2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-20 03:24:03 +08:00
linux-next/drivers/ata/libata-sata.c
Damien Le Moal 5f91b8f548 libata: Introduce ncq_prio_supported sysfs sttribute
Currently, the only way a user can determine if a SATA device supports
NCQ priority is to try to enable the use of this feature using the
ncq_prio_enable sysfs device attribute. If enabling the feature fails,
it is because the device does not support NCQ priority. Otherwise, the
feature is enabled and success indicates that the device supports NCQ
priority.

Improve this odd interface by introducing the read-only
ncq_prio_supported sysfs device attribute to indicate if a SATA device
supports NCQ priority. The value of this attribute reflects the status
of device flag ATA_DFLAG_NCQ_PRIO, which is set only for devices
supporting NCQ priority.

Add this new sysfs attribute to the device attributes group of libahci
and libata-sata.

Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Link: https://lore.kernel.org/r/20210816014456.2191776-10-damien.lemoal@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-08-18 07:19:39 -06:00

1496 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SATA specific part of ATA helper library
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
* Copyright 2006 Tejun Heo <htejun@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <linux/libata.h>
#include "libata.h"
#include "libata-transport.h"
/* debounce timing parameters in msecs { interval, duration, timeout } */
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
/**
* sata_scr_valid - test whether SCRs are accessible
* @link: ATA link to test SCR accessibility for
*
* Test whether SCRs are accessible for @link.
*
* LOCKING:
* None.
*
* RETURNS:
* 1 if SCRs are accessible, 0 otherwise.
*/
int sata_scr_valid(struct ata_link *link)
{
struct ata_port *ap = link->ap;
return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
}
EXPORT_SYMBOL_GPL(sata_scr_valid);
/**
* sata_scr_read - read SCR register of the specified port
* @link: ATA link to read SCR for
* @reg: SCR to read
* @val: Place to store read value
*
* Read SCR register @reg of @link into *@val. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_read(struct ata_link *link, int reg, u32 *val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_read(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_read(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_read);
/**
* sata_scr_write - write SCR register of the specified port
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* Write @val to SCR register @reg of @link. This function is
* guaranteed to succeed if @link is ap->link, the cable type of
* the port is SATA and the port implements ->scr_read.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
if (sata_scr_valid(link))
return link->ap->ops->scr_write(link, reg, val);
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_write);
/**
* sata_scr_write_flush - write SCR register of the specified port and flush
* @link: ATA link to write SCR for
* @reg: SCR to write
* @val: value to write
*
* This function is identical to sata_scr_write() except that this
* function performs flush after writing to the register.
*
* LOCKING:
* None if @link is ap->link. Kernel thread context otherwise.
*
* RETURNS:
* 0 on success, negative errno on failure.
*/
int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
{
if (ata_is_host_link(link)) {
int rc;
if (sata_scr_valid(link)) {
rc = link->ap->ops->scr_write(link, reg, val);
if (rc == 0)
rc = link->ap->ops->scr_read(link, reg, &val);
return rc;
}
return -EOPNOTSUPP;
}
return sata_pmp_scr_write(link, reg, val);
}
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @pmp: Port multiplier port
* @is_cmd: This FIS is for command
* @fis: Buffer into which data will output
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = pmp & 0xf; /* Port multiplier number*/
if (is_cmd)
fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = tf->auxiliary & 0xff;
fis[17] = (tf->auxiliary >> 8) & 0xff;
fis[18] = (tf->auxiliary >> 16) & 0xff;
fis[19] = (tf->auxiliary >> 24) & 0xff;
}
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a serial ATA FIS structure to a standard ATA taskfile.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
/**
* sata_link_debounce - debounce SATA phy status
* @link: ATA link to debounce SATA phy status for
* @params: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Make sure SStatus of @link reaches stable state, determined by
* holding the same value where DET is not 1 for @duration polled
* every @interval, before @timeout. Timeout constraints the
* beginning of the stable state. Because DET gets stuck at 1 on
* some controllers after hot unplugging, this functions waits
* until timeout then returns 0 if DET is stable at 1.
