bs->cur;
|
|
union xfs_btree_key *key;
|
|
union xfs_btree_key *keyp;
|
|
struct xfs_btree_block *block;
|
|
struct xfs_btree_block *keyblock;
|
|
struct xfs_buf *bp;
|
|
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
key = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
|
|
|
|
trace_xfs_scrub_btree_key(bs->sc, cur, level);
|
|
|
|
/* If this isn't the first key, are they in order? */
|
|
if (!bs->firstkey[level] &&
|
|
!cur->bc_ops->keys_inorder(cur, &bs->lastkey[level], key))
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
bs->firstkey[level] = false;
|
|
memcpy(&bs->lastkey[level], key, cur->bc_ops->key_len);
|
|
|
|
if (level + 1 >= cur->bc_nlevels)
|
|
return;
|
|
|
|
/* Is this at least as large as the parent low key? */
|
|
keyblock = xfs_btree_get_block(cur, level + 1, &bp);
|
|
keyp = xfs_btree_key_addr(cur, cur->bc_ptrs[level + 1], keyblock);
|
|
if (cur->bc_ops->diff_two_keys(cur, key, keyp) < 0)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
|
|
if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
|
|
return;
|
|
|
|
/* Is this no larger than the parent high key? */
|
|
key = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
|
|
keyp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level + 1], keyblock);
|
|
if (cur->bc_ops->diff_two_keys(cur, keyp, key) < 0)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
}
|
|
|
|
/*
|
|
* Check a btree pointer. Returns true if it's ok to use this pointer.
|
|
* Callers do not need to set the corrupt flag.
|
|
*/
|
|
static bool
|
|
xfs_scrub_btree_ptr_ok(
|
|
struct xfs_scrub_btree *bs,
|
|
int level,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
bool res;
|
|
|
|
/* A btree rooted in an inode has no block pointer to the root. */
|
|
if ((bs->cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
level == bs->cur->bc_nlevels)
|
|
return true;
|
|
|
|
/* Otherwise, check the pointers. */
|
|
if (bs->cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
res = xfs_btree_check_lptr(bs->cur, be64_to_cpu(ptr->l), level);
|
|
else
|
|
res = xfs_btree_check_sptr(bs->cur, be32_to_cpu(ptr->s), level);
|
|
if (!res)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, bs->cur, level);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Check that a btree block's sibling matches what we expect it. */
|
|
STATIC int
|
|
xfs_scrub_btree_block_check_sibling(
|
|
struct xfs_scrub_btree *bs,
|
|
int level,
|
|
int direction,
|
|
union xfs_btree_ptr *sibling)
|
|
{
|
|
struct xfs_btree_cur *cur = bs->cur;
|
|
struct xfs_btree_block *pblock;
|
|
struct xfs_buf *pbp;
|
|
struct xfs_btree_cur *ncur = NULL;
|
|
union xfs_btree_ptr *pp;
|
|
int success;
|
|
int error;
|
|
|
|
error = xfs_btree_dup_cursor(cur, &ncur);
|
|
if (!xfs_scrub_btree_process_error(bs->sc, cur, level + 1, &error) ||
|
|
!ncur)
|
|
return error;
|
|
|
|
/*
|
|
* If the pointer is null, we shouldn't be able to move the upper
|
|
* level pointer anywhere.
