mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
72a7fe3967
This patchset adds a flags variable to reserve_bootmem() and uses the BOOTMEM_EXCLUSIVE flag in crashkernel reservation code to detect collisions between crashkernel area and already used memory. This patch: Change the reserve_bootmem() function to accept a new flag BOOTMEM_EXCLUSIVE. If that flag is set, the function returns with -EBUSY if the memory already has been reserved in the past. This is to avoid conflicts. Because that code runs before SMP initialisation, there's no race condition inside reserve_bootmem_core(). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix powerpc build] Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: <linux-arch@vger.kernel.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
726 lines
20 KiB
C
726 lines
20 KiB
C
/*
|
|
* Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
|
|
* Copyright (c) 2001 Intel Corp.
|
|
* Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
|
|
* Copyright (c) 2002 NEC Corp.
|
|
* Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
|
|
* Copyright (c) 2004 Silicon Graphics, Inc
|
|
* Russ Anderson <rja@sgi.com>
|
|
* Jesse Barnes <jbarnes@sgi.com>
|
|
* Jack Steiner <steiner@sgi.com>
|
|
*/
|
|
|
|
/*
|
|
* Platform initialization for Discontig Memory
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/nodemask.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/sections.h>
|
|
|
|
/*
|
|
* Track per-node information needed to setup the boot memory allocator, the
|
|
* per-node areas, and the real VM.
|
|
*/
|
|
struct early_node_data {
|
|
struct ia64_node_data *node_data;
|
|
unsigned long pernode_addr;
|
|
unsigned long pernode_size;
|
|
struct bootmem_data bootmem_data;
|
|
unsigned long num_physpages;
|
|
#ifdef CONFIG_ZONE_DMA
|
|
unsigned long num_dma_physpages;
|
|
#endif
|
|
unsigned long min_pfn;
|
|
unsigned long max_pfn;
|
|
};
|
|
|
|
static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
|
|
static nodemask_t memory_less_mask __initdata;
|
|
|
|
pg_data_t *pgdat_list[MAX_NUMNODES];
|
|
|
|
/*
|
|
* To prevent cache aliasing effects, align per-node structures so that they
|
|
* start at addresses that are strided by node number.
|
|
*/
|
|
#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
|
|
#define NODEDATA_ALIGN(addr, node) \
|
|
((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
|
|
(((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
|
|
|
|
/**
|
|
* build_node_maps - callback to setup bootmem structs for each node
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* We allocate a struct bootmem_data for each piece of memory that we wish to
|
|
* treat as a virtually contiguous block (i.e. each node). Each such block
|
|
* must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
|
|
* if necessary. Any non-existent pages will simply be part of the virtual
|
|
* memmap. We also update min_low_pfn and max_low_pfn here as we receive
|
|
* memory ranges from the caller.
|
|
*/
|
|
static int __init build_node_maps(unsigned long start, unsigned long len,
|
|
int node)
|
|
{
|
|
unsigned long cstart, epfn, end = start + len;
|
|
struct bootmem_data *bdp = &mem_data[node].bootmem_data;
|
|
|
|
epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
|
|
cstart = GRANULEROUNDDOWN(start);
|
|
|
|
if (!bdp->node_low_pfn) {
|
|
bdp->node_boot_start = cstart;
|
|
bdp->node_low_pfn = epfn;
|
|
} else {
|
|
bdp->node_boot_start = min(cstart, bdp->node_boot_start);
|
|
bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* early_nr_cpus_node - return number of cpus on a given node
|
|
* @node: node to check
|
|
*
|
|
* Count the number of cpus on @node. We can't use nr_cpus_node() yet because
|
|
* acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
|
|
* called yet. Note that node 0 will also count all non-existent cpus.
|
|
*/
|
|
static int __meminit early_nr_cpus_node(int node)
|
|
{
|
|
int cpu, n = 0;
|
|
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++)
|
|
if (node == node_cpuid[cpu].nid)
|
|
n++;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* compute_pernodesize - compute size of pernode data
|
|
* @node: the node id.
|
|
*/
|
|
static unsigned long __meminit compute_pernodesize(int node)
|
|
{
|
|
unsigned long pernodesize = 0, cpus;
|
|
|
|
cpus = early_nr_cpus_node(node);
|
|
pernodesize += PERCPU_PAGE_SIZE * cpus;
|
|
pernodesize += node * L1_CACHE_BYTES;
|
|
pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
|
|
pernodesize = PAGE_ALIGN(pernodesize);
|
|
return pernodesize;
|
|
}
|
|
|
|
/**
|
|
* per_cpu_node_setup - setup per-cpu areas on each node
|
|
* @cpu_data: per-cpu area on this node
|
|
* @node: node to setup
|
|
*
|
|
* Copy the static per-cpu data into the region we just set aside and then
|
|
* setup __per_cpu_offset for each CPU on this node. Return a pointer to
|
|
* the end of the area.