*
* @timeout is further limited by @deadline. The sooner of the
* two is used.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_debounce(struct ata_link *link, const unsigned long *params,
unsigned long deadline)
{
unsigned long interval = params[0];
unsigned long duration = params[1];
unsigned long last_jiffies, t;
u32 last, cur;
int rc;
t = ata_deadline(jiffies, params[2]);
if (time_before(t, deadline))
deadline = t;
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
last = cur;
last_jiffies = jiffies;
while (1) {
ata_msleep(link->ap, interval);
if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
return rc;
cur &= 0xf;
/* DET stable? */
if (cur == last) {
if (cur == 1 && time_before(jiffies, deadline))
continue;
if (time_after(jiffies,
ata_deadline(last_jiffies, duration)))
return 0;
continue;
}
/* unstable, start over */
last = cur;
last_jiffies = jiffies;
/* Check deadline. If debouncing failed, return
* -EPIPE to tell upper layer to lower link speed.
*/
if (time_after(jiffies, deadline))
return -EPIPE;
}
}
EXPORT_SYMBOL_GPL(sata_link_debounce);
/**
* sata_link_resume - resume SATA link
* @link: ATA link to resume SATA
* @params: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
*
* Resume SATA phy @link and debounce it.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int sata_link_resume(struct ata_link *link, const unsigned long *params,
unsigned long deadline)
{
int tries = ATA_LINK_RESUME_TRIES;
u32 scontrol, serror;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
/*
* Writes to SControl sometimes get ignored under certain
* controllers (ata_piix SIDPR). Make sure DET actually is
* cleared.
*/
do {
scontrol = (scontrol & 0x0f0) | 0x300;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
/*
* Some PHYs react badly if SStatus is pounded
* immediately after resuming. Delay 200ms before
* debouncing.
*/
if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
ata_msleep(link->ap, 200);
/* is SControl restored correctly? */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
} while ((scontrol & 0xf0f) != 0x300 && --tries);
if ((scontrol & 0xf0f) != 0x300) {
ata_link_warn(link, "failed to resume link (SControl %X)\n",
scontrol);
return 0;
}
if (tries < ATA_LINK_RESUME_TRIES)
ata_link_warn(link, "link resume succeeded after %d retries\n",
ATA_LINK_RESUME_TRIES - tries);
if ((rc = sata_link_debounce(link, params, deadline)))
return rc;
/* clear SError, some PHYs require this even for SRST to work */
if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
rc = sata_scr_write(link, SCR_ERROR, serror);
return rc != -EINVAL ? rc : 0;
}
EXPORT_SYMBOL_GPL(sata_link_resume);
/**
* sata_link_scr_lpm - manipulate SControl IPM and SPM fields
* @link: ATA link to manipulate SControl for
* @policy: LPM policy to configure
* @spm_wakeup: initiate LPM transition to active state
*
* Manipulate the IPM field of the SControl register of @link
* according to @policy. If @policy is ATA_LPM_MAX_POWER and
* @spm_wakeup is %true, the SPM field is manipulated to wake up
* the link. This function also clears PHYRDY_CHG before
* returning.
*
* LOCKING:
* EH context.
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
bool spm_wakeup)
{
struct ata_eh_context *ehc = &link->eh_context;
bool woken_up = false;
u32 scontrol;
int rc;
rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
if (rc)
return rc;
switch (policy) {
case ATA_LPM_MAX_POWER:
/* disable all LPM transitions */
scontrol |= (0x7 << 8);
/* initiate transition to active state */
if (spm_wakeup) {
scontrol |= (0x4 << 12);
woken_up = true;
}
break;
case ATA_LPM_MED_POWER:
/* allow LPM to PARTIAL */
scontrol &= ~(0x1 << 8);
scontrol |= (0x6 << 8);
break;
case ATA_LPM_MED_POWER_WITH_DIPM:
case ATA_LPM_MIN_POWER_WITH_PARTIAL:
case ATA_LPM_MIN_POWER:
if (ata_link_nr_enabled(link) > 0)
/* no restrictions on LPM transitions */
scontrol &= ~(0x7 << 8);
else {
/* empty port, power off */
scontrol &= ~0xf;
scontrol |= (0x1 << 2);
}
break;
default:
WARN_ON(1);
}
rc = sata_scr_write(link, SCR_CONTROL, scontrol);
if (rc)
return rc;
/* give the link time to transit out of LPM state */
if (woken_up)
msleep(10);
/* clear PHYRDY_CHG from SError */
ehc->i.serror &= ~SERR_PHYRDY_CHG;
return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
}
EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
{
struct ata_link *host_link = &link->ap->link;
u32 limit, target, spd;
limit = link->sata_spd_limit;
/* Don't configure downstream link faster than upstream link.
