2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-17 01:54:01 +08:00
linux-next/fs/f2fs/dir.c
Linus Torvalds 6e135baed8 f2fs-for-5.6
In this series, we've implemented transparent compression experimentally. It
 supports LZO and LZ4, but will add more later as we investigate in the field
 more. At this point, the feature doesn't expose compressed space to user
 directly in order to guarantee potential data updates later to the space.
 Instead, the main goal is to reduce data writes to flash disk as much as
 possible, resulting in extending disk life time as well as relaxing IO
 congestion. Alternatively, we're also considering to add ioctl() to reclaim
 compressed space and show it to user after putting the immutable bit.
 
 Enhancement:
  - add compression support
  - avoid unnecessary locks in quota ops
  - harden power-cut scenario for zoned block devices
  - use private bio_set to avoid IO congestion
  - replace GC mutex with rwsem to serialize callers
 
 Bug fix:
  - fix dentry consistency and memory corruption in rename()'s error case
  - fix wrong swap extent reports
  - fix casefolding bugs
  - change lock coverage to avoid deadlock
  - avoid GFP_KERNEL under f2fs_lock_op
 
 And, we've cleaned up sysfs entries to prepare no debugfs.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAl4zInwACgkQQBSofoJI
 UNL4Tg/+JBbVEFa3IUBGMdbjfgd/g0Jye++iMAYYGRWT6Ll/IGcHRV9NunITjgWU
 mBZqdhI28kXeiGCcewB1ZvivjLx22X4n6yevHk2B5A6PNe9IDCHi0HOAhJJHkjPH
 ecv2L+vX3Oj4y0+H7JNz9Fo3OIPJvMPtCQWlg1z+VQyhB85zNP7fZlvvIY4tG8yw
 ERo0YNotLqwcF1BxCwNbAhV3aJGDxar+MI//yNzpiwDX7IptVpqestfcoIYc9kKL
 4kSWRyEIGwcuIeyoM6aofGS9t4Z/Oe/gdqcxNr6l5n0Q/tMTpb4b/fJFGNr6RRx9
 X9NQo8flkQb2DEIOP0DVpO2aPebzsVtzg3LZUOLA83+wCHfwINtHai2Dy2zDJ2my
 BrVdou8fe2oxoaYihJg/Tz9cd0nA/6mZArtpYvDImAmX/xuGOvVk9zZkXNwc9nVX
 EyVzy0vW4lA6gAIJ95aG6DDhJcAtVoy0MhBRWG92Pufxhn9aW24AV63ChWUf9DRx
 /3RqpMAuQ3UC2gOxXKKnr54lsdhUIMn/y9sjROkVvQ1BvgRVxO8I4GFvMHMKv9pR
 9KXiVRdzyYERyoL4+MF7A2zTnw+RHL4RVILa85p2ALGy2jQ1UuNUQi0BN9x2u1v8
 S1ifNNX8SwOP+83ImFJhhn3HybpFQ45aLO3F7ZjKBQAnufJu+xw=
 =zeoY
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "In this series, we've implemented transparent compression
  experimentally. It supports LZO and LZ4, but will add more later as we
  investigate in the field more.

  At this point, the feature doesn't expose compressed space to user
  directly in order to guarantee potential data updates later to the
  space. Instead, the main goal is to reduce data writes to flash disk
  as much as possible, resulting in extending disk life time as well as
  relaxing IO congestion.

  Alternatively, we're also considering to add ioctl() to reclaim
  compressed space and show it to user after putting the immutable bit.

