mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-05 12:13:57 +08:00
cc2550b421
request_irq() is preferred over setup_irq(). The early boot setup_irq() invocations happen either via 'init_IRQ()' or 'time_init()', while memory allocators are ready by 'mm_init()'. Per tglx[1], setup_irq() existed in olden days when allocators were not ready by the time early interrupts were initialized. Hence replace setup_irq() by request_irq(). Seldom remove_irq() usage has been observed coupled with setup_irq(), wherever that has been found, it too has been replaced by free_irq(). A build error that was reported by kbuild test robot <lkp@intel.com> in the previous version of the patch also has been fixed. [1] https://lkml.kernel.org/r/alpine.DEB.2.20.1710191609480.1971@nanos Signed-off-by: afzal mohammed <afzal.mohd.ma@gmail.com> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/91961c77c1cf93d41523f5e1ac52043f32f97077.1582799709.git.afzal.mohd.ma@gmail.com
417 lines
12 KiB
C
417 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* (C) Copyright 2009 Intel Corporation
|
|
* Author: Jacob Pan (jacob.jun.pan@intel.com)
|
|
*
|
|
* Shared with ARM platforms, Jamie Iles, Picochip 2011
|
|
*
|
|
* Support for the Synopsys DesignWare APB Timers.
|
|
*/
|
|
#include <linux/dw_apb_timer.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define APBT_MIN_PERIOD 4
|
|
#define APBT_MIN_DELTA_USEC 200
|
|
|
|
#define APBTMR_N_LOAD_COUNT 0x00
|
|
#define APBTMR_N_CURRENT_VALUE 0x04
|
|
#define APBTMR_N_CONTROL 0x08
|
|
#define APBTMR_N_EOI 0x0c
|
|
#define APBTMR_N_INT_STATUS 0x10
|
|
|
|
#define APBTMRS_INT_STATUS 0xa0
|
|
#define APBTMRS_EOI 0xa4
|
|
#define APBTMRS_RAW_INT_STATUS 0xa8
|
|
#define APBTMRS_COMP_VERSION 0xac
|
|
|
|
#define APBTMR_CONTROL_ENABLE (1 << 0)
|
|
/* 1: periodic, 0:free running. */
|
|
#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
|
|
#define APBTMR_CONTROL_INT (1 << 2)
|
|
|
|
static inline struct dw_apb_clock_event_device *
|
|
ced_to_dw_apb_ced(struct clock_event_device *evt)
|
|
{
|
|
return container_of(evt, struct dw_apb_clock_event_device, ced);
|
|
}
|
|
|
|
static inline struct dw_apb_clocksource *
|
|
clocksource_to_dw_apb_clocksource(struct clocksource *cs)
|
|
{
|
|
return container_of(cs, struct dw_apb_clocksource, cs);
|
|
}
|
|
|
|
static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
|
|
{
|
|
return readl(timer->base + offs);
|
|
}
|
|
|
|
static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
|
|
unsigned long offs)
|
|
{
|
|
writel(val, timer->base + offs);
|
|
}
|
|
|
|
static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
|
|
{
|
|
return readl_relaxed(timer->base + offs);
|
|
}
|
|
|
|
static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
|
|
unsigned long offs)
|
|
{
|
|
writel_relaxed(val, timer->base + offs);
|
|
}
|
|
|
|
static void apbt_disable_int(struct dw_apb_timer *timer)
|
|
{
|
|
u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
|
|
|
|
ctrl |= APBTMR_CONTROL_INT;
|
|
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clockevent_pause() - stop the clock_event_device from running
|
|
*
|
|
* @dw_ced: The APB clock to stop generating events.