|
|
*/
|
|
static void *per_cpu_node_setup(void *cpu_data, int node)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int cpu;
|
|
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
if (node == node_cpuid[cpu].nid) {
|
|
memcpy(__va(cpu_data), __phys_per_cpu_start,
|
|
__per_cpu_end - __per_cpu_start);
|
|
__per_cpu_offset[cpu] = (char*)__va(cpu_data) -
|
|
__per_cpu_start;
|
|
cpu_data += PERCPU_PAGE_SIZE;
|
|
}
|
|
}
|
|
#endif
|
|
return cpu_data;
|
|
}
|
|
|
|
/**
|
|
* fill_pernode - initialize pernode data.
|
|
* @node: the node id.
|
|
* @pernode: physical address of pernode data
|
|
* @pernodesize: size of the pernode data
|
|
*/
|
|
static void __init fill_pernode(int node, unsigned long pernode,
|
|
unsigned long pernodesize)
|
|
{
|
|
void *cpu_data;
|
|
int cpus = early_nr_cpus_node(node);
|
|
struct bootmem_data *bdp = &mem_data[node].bootmem_data;
|
|
|
|
mem_data[node].pernode_addr = pernode;
|
|
mem_data[node].pernode_size = pernodesize;
|
|
memset(__va(pernode), 0, pernodesize);
|
|
|
|
cpu_data = (void *)pernode;
|
|
pernode += PERCPU_PAGE_SIZE * cpus;
|
|
pernode += node * L1_CACHE_BYTES;
|
|
|
|
pgdat_list[node] = __va(pernode);
|
|
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
|
|
mem_data[node].node_data = __va(pernode);
|
|
pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
|
|
|
|
pgdat_list[node]->bdata = bdp;
|
|
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
|
|
cpu_data = per_cpu_node_setup(cpu_data, node);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* find_pernode_space - allocate memory for memory map and per-node structures
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* This routine reserves space for the per-cpu data struct, the list of
|
|
* pg_data_ts and the per-node data struct. Each node will have something like
|
|
* the following in the first chunk of addr. space large enough to hold it.
|
|
*
|
|
* ________________________
|
|
* | |
|
|
* |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
|
|
* | PERCPU_PAGE_SIZE * | start and length big enough
|
|
* | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
|
|
* |------------------------|
|
|
* | local pg_data_t * |
|
|
* |------------------------|
|
|
* | local ia64_node_data |
|
|
* |------------------------|
|
|
* | ??? |
|
|
* |________________________|
|
|
*
|
|
* Once this space has been set aside, the bootmem maps are initialized. We
|
|
* could probably move the allocation of the per-cpu and ia64_node_data space
|
|
* outside of this function and use alloc_bootmem_node(), but doing it here
|
|
* is straightforward and we get the alignments we want so...
|
|
*/
|
|
static int __init find_pernode_space(unsigned long start, unsigned long len,
|
|
int node)
|
|
{
|
|
unsigned long epfn;
|
|
unsigned long pernodesize = 0, pernode, pages, mapsize;
|
|
struct bootmem_data *bdp = &mem_data[node].bootmem_data;
|
|
|
|
epfn = (start + len) >> PAGE_SHIFT;
|
|
|
|
pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
|
|
mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
|
|
|
|
/*
|
|
* Make sure this memory falls within this node's usable memory
|
|
* since we may have thrown some away in build_maps().
|
|
*/
|
|
if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
|
|
return 0;
|
|
|
|
/* Don't setup this node's local space twice... */
|
|
if (mem_data[node].pernode_addr)
|
|
return 0;
|
|
|
|
/*
|
|
* Calculate total size needed, incl. what's necessary
|
|
* for good alignment and alias prevention.
|
|
*/
|
|
pernodesize = compute_pernodesize(node);
|
|
pernode = NODEDATA_ALIGN(start, node);
|
|
|
|
/* Is this range big enough for what we want to store here? */
|
|
if (start + len > (pernode + pernodesize + mapsize))
|
|
fill_pernode(node, pernode, pernodesize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* free_node_bootmem - free bootmem allocator memory for use
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* Simply calls the bootmem allocator to free the specified ranged from
|
|
* the given pg_data_t's bdata struct. After this function has been called
|
|
* for all the entries in the EFI memory map, the bootmem allocator will
|
|
* be ready to service allocation requests.