  Enhancements:
   - add compression support
   - avoid unnecessary locks in quota ops
   - harden power-cut scenario for zoned block devices
   - use private bio_set to avoid IO congestion
   - replace GC mutex with rwsem to serialize callers

  Bug fixes:
   - fix dentry consistency and memory corruption in rename()'s error case
   - fix wrong swap extent reports
   - fix casefolding bugs
   - change lock coverage to avoid deadlock
   - avoid GFP_KERNEL under f2fs_lock_op

  And, we've cleaned up sysfs entries to prepare no debugfs"

* tag 'f2fs-for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (31 commits)
  f2fs: fix race conditions in ->d_compare() and ->d_hash()
  f2fs: fix dcache lookup of !casefolded directories
  f2fs: Add f2fs stats to sysfs
  f2fs: delete duplicate information on sysfs nodes
  f2fs: change to use rwsem for gc_mutex
  f2fs: update f2fs document regarding to fsync_mode
  f2fs: add a way to turn off ipu bio cache
  f2fs: code cleanup for f2fs_statfs_project()
  f2fs: fix miscounted block limit in f2fs_statfs_project()
  f2fs: show the CP_PAUSE reason in checkpoint traces
  f2fs: fix deadlock allocating bio_post_read_ctx from mempool
  f2fs: remove unneeded check for error allocating bio_post_read_ctx
  f2fs: convert inline_dir early before starting rename
  f2fs: fix memleak of kobject
  f2fs: fix to add swap extent correctly
  f2fs: run fsck when getting bad inode during GC
  f2fs: support data compression
  f2fs: free sysfs kobject
  f2fs: declare nested quota_sem and remove unnecessary sems
  f2fs: don't put new_page twice in f2fs_rename
  ...
2020-01-30 15:39:24 -08:00

1130 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/dir.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/sched/signal.h>
#include <linux/unicode.h>
#include "f2fs.h"
#include "node.h"
#include "acl.h"
#include "xattr.h"
#include <trace/events/f2fs.h>
static unsigned long dir_blocks(struct inode *inode)
{
return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
>> PAGE_SHIFT;
}
static unsigned int dir_buckets(unsigned int level, int dir_level)
{
if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
return 1 << (level + dir_level);
else
return MAX_DIR_BUCKETS;
}
static unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
[F2FS_FT_UNKNOWN] = DT_UNKNOWN,
[F2FS_FT_REG_FILE] = DT_REG,
[F2FS_FT_DIR] = DT_DIR,
[F2FS_FT_CHRDEV] = DT_CHR,
[F2FS_FT_BLKDEV] = DT_BLK,
[F2FS_FT_FIFO] = DT_FIFO,
[F2FS_FT_SOCK] = DT_SOCK,
[F2FS_FT_SYMLINK] = DT_LNK,
};
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
};
static void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
{
de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
}
unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de)
{
if (de->file_type < F2FS_FT_MAX)
return f2fs_filetype_table[de->file_type];
return DT_UNKNOWN;
}
static unsigned long dir_block_index(unsigned int level,
int dir_level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
static struct f2fs_dir_entry *find_in_block(struct inode *dir,
struct page *dentry_page,
struct fscrypt_name *fname,
f2fs_hash_t namehash,
int *max_slots,
struct page **res_page)
{
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dir_entry *de;
struct f2fs_dentry_ptr d;
dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
make_dentry_ptr_block(dir, &d, dentry_blk);
de = f2fs_find_target_dentry(fname, namehash, max_slots, &d);
if (de)
*res_page = dentry_page;
return de;
}
#ifdef CONFIG_UNICODE
/*
* Test whether a case-insensitive directory entry matches the filename
* being searched for.
*
* Returns: 0 if the directory entry matches, more than 0 if it
* doesn't match or less than zero on error.
*/
int f2fs_ci_compare(const struct inode *parent, const struct qstr *name,
const struct qstr *entry, bool quick)
{
const struct f2fs_sb_info *sbi = F2FS_SB(parent->i_sb);
const struct unicode_map *um = sbi->s_encoding;
int ret;
if (quick)
ret = utf8_strncasecmp_folded(um, name, entry);
else
ret = utf8_strncasecmp(um, name, entry);
if (ret < 0) {
/* Handle invalid character sequence as either an error
* or as an opaque byte sequence.