|
|
*/
|
|
void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
|
|
{
|
|
disable_irq(dw_ced->timer.irq);
|
|
apbt_disable_int(&dw_ced->timer);
|
|
}
|
|
|
|
static void apbt_eoi(struct dw_apb_timer *timer)
|
|
{
|
|
apbt_readl_relaxed(timer, APBTMR_N_EOI);
|
|
}
|
|
|
|
static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
|
|
{
|
|
struct clock_event_device *evt = data;
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
|
|
if (!evt->event_handler) {
|
|
pr_info("Spurious APBT timer interrupt %d\n", irq);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
if (dw_ced->eoi)
|
|
dw_ced->eoi(&dw_ced->timer);
|
|
|
|
evt->event_handler(evt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void apbt_enable_int(struct dw_apb_timer *timer)
|
|
{
|
|
u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
|
|
/* clear pending intr */
|
|
apbt_readl(timer, APBTMR_N_EOI);
|
|
ctrl &= ~APBTMR_CONTROL_INT;
|
|
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
|
|
}
|
|
|
|
static int apbt_shutdown(struct clock_event_device *evt)
|
|
{
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
u32 ctrl;
|
|
|
|
pr_debug("%s CPU %d state=shutdown\n", __func__,
|
|
cpumask_first(evt->cpumask));
|
|
|
|
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
|
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
return 0;
|
|
}
|
|
|
|
static int apbt_set_oneshot(struct clock_event_device *evt)
|
|
{
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
u32 ctrl;
|
|
|
|
pr_debug("%s CPU %d state=oneshot\n", __func__,
|
|
cpumask_first(evt->cpumask));
|
|
|
|
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
|
/*
|
|
* set free running mode, this mode will let timer reload max
|
|
* timeout which will give time (3min on 25MHz clock) to rearm
|
|
* the next event, therefore emulate the one-shot mode.
|
|
*/
|
|
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
|
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
|
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
/* write again to set free running mode */
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
|
|
/*
|
|
* DW APB p. 46, load counter with all 1s before starting free
|
|
* running mode.
|
|
*/
|
|
apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
|
|
ctrl &= ~APBTMR_CONTROL_INT;
|
|
ctrl |= APBTMR_CONTROL_ENABLE;
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
return 0;
|
|
}
|
|
|
|
static int apbt_set_periodic(struct clock_event_device *evt)
|
|
{
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
|
|
u32 ctrl;
|
|
|
|
pr_debug("%s CPU %d state=periodic\n", __func__,
|
|
cpumask_first(evt->cpumask));
|
|
|
|
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
|
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
/*
|
|
* DW APB p. 46, have to disable timer before load counter,
|
|
* may cause sync problem.
|
|
*/
|
|
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
udelay(1);
|
|
pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
|
|
apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
|
|
ctrl |= APBTMR_CONTROL_ENABLE;
|
|
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
return 0;
|
|
}
|
|
|
|
static int apbt_resume(struct clock_event_device *evt)
|
|
{
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
|
|
pr_debug("%s CPU %d state=resume\n", __func__,
|
|
cpumask_first(evt->cpumask));
|
|
|
|
apbt_enable_int(&dw_ced->timer);
|
|
return 0;
|
|
}
|
|
|
|
static int apbt_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
u32 ctrl;
|
|
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
|
|
|
/* Disable timer */
|
|
ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
|
|
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
|
apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
/* write new count */
|
|
apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
|
|
ctrl |= APBTMR_CONTROL_ENABLE;
|
|
apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clockevent_init() - use an APB timer as a clock_event_device
|
|
*
|
|
* @cpu: The CPU the events will be targeted at.
|
|
* @name: The name used for the timer and the IRQ for it.
|
|
* @rating: The rating to give the timer.
|
|
* @base: I/O base for the timer registers.
|
|
* @irq: The interrupt number to use for the timer.
|
|
* @freq: The frequency that the timer counts at.
|
|
*
|
|
* This creates a clock_event_device for using with the generic clock layer
|
|
* but does not start and register it. This should be done with
|
|
* dw_apb_clockevent_register() as the next step. If this is the first time
|
|
* it has been called for a timer then the IRQ will be requested, if not it
|
|
* just be enabled to allow CPU hotplug to avoid repeatedly requesting and
|
|
* releasing the IRQ.
|
|
*/
|
|
struct dw_apb_clock_event_device *
|
|
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
|
|
void __iomem *base, int irq, unsigned long freq)
|
|
{
|
|
struct dw_apb_clock_event_device *dw_ced =
|
|
kzalloc(sizeof(*dw_ced), GFP_KERNEL);
|
|
int err;
|
|
|
|
if (!dw_ced)
|
|
return NULL;
|
|
|
|
dw_ced->timer.base = base;
|
|
dw_ced->timer.irq = irq;
|
|
dw_ced->timer.freq = freq;
|
|
|
|
clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
|
|
dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
|
|
&dw_ced->ced);
|
|
dw_ced->ced.max_delta_ticks = 0x7fffffff;
|
|
dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
|
|
dw_ced->ced.min_delta_ticks = 5000;
|
|
dw_ced->ced.cpumask = cpumask_of(cpu);
|
|
dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
|
|
CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
|
|
dw_ced->ced.set_state_shutdown = apbt_shutdown;
|
|
dw_ced->ced.set_state_periodic = apbt_set_periodic;
|
|
dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
|
|
dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
|
|
dw_ced->ced.tick_resume = apbt_resume;
|
|
dw_ced->ced.set_next_event = apbt_next_event;
|
|
dw_ced->ced.irq = dw_ced->timer.irq;
|
|
dw_ced->ced.rating = rating;
|
|
dw_ced->ced.name = name;
|
|
|
|
dw_ced->eoi = apbt_eoi;
|
|
err = request_irq(irq, dw_apb_clockevent_irq,
|
|
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
|
|
dw_ced->ced.name, &dw_ced->ced);
|
|
if (err) {
|
|
pr_err("failed to request timer irq\n");
|
|
kfree(dw_ced);
|
|
dw_ced = NULL;
|
|
}
|
|
|
|
return dw_ced;
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clockevent_resume() - resume a clock that has been paused.