* It doesn't speed up anything and some PMPs choke on such
* configuration.
*/
if (!ata_is_host_link(link) && host_link->sata_spd)
limit &= (1 << host_link->sata_spd) - 1;
if (limit == UINT_MAX)
target = 0;
else
target = fls(limit);
spd = (*scontrol >> 4) & 0xf;
*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
return spd != target;
}
/**
* sata_set_spd_needed - is SATA spd configuration needed
* @link: Link in question
*
* Test whether the spd limit in SControl matches
* @link->sata_spd_limit. This function is used to determine
* whether hardreset is necessary to apply SATA spd
* configuration.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 1 if SATA spd configuration is needed, 0 otherwise.
*/
static int sata_set_spd_needed(struct ata_link *link)
{
u32 scontrol;
if (sata_scr_read(link, SCR_CONTROL, &scontrol))
return 1;
return __sata_set_spd_needed(link, &scontrol);
}
/**
* sata_set_spd - set SATA spd according to spd limit
* @link: Link to set SATA spd for
*
* Set SATA spd of @link according to sata_spd_limit.
*
* LOCKING:
* Inherited from caller.
*
* RETURNS:
* 0 if spd doesn't need to be changed, 1 if spd has been
* changed. Negative errno if SCR registers are inaccessible.
*/
int sata_set_spd(struct ata_link *link)
{
u32 scontrol;
int rc;
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
return rc;
if (!__sata_set_spd_needed(link, &scontrol))
return 0;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
return rc;
return 1;
}
EXPORT_SYMBOL_GPL(sata_set_spd);
/**
* sata_link_hardreset - reset link via SATA phy reset
* @link: link to reset
* @timing: timing parameters { interval, duration, timeout } in msec
* @deadline: deadline jiffies for the operation
* @online: optional out parameter indicating link onlineness
* @check_ready: optional callback to check link readiness
*
* SATA phy-reset @link using DET bits of SControl register.
* After hardreset, link readiness is waited upon using
* ata_wait_ready() if @check_ready is specified. LLDs are
* allowed to not specify @check_ready and wait itself after this
* function returns. Device classification is LLD's
* responsibility.
*
* *@online is set to one iff reset succeeded and @link is online
* after reset.
*
* LOCKING:
* Kernel thread context (may sleep)
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
unsigned long deadline,
bool *online, int (*check_ready)(struct ata_link *))
{
u32 scontrol;
int rc;
DPRINTK("ENTER\n");
if (online)
*online = false;
if (sata_set_spd_needed(link)) {
/* SATA spec says nothing about how to reconfigure
* spd. To be on the safe side, turn off phy during
* reconfiguration. This works for at least ICH7 AHCI
* and Sil3124.
*/
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x304;
if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
goto out;
sata_set_spd(link);
}
/* issue phy wake/reset */
if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
goto out;
scontrol = (scontrol & 0x0f0) | 0x301;
if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
goto out;
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
* 10.4.2 says at least 1 ms.
*/
ata_msleep(link->ap, 1);
/* bring link back */
rc = sata_link_resume(link, timing, deadline);
if (rc)
goto out;
/* if link is offline nothing more to do */
if (ata_phys_link_offline(link))
goto out;
/* Link is online. From this point, -ENODEV too is an error. */
if (online)
*online = true;
if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
/* If PMP is supported, we have to do follow-up SRST.
* Some PMPs don't send D2H Reg FIS after hardreset if
* the first port is empty. Wait only for
* ATA_TMOUT_PMP_SRST_WAIT.