|
|
*/
|
|
static int __init free_node_bootmem(unsigned long start, unsigned long len,
|
|
int node)
|
|
{
|
|
free_bootmem_node(pgdat_list[node], start, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* reserve_pernode_space - reserve memory for per-node space
|
|
*
|
|
* Reserve the space used by the bootmem maps & per-node space in the boot
|
|
* allocator so that when we actually create the real mem maps we don't
|
|
* use their memory.
|
|
*/
|
|
static void __init reserve_pernode_space(void)
|
|
{
|
|
unsigned long base, size, pages;
|
|
struct bootmem_data *bdp;
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
pg_data_t *pdp = pgdat_list[node];
|
|
|
|
if (node_isset(node, memory_less_mask))
|
|
continue;
|
|
|
|
bdp = pdp->bdata;
|
|
|
|
/* First the bootmem_map itself */
|
|
pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
|
|
size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
|
|
base = __pa(bdp->node_bootmem_map);
|
|
reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
|
|
|
|
/* Now the per-node space */
|
|
size = mem_data[node].pernode_size;
|
|
base = __pa(mem_data[node].pernode_addr);
|
|
reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
|
|
}
|
|
}
|
|
|
|
static void __meminit scatter_node_data(void)
|
|
{
|
|
pg_data_t **dst;
|
|
int node;
|
|
|
|
/*
|
|
* for_each_online_node() can't be used at here.
|
|
* node_online_map is not set for hot-added nodes at this time,
|
|
* because we are halfway through initialization of the new node's
|
|
* structures. If for_each_online_node() is used, a new node's
|
|
* pg_data_ptrs will be not initialized. Instead of using it,
|
|
* pgdat_list[] is checked.
|
|
*/
|
|
for_each_node(node) {
|
|
if (pgdat_list[node]) {
|
|
dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
|
|
memcpy(dst, pgdat_list, sizeof(pgdat_list));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* initialize_pernode_data - fixup per-cpu & per-node pointers
|
|
*
|
|
* Each node's per-node area has a copy of the global pg_data_t list, so
|
|
* we copy that to each node here, as well as setting the per-cpu pointer
|
|
* to the local node data structure. The active_cpus field of the per-node
|
|
* structure gets setup by the platform_cpu_init() function later.
|
|
*/
|
|
static void __init initialize_pernode_data(void)
|
|
{
|
|
int cpu, node;
|
|
|
|
scatter_node_data();
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Set the node_data pointer for each per-cpu struct */
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
node = node_cpuid[cpu].nid;
|
|
per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
|
|
}
|
|
#else
|
|
{
|
|
struct cpuinfo_ia64 *cpu0_cpu_info;
|
|
cpu = 0;
|
|
node = node_cpuid[cpu].nid;
|
|
cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
|
|
((char *)&per_cpu__cpu_info - __per_cpu_start));
|
|
cpu0_cpu_info->node_data = mem_data[node].node_data;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
/**
|
|
* memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
|
|
* node but fall back to any other node when __alloc_bootmem_node fails
|
|
* for best.
|
|
* @nid: node id
|
|
* @pernodesize: size of this node's pernode data
|
|
*/
|
|
static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
|
|
{
|
|
void *ptr = NULL;
|
|
u8 best = 0xff;
|
|
int bestnode = -1, node, anynode = 0;
|
|
|
|
for_each_online_node(node) {
|
|
if (node_isset(node, memory_less_mask))
|
|
continue;
|
|
else if (node_distance(nid, node) < best) {
|
|
best = node_distance(nid, node);
|
|
bestnode = node;
|
|
}
|
|
anynode = node;
|
|
}
|
|
|
|
if (bestnode == -1)
|
|
bestnode = anynode;
|
|
|
|
ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
|
|
PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memory_less_nodes - allocate and initialize CPU only nodes pernode
|
|
* information.
|
|
*/
|
|
static void __init memory_less_nodes(void)
|
|
{
|
|
unsigned long pernodesize;
|
|
void *pernode;
|
|
int node;
|
|
|
|
for_each_node_mask(node, memory_less_mask) {
|
|
pernodesize = compute_pernodesize(node);
|
|
pernode = memory_less_node_alloc(node, pernodesize);
|
|
fill_pernode(node, __pa(pernode), pernodesize);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* find_memory - walk the EFI memory map and setup the bootmem allocator
|
|
*
|
|
* Called early in boot to setup the bootmem allocator, and to
|
|
* allocate the per-cpu and per-node structures.