|
|
*
|
|
* @dw_ced: The APB clock to resume.
|
|
*/
|
|
void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
|
|
{
|
|
enable_irq(dw_ced->timer.irq);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
|
|
*
|
|
* @dw_ced: The APB clock to stop generating the events.
|
|
*/
|
|
void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
|
|
{
|
|
free_irq(dw_ced->timer.irq, &dw_ced->ced);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clockevent_register() - register the clock with the generic layer
|
|
*
|
|
* @dw_ced: The APB clock to register as a clock_event_device.
|
|
*/
|
|
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
|
|
{
|
|
apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
|
|
clockevents_register_device(&dw_ced->ced);
|
|
apbt_enable_int(&dw_ced->timer);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clocksource_start() - start the clocksource counting.
|
|
*
|
|
* @dw_cs: The clocksource to start.
|
|
*
|
|
* This is used to start the clocksource before registration and can be used
|
|
* to enable calibration of timers.
|
|
*/
|
|
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
|
|
{
|
|
/*
|
|
* start count down from 0xffff_ffff. this is done by toggling the
|
|
* enable bit then load initial load count to ~0.
|
|
*/
|
|
u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
|
|
|
|
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
|
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
|
|
apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
|
|
/* enable, mask interrupt */
|
|
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
|
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
|
|
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
|
|
/* read it once to get cached counter value initialized */
|
|
dw_apb_clocksource_read(dw_cs);
|
|
}
|
|
|
|
static u64 __apbt_read_clocksource(struct clocksource *cs)
|
|
{
|
|
u32 current_count;
|
|
struct dw_apb_clocksource *dw_cs =
|
|
clocksource_to_dw_apb_clocksource(cs);
|
|
|
|
current_count = apbt_readl_relaxed(&dw_cs->timer,
|
|
APBTMR_N_CURRENT_VALUE);
|
|
|
|
return (u64)~current_count;
|
|
}
|
|
|
|
static void apbt_restart_clocksource(struct clocksource *cs)
|
|
{
|
|
struct dw_apb_clocksource *dw_cs =
|
|
clocksource_to_dw_apb_clocksource(cs);
|
|
|
|
dw_apb_clocksource_start(dw_cs);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clocksource_init() - use an APB timer as a clocksource.
|
|
*
|
|
* @rating: The rating to give the clocksource.
|
|
* @name: The name for the clocksource.
|
|
* @base: The I/O base for the timer registers.
|
|
* @freq: The frequency that the timer counts at.
|
|
*
|
|
* This creates a clocksource using an APB timer but does not yet register it
|
|
* with the clocksource system. This should be done with
|
|
* dw_apb_clocksource_register() as the next step.
|
|
*/
|
|
struct dw_apb_clocksource *
|
|
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
|
|
unsigned long freq)
|
|
{
|
|
struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
|
|
|
|
if (!dw_cs)
|
|
return NULL;
|
|
|
|
dw_cs->timer.base = base;
|
|
dw_cs->timer.freq = freq;
|
|
dw_cs->cs.name = name;
|
|
dw_cs->cs.rating = rating;
|
|
dw_cs->cs.read = __apbt_read_clocksource;
|
|
dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
|
|
dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
|
dw_cs->cs.resume = apbt_restart_clocksource;
|
|
|
|
return dw_cs;
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clocksource_register() - register the APB clocksource.
|
|
*
|
|
* @dw_cs: The clocksource to register.
|
|
*/
|
|
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
|
|
{
|
|
clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
|
|
}
|
|
|
|
/**
|
|
* dw_apb_clocksource_read() - read the current value of a clocksource.
|
|
*
|
|
* @dw_cs: The clocksource to read.
|
|
*/
|
|
u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
|
|
{
|
|
return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
|
|
}
|