*/
if (check_ready) {
unsigned long pmp_deadline;
pmp_deadline = ata_deadline(jiffies,
ATA_TMOUT_PMP_SRST_WAIT);
if (time_after(pmp_deadline, deadline))
pmp_deadline = deadline;
ata_wait_ready(link, pmp_deadline, check_ready);
}
rc = -EAGAIN;
goto out;
}
rc = 0;
if (check_ready)
rc = ata_wait_ready(link, deadline, check_ready);
out:
if (rc && rc != -EAGAIN) {
/* online is set iff link is online && reset succeeded */
if (online)
*online = false;
ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
}
DPRINTK("EXIT, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(sata_link_hardreset);
/**
* ata_qc_complete_multiple - Complete multiple qcs successfully
* @ap: port in question
* @qc_active: new qc_active mask
*
* Complete in-flight commands. This functions is meant to be
* called from low-level driver's interrupt routine to complete
* requests normally. ap->qc_active and @qc_active is compared
* and commands are completed accordingly.
*
* Always use this function when completing multiple NCQ commands
* from IRQ handlers instead of calling ata_qc_complete()
* multiple times to keep IRQ expect status properly in sync.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* Number of completed commands on success, -errno otherwise.
*/
int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
{
u64 done_mask, ap_qc_active = ap->qc_active;
int nr_done = 0;
/*
* If the internal tag is set on ap->qc_active, then we care about
* bit0 on the passed in qc_active mask. Move that bit up to match
* the internal tag.
*/
if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
qc_active ^= qc_active & 0x01;
}
done_mask = ap_qc_active ^ qc_active;
if (unlikely(done_mask & qc_active)) {
ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
ap->qc_active, qc_active);
return -EINVAL;
}
while (done_mask) {
struct ata_queued_cmd *qc;
unsigned int tag = __ffs64(done_mask);
qc = ata_qc_from_tag(ap, tag);
if (qc) {
ata_qc_complete(qc);
nr_done++;
}
done_mask &= ~(1ULL << tag);
}
return nr_done;
}
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
/**
* ata_slave_link_init - initialize slave link
* @ap: port to initialize slave link for
*
* Create and initialize slave link for @ap. This enables slave
* link handling on the port.
*
* In libata, a port contains links and a link contains devices.
* There is single host link but if a PMP is attached to it,
* there can be multiple fan-out links. On SATA, there's usually
* a single device connected to a link but PATA and SATA
* controllers emulating TF based interface can have two - master
* and slave.
*
* However, there are a few controllers which don't fit into this
* abstraction too well - SATA controllers which emulate TF
* interface with both master and slave devices but also have
* separate SCR register sets for each device. These controllers
* need separate links for physical link handling
* (e.g. onlineness, link speed) but should be treated like a
* traditional M/S controller for everything else (e.g. command
* issue, softreset).
*
* slave_link is libata's way of handling this class of
* controllers without impacting core layer too much. For
* anything other than physical link handling, the default host
* link is used for both master and slave. For physical link
* handling, separate @ap->slave_link is used. All dirty details
* are implemented inside libata core layer. From LLD's POV, the
* only difference is that prereset, hardreset and postreset are
* called once more for the slave link, so the reset sequence
* looks like the following.
*
* prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
* softreset(M) -> postreset(M) -> postreset(S)
*
* Note that softreset is called only for the master. Softreset
* resets both M/S by definition, so SRST on master should handle
* both (the standard method will work just fine).
*
* LOCKING:
* Should be called before host is registered.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int ata_slave_link_init(struct ata_port *ap)
{
struct ata_link *link;
WARN_ON(ap->slave_link);
WARN_ON(ap->flags & ATA_FLAG_PMP);
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return -ENOMEM;
ata_link_init(ap, link, 1);
ap->slave_link = link;
return 0;
}
EXPORT_SYMBOL_GPL(ata_slave_link_init);
/**
* sata_lpm_ignore_phy_events - test if PHY event should be ignored
* @link: Link receiving the event
*
* Test whether the received PHY event has to be ignored or not.
*
* LOCKING:
* None:
*
* RETURNS:
* True if the event has to be ignored.