|
|
*/
|
|
void __init find_memory(void)
|
|
{
|
|
int node;
|
|
|
|
reserve_memory();
|
|
|
|
if (num_online_nodes() == 0) {
|
|
printk(KERN_ERR "node info missing!\n");
|
|
node_set_online(0);
|
|
}
|
|
|
|
nodes_or(memory_less_mask, memory_less_mask, node_online_map);
|
|
min_low_pfn = -1;
|
|
max_low_pfn = 0;
|
|
|
|
/* These actually end up getting called by call_pernode_memory() */
|
|
efi_memmap_walk(filter_rsvd_memory, build_node_maps);
|
|
efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
|
|
efi_memmap_walk(find_max_min_low_pfn, NULL);
|
|
|
|
for_each_online_node(node)
|
|
if (mem_data[node].bootmem_data.node_low_pfn) {
|
|
node_clear(node, memory_less_mask);
|
|
mem_data[node].min_pfn = ~0UL;
|
|
}
|
|
|
|
efi_memmap_walk(register_active_ranges, NULL);
|
|
|
|
/*
|
|
* Initialize the boot memory maps in reverse order since that's
|
|
* what the bootmem allocator expects
|
|
*/
|
|
for (node = MAX_NUMNODES - 1; node >= 0; node--) {
|
|
unsigned long pernode, pernodesize, map;
|
|
struct bootmem_data *bdp;
|
|
|
|
if (!node_online(node))
|
|
continue;
|
|
else if (node_isset(node, memory_less_mask))
|
|
continue;
|
|
|
|
bdp = &mem_data[node].bootmem_data;
|
|
pernode = mem_data[node].pernode_addr;
|
|
pernodesize = mem_data[node].pernode_size;
|
|
map = pernode + pernodesize;
|
|
|
|
init_bootmem_node(pgdat_list[node],
|
|
map>>PAGE_SHIFT,
|
|
bdp->node_boot_start>>PAGE_SHIFT,
|
|
bdp->node_low_pfn);
|
|
}
|
|
|
|
efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
|
|
|
|
reserve_pernode_space();
|
|
memory_less_nodes();
|
|
initialize_pernode_data();
|
|
|
|
max_pfn = max_low_pfn;
|
|
|
|
find_initrd();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* per_cpu_init - setup per-cpu variables
|
|
*
|
|
* find_pernode_space() does most of this already, we just need to set
|
|
* local_per_cpu_offset
|
|
*/
|
|
void __cpuinit *per_cpu_init(void)
|
|
{
|
|
int cpu;
|
|
static int first_time = 1;
|
|
|
|
|
|
if (smp_processor_id() != 0)
|
|
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
|
|
|
|
if (first_time) {
|
|
first_time = 0;
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++)
|
|
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
|
|
}
|
|
|
|
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/**
|
|
* show_mem - give short summary of memory stats
|
|
*
|
|
* Shows a simple page count of reserved and used pages in the system.
|
|
* For discontig machines, it does this on a per-pgdat basis.
|
|
*/
|
|
void show_mem(void)
|
|
{
|
|
int i, total_reserved = 0;
|
|
int total_shared = 0, total_cached = 0;
|
|
unsigned long total_present = 0;
|
|
pg_data_t *pgdat;
|
|
|
|
printk(KERN_INFO "Mem-info:\n");
|
|
show_free_areas();
|
|
printk(KERN_INFO "Free swap: %6ldkB\n",
|
|
nr_swap_pages<<(PAGE_SHIFT-10));
|
|
printk(KERN_INFO "Node memory in pages:\n");
|
|
for_each_online_pgdat(pgdat) {
|
|
unsigned long present;
|
|
unsigned long flags;
|
|
int shared = 0, cached = 0, reserved = 0;
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
present = pgdat->node_present_pages;
|
|
for(i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
struct page *page;
|
|
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
|
|
touch_nmi_watchdog();
|
|
if (pfn_valid(pgdat->node_start_pfn + i))
|
|
page = pfn_to_page(pgdat->node_start_pfn + i);
|
|
else {
|
|
i = vmemmap_find_next_valid_pfn(pgdat->node_id,
|
|
i) - 1;
|
|
continue;
|
|
}
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page)-1;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
total_present += present;
|
|
total_reserved += reserved;
|
|
total_cached += cached;
|
|
total_shared += shared;
|
|
printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
|
|
"shrd: %10d, swpd: %10d\n", pgdat->node_id,
|
|
present, reserved, shared, cached);
|
|
}
|
|
printk(KERN_INFO "%ld pages of RAM\n", total_present);
|
|
printk(KERN_INFO "%d reserved pages\n", total_reserved);
|
|
printk(KERN_INFO "%d pages shared\n", total_shared);
|
|
printk(KERN_INFO "%d pages swap cached\n", total_cached);
|
|
printk(KERN_INFO "Total of %ld pages in page table cache\n",
|
|
quicklist_total_size());
|
|
printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
|
|
}
|
|
|
|
/**
|
|
* call_pernode_memory - use SRAT to call callback functions with node info
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @arg: function to call for each range
|
|
*
|
|
* efi_memmap_walk() knows nothing about layout of memory across nodes. Find
|
|
* out to which node a block of memory belongs. Ignore memory that we cannot
|
|
* identify, and split blocks that run across multiple nodes.