*/
if (f2fs_has_strict_mode(sbi))
return -EINVAL;
if (name->len != entry->len)
return 1;
return !!memcmp(name->name, entry->name, name->len);
}
return ret;
}
static void f2fs_fname_setup_ci_filename(struct inode *dir,
const struct qstr *iname,
struct fscrypt_str *cf_name)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
if (!IS_CASEFOLDED(dir)) {
cf_name->name = NULL;
return;
}
cf_name->name = f2fs_kmalloc(sbi, F2FS_NAME_LEN, GFP_NOFS);
if (!cf_name->name)
return;
cf_name->len = utf8_casefold(sbi->s_encoding,
iname, cf_name->name,
F2FS_NAME_LEN);
if ((int)cf_name->len <= 0) {
kvfree(cf_name->name);
cf_name->name = NULL;
}
}
#endif
static inline bool f2fs_match_name(struct f2fs_dentry_ptr *d,
struct f2fs_dir_entry *de,
struct fscrypt_name *fname,
struct fscrypt_str *cf_str,
unsigned long bit_pos,
f2fs_hash_t namehash)
{
#ifdef CONFIG_UNICODE
struct inode *parent = d->inode;
struct f2fs_sb_info *sbi = F2FS_I_SB(parent);
struct qstr entry;
#endif
if (de->hash_code != namehash)
return false;
#ifdef CONFIG_UNICODE
entry.name = d->filename[bit_pos];
entry.len = de->name_len;
if (sbi->s_encoding && IS_CASEFOLDED(parent)) {
if (cf_str->name) {
struct qstr cf = {.name = cf_str->name,
.len = cf_str->len};
return !f2fs_ci_compare(parent, &cf, &entry, true);
}
return !f2fs_ci_compare(parent, fname->usr_fname, &entry,
false);
}
#endif
if (fscrypt_match_name(fname, d->filename[bit_pos],
le16_to_cpu(de->name_len)))
return true;
return false;
}
struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
f2fs_hash_t namehash, int *max_slots,
struct f2fs_dentry_ptr *d)
{
struct f2fs_dir_entry *de;
struct fscrypt_str cf_str = { .name = NULL, .len = 0 };
unsigned long bit_pos = 0;
int max_len = 0;
#ifdef CONFIG_UNICODE
f2fs_fname_setup_ci_filename(d->inode, fname->usr_fname, &cf_str);
#endif
if (max_slots)
*max_slots = 0;
while (bit_pos < d->max) {
if (!test_bit_le(bit_pos, d->bitmap)) {
bit_pos++;
max_len++;
continue;
}
de = &d->dentry[bit_pos];
if (unlikely(!de->name_len)) {
bit_pos++;
continue;
}
if (f2fs_match_name(d, de, fname, &cf_str, bit_pos, namehash))
goto found;
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
max_len = 0;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
}
de = NULL;
found:
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
#ifdef CONFIG_UNICODE
kvfree(cf_str.name);
#endif
return de;
}
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
unsigned int level,
struct fscrypt_name *fname,
struct page **res_page)
{
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
int s = GET_DENTRY_SLOTS(name.len);
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
struct page *dentry_page;
struct f2fs_dir_entry *de = NULL;
bool room = false;
int max_slots;
f2fs_hash_t namehash = f2fs_dentry_hash(dir, &name, fname);
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
le32_to_cpu(namehash) % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; bidx++) {
/* no need to allocate new dentry pages to all the indices */
dentry_page = f2fs_find_data_page(dir, bidx);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT) {
room = true;
continue;
} else {
*res_page = dentry_page;
break;
}
}
de = find_in_block(dir, dentry_page, fname, namehash,
&max_slots, res_page);
if (de)
break;
if (max_slots >= s)
room = true;
f2fs_put_page(dentry_page, 0);
}
if (!de && room && F2FS_I(dir)->chash != namehash) {
F2FS_I(dir)->chash = namehash;
F2FS_I(dir)->clevel = level;
}
return de;
}
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
struct fscrypt_name *fname, struct page **res_page)
{
unsigned long npages = dir_blocks(dir);
struct f2fs_dir_entry *de = NULL;
unsigned int max_depth;
unsigned int level;
if (f2fs_has_inline_dentry(dir)) {
*res_page = NULL;
de = f2fs_find_in_inline_dir(dir, fname, res_page);
goto out;
}
if (npages == 0) {
*res_page = NULL;
goto out;
}
max_depth = F2FS_I(dir)->i_current_depth;
if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u",
dir->i_ino, max_depth);
max_depth = MAX_DIR_HASH_DEPTH;
f2fs_i_depth_write(dir, max_depth);
}