*/
bool sata_lpm_ignore_phy_events(struct ata_link *link)
{
unsigned long lpm_timeout = link->last_lpm_change +
msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
/* if LPM is enabled, PHYRDY doesn't mean anything */
if (link->lpm_policy > ATA_LPM_MAX_POWER)
return true;
/* ignore the first PHY event after the LPM policy changed
* as it is might be spurious
*/
if ((link->flags & ATA_LFLAG_CHANGED) &&
time_before(jiffies, lpm_timeout))
return true;
return false;
}
EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
static const char *ata_lpm_policy_names[] = {
[ATA_LPM_UNKNOWN] = "max_performance",
[ATA_LPM_MAX_POWER] = "max_performance",
[ATA_LPM_MED_POWER] = "medium_power",
[ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm",
[ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
[ATA_LPM_MIN_POWER] = "min_power",
};
static ssize_t ata_scsi_lpm_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(device);
struct ata_port *ap = ata_shost_to_port(shost);
struct ata_link *link;
struct ata_device *dev;
enum ata_lpm_policy policy;
unsigned long flags;
/* UNKNOWN is internal state, iterate from MAX_POWER */
for (policy = ATA_LPM_MAX_POWER;
policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
const char *name = ata_lpm_policy_names[policy];
if (strncmp(name, buf, strlen(name)) == 0)
break;
}
if (policy == ARRAY_SIZE(ata_lpm_policy_names))
return -EINVAL;
spin_lock_irqsave(ap->lock, flags);
ata_for_each_link(link, ap, EDGE) {
ata_for_each_dev(dev, &ap->link, ENABLED) {
if (dev->horkage & ATA_HORKAGE_NOLPM) {
count = -EOPNOTSUPP;
goto out_unlock;
}
}
}
ap->target_lpm_policy = policy;
ata_port_schedule_eh(ap);
out_unlock:
spin_unlock_irqrestore(ap->lock, flags);
return count;
}
static ssize_t ata_scsi_lpm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
return -EINVAL;
return snprintf(buf, PAGE_SIZE, "%s\n",
ata_lpm_policy_names[ap->target_lpm_policy]);
}
DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
ata_scsi_lpm_show, ata_scsi_lpm_store);
EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
static ssize_t ata_ncq_prio_supported_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev;
bool ncq_prio_supported;
int rc = 0;
spin_lock_irq(ap->lock);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev)
rc = -ENODEV;
else
ncq_prio_supported = dev->flags & ATA_DFLAG_NCQ_PRIO;
spin_unlock_irq(ap->lock);
return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_supported);
}
DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL);
EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported);
static ssize_t ata_ncq_prio_enable_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *dev;
bool ncq_prio_enable;
int rc = 0;
spin_lock_irq(ap->lock);
dev = ata_scsi_find_dev(ap, sdev);
if (!dev)
rc = -ENODEV;
else
ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE;
spin_unlock_irq(ap->lock);
return rc ? rc : snprintf(buf, 20, "%u\n", ncq_prio_enable);
}
static ssize_t ata_ncq_prio_enable_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct scsi_device *sdev = to_scsi_device(device);
struct ata_port *ap;
struct ata_device *dev;
long int input;
int rc = 0;
rc = kstrtol(buf, 10, &input);
if (rc)
return rc;
if ((input < 0) || (input > 1))
return -EINVAL;
ap = ata_shost_to_port(sdev->host);
dev = ata_scsi_find_dev(ap, sdev);
if (unlikely(!dev))
return -ENODEV;
spin_lock_irq(ap->lock);
if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
rc = -EINVAL;
goto unlock;
}
if (input)
dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLE;
else
dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
unlock:
spin_unlock_irq(ap->lock);
return rc ? rc : len;
}
DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
struct device_attribute *ata_ncq_sdev_attrs[] = {
&dev_attr_unload_heads,
&dev_attr_ncq_prio_enable,
&dev_attr_ncq_prio_supported,
NULL
};
EXPORT_SYMBOL_GPL(ata_ncq_sdev_attrs);
static ssize_t
ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
return ap->ops->em_store(ap, buf, count);