|
|
*/
|
|
if (xfs_btree_ptr_is_null(cur, sibling)) {
|
|
if (direction > 0)
|
|
error = xfs_btree_increment(ncur, level + 1, &success);
|
|
else
|
|
error = xfs_btree_decrement(ncur, level + 1, &success);
|
|
if (error == 0 && success)
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Increment upper level pointer. */
|
|
if (direction > 0)
|
|
error = xfs_btree_increment(ncur, level + 1, &success);
|
|
else
|
|
error = xfs_btree_decrement(ncur, level + 1, &success);
|
|
if (!xfs_scrub_btree_process_error(bs->sc, cur, level + 1, &error))
|
|
goto out;
|
|
if (!success) {
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level + 1);
|
|
goto out;
|
|
}
|
|
|
|
/* Compare upper level pointer to sibling pointer. */
|
|
pblock = xfs_btree_get_block(ncur, level + 1, &pbp);
|
|
pp = xfs_btree_ptr_addr(ncur, ncur->bc_ptrs[level + 1], pblock);
|
|
if (!xfs_scrub_btree_ptr_ok(bs, level + 1, pp))
|
|
goto out;
|
|
|
|
if (xfs_btree_diff_two_ptrs(cur, pp, sibling))
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
out:
|
|
xfs_btree_del_cursor(ncur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/* Check the siblings of a btree block. */
|
|
STATIC int
|
|
xfs_scrub_btree_block_check_siblings(
|
|
struct xfs_scrub_btree *bs,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
struct xfs_btree_cur *cur = bs->cur;
|
|
union xfs_btree_ptr leftsib;
|
|
union xfs_btree_ptr rightsib;
|
|
int level;
|
|
int error = 0;
|
|
|
|
xfs_btree_get_sibling(cur, block, &leftsib, XFS_BB_LEFTSIB);
|
|
xfs_btree_get_sibling(cur, block, &rightsib, XFS_BB_RIGHTSIB);
|
|
level = xfs_btree_get_level(block);
|
|
|
|
/* Root block should never have siblings. */
|
|
if (level == cur->bc_nlevels - 1) {
|
|
if (!xfs_btree_ptr_is_null(cur, &leftsib) ||
|
|
!xfs_btree_ptr_is_null(cur, &rightsib))
|
|
xfs_scrub_btree_set_corrupt(bs->sc, cur, level);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Does the left & right sibling pointers match the adjacent
|
|
* parent level pointers?
|
|
* (These function absorbs error codes for us.)
|
|
*/
|
|
error = xfs_scrub_btree_block_check_sibling(bs, level, -1, &leftsib);
|
|
if (error)
|
|
return error;
|
|
error = xfs_scrub_btree_block_check_sibling(bs, level, 1, &rightsib);
|
|
if (error)
|
|
return error;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Grab and scrub a btree block given a btree pointer. Returns block
|
|
* and buffer pointers (if applicable) if they're ok to use.
|
|
*/
|
|
STATIC int
|
|
xfs_scrub_btree_get_block(
|
|
struct xfs_scrub_btree *bs,
|
|
int level,
|
|
union xfs_btree_ptr *pp,
|
|
struct xfs_btree_block **pblock,
|
|
struct xfs_buf **pbp)
|
|
{
|
|
void *failed_at;
|
|
int error;
|
|
|
|
*pblock = NULL;
|
|
*pbp = NULL;
|
|
|
|
error = xfs_btree_lookup_get_block(bs->cur, level, pp, pblock);
|
|
if (!xfs_scrub_btree_process_error(bs->sc, bs->cur, level, &error) ||
|
|
!pblock)
|
|
return error;
|
|
|
|
xfs_btree_get_block(bs->cur, level, pbp);
|
|
if (bs->cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
failed_at = __xfs_btree_check_lblock(bs->cur, *pblock,
|
|
level, *pbp);
|
|
else
|
|
failed_at = __xfs_btree_check_sblock(bs->cur, *pblock,
|
|
level, *pbp);
|
|
if (failed_at) {
|
|
xfs_scrub_btree_set_corrupt(bs->sc, bs->cur, level);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the block's siblings; this function absorbs error codes
|
|
* for us.
|
|
*/
|
|
return xfs_scrub_btree_block_check_siblings(bs, *pblock);
|
|
}
|
|
|
|
/*
|
|
* Visit all nodes and leaves of a btree. Check that all pointers and
|
|
* records are in order, that the keys reflect the records, and use a callback
|
|
* so that the caller can verify individual records.