for (level = 0; level < max_depth; level++) {
*res_page = NULL;
de = find_in_level(dir, level, fname, res_page);
if (de || IS_ERR(*res_page))
break;
}
out:
/* This is to increase the speed of f2fs_create */
if (!de)
F2FS_I(dir)->task = current;
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
const struct qstr *child, struct page **res_page)
{
struct f2fs_dir_entry *de = NULL;
struct fscrypt_name fname;
int err;
#ifdef CONFIG_UNICODE
if (f2fs_has_strict_mode(F2FS_I_SB(dir)) && IS_CASEFOLDED(dir) &&
utf8_validate(F2FS_I_SB(dir)->s_encoding, child)) {
*res_page = ERR_PTR(-EINVAL);
return NULL;
}
#endif
err = fscrypt_setup_filename(dir, child, 1, &fname);
if (err) {
if (err == -ENOENT)
*res_page = NULL;
else
*res_page = ERR_PTR(err);
return NULL;
}
de = __f2fs_find_entry(dir, &fname, res_page);
fscrypt_free_filename(&fname);
return de;
}
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
{
struct qstr dotdot = QSTR_INIT("..", 2);
return f2fs_find_entry(dir, &dotdot, p);
}
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
struct page **page)
{
ino_t res = 0;
struct f2fs_dir_entry *de;
de = f2fs_find_entry(dir, qstr, page);
if (de) {
res = le32_to_cpu(de->ino);
f2fs_put_page(*page, 0);
}
return res;
}
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode)
{
enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
lock_page(page);
f2fs_wait_on_page_writeback(page, type, true, true);
de->ino = cpu_to_le32(inode->i_ino);
set_de_type(de, inode->i_mode);
set_page_dirty(page);
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
f2fs_put_page(page, 1);
}
static void init_dent_inode(const struct qstr *name, struct page *ipage)
{
struct f2fs_inode *ri;
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
/* copy name info. to this inode page */
ri = F2FS_INODE(ipage);
ri->i_namelen = cpu_to_le32(name->len);
memcpy(ri->i_name, name->name, name->len);
set_page_dirty(ipage);
}
void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
struct f2fs_dentry_ptr *d)
{
struct qstr dot = QSTR_INIT(".", 1);
struct qstr dotdot = QSTR_INIT("..", 2);
/* update dirent of "." */
f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
/* update dirent of ".." */
f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
}
static int make_empty_dir(struct inode *inode,
struct inode *parent, struct page *page)
{
struct page *dentry_page;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr d;
if (f2fs_has_inline_dentry(inode))
return f2fs_make_empty_inline_dir(inode, parent, page);
dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
make_dentry_ptr_block(NULL, &d, dentry_blk);
f2fs_do_make_empty_dir(inode, parent, &d);
set_page_dirty(dentry_page);
f2fs_put_page(dentry_page, 1);
return 0;
}
struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
const struct qstr *new_name, const struct qstr *orig_name,
struct page *dpage)
{
struct page *page;
int dummy_encrypt = DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(dir));
int err;
if (is_inode_flag_set(inode, FI_NEW_INODE)) {
page = f2fs_new_inode_page(inode);
if (IS_ERR(page))
return page;
if (S_ISDIR(inode->i_mode)) {
/* in order to handle error case */
get_page(page);
err = make_empty_dir(inode, dir, page);
if (err) {
lock_page(page);
goto put_error;
}
put_page(page);
}
err = f2fs_init_acl(inode, dir, page, dpage);
if (err)
goto put_error;
err = f2fs_init_security(inode, dir, orig_name, page);
if (err)
goto put_error;
if ((IS_ENCRYPTED(dir) || dummy_encrypt) &&
f2fs_may_encrypt(inode)) {
err = fscrypt_inherit_context(dir, inode, page, false);
if (err)
goto put_error;
}
} else {
page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
if (IS_ERR(page))
return page;
}
if (new_name) {
init_dent_inode(new_name, page);
if (IS_ENCRYPTED(dir))
file_set_enc_name(inode);
}
/*
* This file should be checkpointed during fsync.
* We lost i_pino from now on.
*/
if (is_inode_flag_set(inode, FI_INC_LINK)) {
if (!S_ISDIR(inode->i_mode))
file_lost_pino(inode);
/*
* If link the tmpfile to alias through linkat path,
* we should remove this inode from orphan list.