return -EINVAL;
}
static ssize_t
ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
return ap->ops->em_show(ap, buf);
return -EINVAL;
}
DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
ata_scsi_em_message_show, ata_scsi_em_message_store);
EXPORT_SYMBOL_GPL(dev_attr_em_message);
static ssize_t
ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct ata_port *ap = ata_shost_to_port(shost);
return snprintf(buf, 23, "%d\n", ap->em_message_type);
}
DEVICE_ATTR(em_message_type, S_IRUGO,
ata_scsi_em_message_type_show, NULL);
EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
static ssize_t
ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
if (atadev && ap->ops->sw_activity_show &&
(ap->flags & ATA_FLAG_SW_ACTIVITY))
return ap->ops->sw_activity_show(atadev, buf);
return -EINVAL;
}
static ssize_t
ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
enum sw_activity val;
int rc;
if (atadev && ap->ops->sw_activity_store &&
(ap->flags & ATA_FLAG_SW_ACTIVITY)) {
val = simple_strtoul(buf, NULL, 0);
switch (val) {
case OFF: case BLINK_ON: case BLINK_OFF:
rc = ap->ops->sw_activity_store(atadev, val);
if (!rc)
return count;
else
return rc;
}
}
return -EINVAL;
}
DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
ata_scsi_activity_store);
EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
/**
* __ata_change_queue_depth - helper for ata_scsi_change_queue_depth
* @ap: ATA port to which the device change the queue depth
* @sdev: SCSI device to configure queue depth for
* @queue_depth: new queue depth
*
* libsas and libata have different approaches for associating a sdev to
* its ata_port.
*
*/
int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev,
int queue_depth)
{
struct ata_device *dev;
unsigned long flags;
if (queue_depth < 1 || queue_depth == sdev->queue_depth)
return sdev->queue_depth;
dev = ata_scsi_find_dev(ap, sdev);
if (!dev || !ata_dev_enabled(dev))
return sdev->queue_depth;
/* NCQ enabled? */
spin_lock_irqsave(ap->lock, flags);
dev->flags &= ~ATA_DFLAG_NCQ_OFF;
if (queue_depth == 1 || !ata_ncq_enabled(dev)) {
dev->flags |= ATA_DFLAG_NCQ_OFF;
queue_depth = 1;
}
spin_unlock_irqrestore(ap->lock, flags);
/* limit and apply queue depth */
queue_depth = min(queue_depth, sdev->host->can_queue);
queue_depth = min(queue_depth, ata_id_queue_depth(dev->id));
queue_depth = min(queue_depth, ATA_MAX_QUEUE);
if (sdev->queue_depth == queue_depth)
return -EINVAL;
return scsi_change_queue_depth(sdev, queue_depth);
}
EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
/**
* ata_scsi_change_queue_depth - SCSI callback for queue depth config
* @sdev: SCSI device to configure queue depth for
* @queue_depth: new queue depth
*
* This is libata standard hostt->change_queue_depth callback.
* SCSI will call into this callback when user tries to set queue
* depth via sysfs.
*
* LOCKING:
* SCSI layer (we don't care)
*
* RETURNS:
* Newly configured queue depth.
*/
int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
return __ata_change_queue_depth(ap, sdev, queue_depth);
}
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
/**
* ata_sas_port_alloc - Allocate port for a SAS attached SATA device
* @host: ATA host container for all SAS ports
* @port_info: Information from low-level host driver
* @shost: SCSI host that the scsi device is attached to
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* ata_port pointer on success / NULL on failure.
*/
struct ata_port *ata_sas_port_alloc(struct ata_host *host,
struct ata_port_info *port_info,
struct Scsi_Host *shost)
{
struct ata_port *ap;
ap = ata_port_alloc(host);
if (!ap)
return NULL;
ap->port_no = 0;
ap->lock = &host->lock;
ap->pio_mask = port_info->pio_mask;
ap->mwdma_mask = port_info->mwdma_mask;
ap->udma_mask = port_info->udma_mask;
ap->flags |= port_info->flags;
ap->ops = port_info->port_ops;
ap->cbl = ATA_CBL_SATA;
return ap;
}
EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
/**
* ata_sas_port_start - Set port up for dma.