|
|
*/
|
|
int
|
|
xfs_scrub_btree(
|
|
struct xfs_scrub_context *sc,
|
|
struct xfs_btree_cur *cur,
|
|
xfs_scrub_btree_rec_fn scrub_fn,
|
|
struct xfs_owner_info *oinfo,
|
|
void *private)
|
|
{
|
|
struct xfs_scrub_btree bs = {0};
|
|
union xfs_btree_ptr ptr;
|
|
union xfs_btree_ptr *pp;
|
|
union xfs_btree_rec *recp;
|
|
struct xfs_btree_block *block;
|
|
int level;
|
|
struct xfs_buf *bp;
|
|
int i;
|
|
int error = 0;
|
|
|
|
/* Initialize scrub state */
|
|
bs.cur = cur;
|
|
bs.scrub_rec = scrub_fn;
|
|
bs.oinfo = oinfo;
|
|
bs.firstrec = true;
|
|
bs.private = private;
|
|
bs.sc = sc;
|
|
for (i = 0; i < XFS_BTREE_MAXLEVELS; i++)
|
|
bs.firstkey[i] = true;
|
|
INIT_LIST_HEAD(&bs.to_check);
|
|
|
|
/* Don't try to check a tree with a height we can't handle. */
|
|
if (cur->bc_nlevels > XFS_BTREE_MAXLEVELS) {
|
|
xfs_scrub_btree_set_corrupt(sc, cur, 0);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load the root of the btree. The helper function absorbs
|
|
* error codes for us.
|
|
*/
|
|
level = cur->bc_nlevels - 1;
|
|
cur->bc_ops->init_ptr_from_cur(cur, &ptr);
|
|
if (!xfs_scrub_btree_ptr_ok(&bs, cur->bc_nlevels, &ptr))
|
|
goto out;
|
|
error = xfs_scrub_btree_get_block(&bs, level, &ptr, &block, &bp);
|
|
if (error || !block)
|
|
goto out;
|
|
|
|
cur->bc_ptrs[level] = 1;
|
|
|
|
while (level < cur->bc_nlevels) {
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
|
|
if (level == 0) {
|
|
/* End of leaf, pop back towards the root. */
|
|
if (cur->bc_ptrs[level] >
|
|
be16_to_cpu(block->bb_numrecs)) {
|
|
if (level < cur->bc_nlevels - 1)
|
|
cur->bc_ptrs[level + 1]++;
|
|
level++;
|
|
continue;
|
|
}
|
|
|
|
/* Records in order for scrub? */
|
|
xfs_scrub_btree_rec(&bs);
|
|
|
|
/* Call out to the record checker. */
|
|
recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
|
|
error = bs.scrub_rec(&bs, recp);
|
|
if (error)
|
|
break;
|
|
if (xfs_scrub_should_terminate(sc, &error) ||
|
|
(sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
|
|
break;
|
|
|
|
cur->bc_ptrs[level]++;
|
|
continue;
|
|
}
|
|
|
|
/* End of node, pop back towards the root. */
|
|
if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
|
|
if (level < cur->bc_nlevels - 1)
|
|
cur->bc_ptrs[level + 1]++;
|
|
level++;
|
|
continue;
|
|
}
|
|
|
|
/* Keys in order for scrub? */
|
|
xfs_scrub_btree_key(&bs, level);
|
|
|
|
/* Drill another level deeper. */
|
|
pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
|
|
if (!xfs_scrub_btree_ptr_ok(&bs, level, pp)) {
|
|
cur->bc_ptrs[level]++;
|
|
continue;
|
|
}
|
|
level--;
|
|
error = xfs_scrub_btree_get_block(&bs, level, pp, &block, &bp);
|
|
if (error || !block)
|
|
goto out;
|
|
|
|
cur->bc_ptrs[level] = 1;
|
|
}
|
|
|
|
out:
|
|
return error;
|
|
}
|