*/
if (inode->i_nlink == 0)
f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
f2fs_i_links_write(inode, true);
}
return page;
put_error:
clear_nlink(inode);
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth)
{
if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, true);
clear_inode_flag(inode, FI_NEW_INODE);
}
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (F2FS_I(dir)->i_current_depth != current_depth)
f2fs_i_depth_write(dir, current_depth);
if (inode && is_inode_flag_set(inode, FI_INC_LINK))
clear_inode_flag(inode, FI_INC_LINK);
}
int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
{
int bit_start = 0;
int zero_start, zero_end;
next:
zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
if (zero_start >= max_slots)
return max_slots;
zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= max_slots)
return max_slots;
goto next;
}
bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
struct fscrypt_name *fname)
{
struct f2fs_dentry_ptr d;
unsigned int bit_pos;
int slots = GET_DENTRY_SLOTS(fname_len(fname));
make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage));
bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
return bit_pos < d.max;
}
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
const struct qstr *name, f2fs_hash_t name_hash,
unsigned int bit_pos)
{
struct f2fs_dir_entry *de;
int slots = GET_DENTRY_SLOTS(name->len);
int i;
de = &d->dentry[bit_pos];
de->hash_code = name_hash;
de->name_len = cpu_to_le16(name->len);
memcpy(d->filename[bit_pos], name->name, name->len);
de->ino = cpu_to_le32(ino);
set_de_type(de, mode);
for (i = 0; i < slots; i++) {
__set_bit_le(bit_pos + i, (void *)d->bitmap);
/* avoid wrong garbage data for readdir */
if (i)
(de + i)->name_len = 0;
}
}
int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
const struct qstr *orig_name,
struct inode *inode, nid_t ino, umode_t mode)
{
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
unsigned long bidx, block;
f2fs_hash_t dentry_hash;
unsigned int nbucket, nblock;
struct page *dentry_page = NULL;
struct f2fs_dentry_block *dentry_blk = NULL;
struct f2fs_dentry_ptr d;
struct page *page = NULL;
int slots, err = 0;
level = 0;
slots = GET_DENTRY_SLOTS(new_name->len);
dentry_hash = f2fs_dentry_hash(dir, new_name, NULL);
current_depth = F2FS_I(dir)->i_current_depth;
if (F2FS_I(dir)->chash == dentry_hash) {
level = F2FS_I(dir)->clevel;
F2FS_I(dir)->chash = 0;
}
start:
if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
f2fs_show_injection_info(F2FS_I_SB(dir), FAULT_DIR_DEPTH);
return -ENOSPC;
}
if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
return -ENOSPC;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
(le32_to_cpu(dentry_hash) % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
slots, NR_DENTRY_IN_BLOCK);
if (bit_pos < NR_DENTRY_IN_BLOCK)
goto add_dentry;
f2fs_put_page(dentry_page, 1);
}
/* Move to next level to find the empty slot for new dentry */
++level;
goto start;
add_dentry:
f2fs_wait_on_page_writeback(dentry_page, DATA, true, true);
if (inode) {
down_write(&F2FS_I(inode)->i_sem);
page = f2fs_init_inode_metadata(inode, dir, new_name,
orig_name, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
}
make_dentry_ptr_block(NULL, &d, dentry_blk);
f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
set_page_dirty(dentry_page);
if (inode) {
f2fs_i_pino_write(inode, dir->i_ino);
/* synchronize inode page's data from inode cache */
if (is_inode_flag_set(inode, FI_NEW_INODE))
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
}
f2fs_update_parent_metadata(dir, inode, current_depth);
fail:
if (inode)
up_write(&F2FS_I(inode)->i_sem);
f2fs_put_page(dentry_page, 1);
return err;
}
int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
struct inode *inode, nid_t ino, umode_t mode)
{
struct qstr new_name;
int err = -EAGAIN;
new_name.name = fname_name(fname);
new_name.len = fname_len(fname);
if (f2fs_has_inline_dentry(dir))
err = f2fs_add_inline_entry(dir, &new_name, fname->usr_fname,
inode, ino, mode);
if (err == -EAGAIN)
err = f2fs_add_regular_entry(dir, &new_name, fname->usr_fname,
inode, ino, mode);
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
return err;
}
/*
* Caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
*/
int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
struct inode *inode, nid_t ino, umode_t mode)
{
struct fscrypt_name fname;
struct page *page = NULL;
struct f2fs_dir_entry *de = NULL;
int err;
err = fscrypt_setup_filename(dir, name, 0, &fname);
if (err)
return err;
/*
* An immature stakable filesystem shows a race condition between lookup
* and create. If we have same task when doing lookup and create, it's
* definitely fine as expected by VFS normally. Otherwise, let's just
* verify on-disk dentry one more time, which guarantees filesystem
* consistency more.