|
|
*
|
|
* Take this opportunity to round the start address up and the end address
|
|
* down to page boundaries.
|
|
*/
|
|
void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
|
|
{
|
|
unsigned long rs, re, end = start + len;
|
|
void (*func)(unsigned long, unsigned long, int);
|
|
int i;
|
|
|
|
start = PAGE_ALIGN(start);
|
|
end &= PAGE_MASK;
|
|
if (start >= end)
|
|
return;
|
|
|
|
func = arg;
|
|
|
|
if (!num_node_memblks) {
|
|
/* No SRAT table, so assume one node (node 0) */
|
|
if (start < end)
|
|
(*func)(start, end - start, 0);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < num_node_memblks; i++) {
|
|
rs = max(start, node_memblk[i].start_paddr);
|
|
re = min(end, node_memblk[i].start_paddr +
|
|
node_memblk[i].size);
|
|
|
|
if (rs < re)
|
|
(*func)(rs, re - rs, node_memblk[i].nid);
|
|
|
|
if (re == end)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* count_node_pages - callback to build per-node memory info structures
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* Each node has it's own number of physical pages, DMAable pages, start, and
|
|
* end page frame number. This routine will be called by call_pernode_memory()
|
|
* for each piece of usable memory and will setup these values for each node.
|
|
* Very similar to build_maps().
|
|
*/
|
|
static __init int count_node_pages(unsigned long start, unsigned long len, int node)
|
|
{
|
|
unsigned long end = start + len;
|
|
|
|
mem_data[node].num_physpages += len >> PAGE_SHIFT;
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (start <= __pa(MAX_DMA_ADDRESS))
|
|
mem_data[node].num_dma_physpages +=
|
|
(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
|
|
#endif
|
|
start = GRANULEROUNDDOWN(start);
|
|
start = ORDERROUNDDOWN(start);
|
|
end = GRANULEROUNDUP(end);
|
|
mem_data[node].max_pfn = max(mem_data[node].max_pfn,
|
|
end >> PAGE_SHIFT);
|
|
mem_data[node].min_pfn = min(mem_data[node].min_pfn,
|
|
start >> PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* paging_init - setup page tables
|
|
*
|
|
* paging_init() sets up the page tables for each node of the system and frees
|
|
* the bootmem allocator memory for general use.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long max_dma;
|
|
unsigned long pfn_offset = 0;
|
|
unsigned long max_pfn = 0;
|
|
int node;
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
|
|
efi_memmap_walk(filter_rsvd_memory, count_node_pages);
|
|
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
|
|
sizeof(struct page));
|
|
vmem_map = (struct page *) vmalloc_end;
|
|
efi_memmap_walk(create_mem_map_page_table, NULL);
|
|
printk("Virtual mem_map starts at 0x%p\n", vmem_map);
|
|
#endif
|
|
|
|
for_each_online_node(node) {
|
|
num_physpages += mem_data[node].num_physpages;
|
|
pfn_offset = mem_data[node].min_pfn;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
|
|
#endif
|
|
if (mem_data[node].max_pfn > max_pfn)
|
|
max_pfn = mem_data[node].max_pfn;
|
|
}
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_zone_pfns[ZONE_DMA] = max_dma;
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_pfn;
|
|
free_area_init_nodes(max_zone_pfns);
|
|
|
|
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
pg_data_t *arch_alloc_nodedata(int nid)
|
|
{
|
|
unsigned long size = compute_pernodesize(nid);
|
|
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
void arch_free_nodedata(pg_data_t *pgdat)
|
|
{
|
|
kfree(pgdat);
|
|
}
|
|
|
|
void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
|
|
{
|
|
pgdat_list[update_node] = update_pgdat;
|
|
scatter_node_data();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
int __meminit vmemmap_populate(struct page *start_page,
|
|
unsigned long size, int node)
|
|
{
|
|
return vmemmap_populate_basepages(start_page, size, node);
|
|
}
|
|
#endif
|