*/
if (current != F2FS_I(dir)->task) {
de = __f2fs_find_entry(dir, &fname, &page);
F2FS_I(dir)->task = NULL;
}
if (de) {
f2fs_put_page(page, 0);
err = -EEXIST;
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
} else {
err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
}
fscrypt_free_filename(&fname);
return err;
}
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
{
struct page *page;
int err = 0;
down_write(&F2FS_I(inode)->i_sem);
page = f2fs_init_inode_metadata(inode, dir, NULL, NULL, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
f2fs_put_page(page, 1);
clear_inode_flag(inode, FI_NEW_INODE);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
fail:
up_write(&F2FS_I(inode)->i_sem);
return err;
}
void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
down_write(&F2FS_I(inode)->i_sem);
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, false);
inode->i_ctime = current_time(inode);
f2fs_i_links_write(inode, false);
if (S_ISDIR(inode->i_mode)) {
f2fs_i_links_write(inode, false);
f2fs_i_size_write(inode, 0);
}
up_write(&F2FS_I(inode)->i_sem);
if (inode->i_nlink == 0)
f2fs_add_orphan_inode(inode);
else
f2fs_release_orphan_inode(sbi);
}
/*
* It only removes the dentry from the dentry page, corresponding name
* entry in name page does not need to be touched during deletion.
*/
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_dentry_block *dentry_blk;
unsigned int bit_pos;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
int i;
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
if (f2fs_has_inline_dentry(dir))
return f2fs_delete_inline_entry(dentry, page, dir, inode);
lock_page(page);
f2fs_wait_on_page_writeback(page, DATA, true, true);
dentry_blk = page_address(page);
bit_pos = dentry - dentry_blk->dentry;
for (i = 0; i < slots; i++)
__clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
0);
set_page_dirty(page);
dir->i_ctime = dir->i_mtime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (inode)
f2fs_drop_nlink(dir, inode);
if (bit_pos == NR_DENTRY_IN_BLOCK &&
!f2fs_truncate_hole(dir, page->index, page->index + 1)) {
f2fs_clear_page_cache_dirty_tag(page);
clear_page_dirty_for_io(page);
f2fs_clear_page_private(page);
ClearPageUptodate(page);
clear_cold_data(page);
inode_dec_dirty_pages(dir);
f2fs_remove_dirty_inode(dir);
}
f2fs_put_page(page, 1);
}
bool f2fs_empty_dir(struct inode *dir)
{
unsigned long bidx;
struct page *dentry_page;
unsigned int bit_pos;
struct f2fs_dentry_block *dentry_blk;
unsigned long nblock = dir_blocks(dir);
if (f2fs_has_inline_dentry(dir))
return f2fs_empty_inline_dir(dir);
for (bidx = 0; bidx < nblock; bidx++) {
dentry_page = f2fs_get_lock_data_page(dir, bidx, false);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT)
continue;
else
return false;
}
dentry_blk = page_address(dentry_page);
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_pos);
f2fs_put_page(dentry_page, 1);
if (bit_pos < NR_DENTRY_IN_BLOCK)
return false;
}
return true;
}
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
unsigned int start_pos, struct fscrypt_str *fstr)
{
unsigned char d_type = DT_UNKNOWN;
unsigned int bit_pos;
struct f2fs_dir_entry *de = NULL;
struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
struct blk_plug plug;
bool readdir_ra = sbi->readdir_ra == 1;
int err = 0;
bit_pos = ((unsigned long)ctx->pos % d->max);
if (readdir_ra)
blk_start_plug(&plug);
while (bit_pos < d->max) {
bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
if (bit_pos >= d->max)
break;
de = &d->dentry[bit_pos];
if (de->name_len == 0) {
bit_pos++;
ctx->pos = start_pos + bit_pos;
printk_ratelimited(
"%sF2FS-fs (%s): invalid namelen(0), ino:%u, run fsck to fix.",
KERN_WARNING, sbi->sb->s_id,
le32_to_cpu(de->ino));
set_sbi_flag(sbi, SBI_NEED_FSCK);
continue;
}
d_type = f2fs_get_de_type(de);
de_name.name = d->filename[bit_pos];
de_name.len = le16_to_cpu(de->name_len);
/* check memory boundary before moving forward */
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
if (unlikely(bit_pos > d->max ||
le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.",
__func__, le16_to_cpu(de->name_len));
set_sbi_flag(sbi, SBI_NEED_FSCK);
err = -EFSCORRUPTED;
goto out;
}
if (IS_ENCRYPTED(d->inode)) {
int save_len = fstr->len;
err = fscrypt_fname_disk_to_usr(d->inode,
(u32)le32_to_cpu(de->hash_code),
0, &de_name, fstr);
if (err)
goto out;
de_name = *fstr;
fstr->len = save_len;
}
if (!dir_emit(ctx, de_name.name, de_name.len,
le32_to_cpu(de->ino), d_type)) {
err = 1;
goto out;
}
if (readdir_ra)
f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
ctx->pos = start_pos + bit_pos;
}
out:
if (readdir_ra)
blk_finish_plug(&plug);
return err;
}
static int f2fs_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
unsigned long npages = dir_blocks(inode);
struct f2fs_dentry_block *dentry_blk = NULL;
struct page *dentry_page = NULL;
struct file_ra_state *ra = &file->f_ra;
loff_t start_pos = ctx->pos;
unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
struct f2fs_dentry_ptr d;
struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
int err = 0;
if (IS_ENCRYPTED(inode)) {
err = fscrypt_get_encryption_info(inode);
if (err)
goto out;
err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
if (err < 0)
goto out;
}
if (f2fs_has_inline_dentry(inode)) {
err = f2fs_read_inline_dir(file, ctx, &fstr);
goto out_free;
}
for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
/* allow readdir() to be interrupted */
if (fatal_signal_pending(current)) {
err = -ERESTARTSYS;
goto out_free;
}
cond_resched();
/* readahead for multi pages of dir */
if (npages - n > 1 && !ra_has_index(ra, n))
page_cache_sync_readahead(inode->i_mapping, ra, file, n,
min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
dentry_page = f2fs_find_data_page(inode, n);
if (IS_ERR(dentry_page)) {
err = PTR_ERR(dentry_page);
if (err == -ENOENT) {
err = 0;
continue;
} else {
goto out_free;
}
}
dentry_blk = page_address(dentry_page);
make_dentry_ptr_block(inode, &d, dentry_blk);
err = f2fs_fill_dentries(ctx, &d,
n * NR_DENTRY_IN_BLOCK, &fstr);
if (err) {
f2fs_put_page(dentry_page, 0);
break;
}
f2fs_put_page(dentry_page, 0);
}
out_free:
fscrypt_fname_free_buffer(&fstr);
out:
trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
return err < 0 ? err : 0;
}
static int f2fs_dir_open(struct inode *inode, struct file *filp)
{
if (IS_ENCRYPTED(inode))
return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
return 0;
}
const struct file_operations f2fs_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate_shared = f2fs_readdir,
.fsync = f2fs_sync_file,
.open = f2fs_dir_open,
.unlocked_ioctl = f2fs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = f2fs_compat_ioctl,
#endif
};
#ifdef CONFIG_UNICODE
static int f2fs_d_compare(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name)
{
struct qstr qstr = {.name = str, .len = len };
const struct dentry *parent = READ_ONCE(dentry->d_parent);
const struct inode *inode = READ_ONCE(parent->d_inode);
if (!inode || !IS_CASEFOLDED(inode)) {
if (len != name->len)
return -1;
return memcmp(str, name->name, len);
}
return f2fs_ci_compare(inode, name, &qstr, false);
}
static int f2fs_d_hash(const struct dentry *dentry, struct qstr *str)
{
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
const struct unicode_map *um = sbi->s_encoding;
const struct inode *inode = READ_ONCE(dentry->d_inode);
unsigned char *norm;
int len, ret = 0;
if (!inode || !IS_CASEFOLDED(inode))
return 0;
norm = f2fs_kmalloc(sbi, PATH_MAX, GFP_ATOMIC);
if (!norm)
return -ENOMEM;
len = utf8_casefold(um, str, norm, PATH_MAX);
if (len < 0) {
if (f2fs_has_strict_mode(sbi))
ret = -EINVAL;
goto out;
}
str->hash = full_name_hash(dentry, norm, len);
out:
kvfree(norm);
return ret;
}
const struct dentry_operations f2fs_dentry_ops = {
.d_hash = f2fs_d_hash,
.d_compare = f2fs_d_compare,
};
#endif