* @ap: Port to initialize
*
* Called just after data structures for each port are
* initialized.
*
* May be used as the port_start() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
int ata_sas_port_start(struct ata_port *ap)
{
/*
* the port is marked as frozen at allocation time, but if we don't
* have new eh, we won't thaw it
*/
if (!ap->ops->error_handler)
ap->pflags &= ~ATA_PFLAG_FROZEN;
return 0;
}
EXPORT_SYMBOL_GPL(ata_sas_port_start);
/**
* ata_sas_port_stop - Undo ata_sas_port_start()
* @ap: Port to shut down
*
* May be used as the port_stop() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_sas_port_stop(struct ata_port *ap)
{
}
EXPORT_SYMBOL_GPL(ata_sas_port_stop);
/**
* ata_sas_async_probe - simply schedule probing and return
* @ap: Port to probe
*
* For batch scheduling of probe for sas attached ata devices, assumes
* the port has already been through ata_sas_port_init()
*/
void ata_sas_async_probe(struct ata_port *ap)
{
__ata_port_probe(ap);
}
EXPORT_SYMBOL_GPL(ata_sas_async_probe);
int ata_sas_sync_probe(struct ata_port *ap)
{
return ata_port_probe(ap);
}
EXPORT_SYMBOL_GPL(ata_sas_sync_probe);
/**
* ata_sas_port_init - Initialize a SATA device
* @ap: SATA port to initialize
*
* LOCKING:
* PCI/etc. bus probe sem.
*
* RETURNS:
* Zero on success, non-zero on error.
*/
int ata_sas_port_init(struct ata_port *ap)
{
int rc = ap->ops->port_start(ap);
if (rc)
return rc;
ap->print_id = atomic_inc_return(&ata_print_id);
return 0;
}
EXPORT_SYMBOL_GPL(ata_sas_port_init);
int ata_sas_tport_add(struct device *parent, struct ata_port *ap)
{
return ata_tport_add(parent, ap);
}
EXPORT_SYMBOL_GPL(ata_sas_tport_add);
void ata_sas_tport_delete(struct ata_port *ap)
{
ata_tport_delete(ap);
}
EXPORT_SYMBOL_GPL(ata_sas_tport_delete);
/**
* ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc
* @ap: SATA port to destroy
*
*/
void ata_sas_port_destroy(struct ata_port *ap)
{
if (ap->ops->port_stop)
ap->ops->port_stop(ap);
kfree(ap);
}
EXPORT_SYMBOL_GPL(ata_sas_port_destroy);
/**
* ata_sas_slave_configure - Default slave_config routine for libata devices
* @sdev: SCSI device to configure
* @ap: ATA port to which SCSI device is attached
*
* RETURNS:
* Zero.
*/
int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap)
{
ata_scsi_sdev_config(sdev);
ata_scsi_dev_config(sdev, ap->link.device);
return 0;
}
EXPORT_SYMBOL_GPL(ata_sas_slave_configure);
/**
* ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
* @cmd: SCSI command to be sent
* @ap: ATA port to which the command is being sent
*
* RETURNS:
* Return value from __ata_scsi_queuecmd() if @cmd can be queued,
* 0 otherwise.
*/
int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
{
int rc = 0;
ata_scsi_dump_cdb(ap, cmd);
if (likely(ata_dev_enabled(ap->link.device)))
rc = __ata_scsi_queuecmd(cmd, ap->link.device);
else {
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
}
return rc;
}
EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
int ata_sas_allocate_tag(struct ata_port *ap)
{
unsigned int max_queue = ap->host->n_tags;
unsigned int i, tag;
for (i = 0, tag = ap->sas_last_tag + 1; i < max_queue; i++, tag++) {
tag = tag < max_queue ? tag : 0;
/* the last tag is reserved for internal command. */
if (ata_tag_internal(tag))
continue;
if (!test_and_set_bit(tag, &ap->sas_tag_allocated)) {
ap->sas_last_tag = tag;
return tag;
}
}
return -1;
}
void ata_sas_free_tag(unsigned int tag, struct ata_port *ap)
{
clear_bit(tag, &ap->sas_tag_allocated);
}
/**
* sata_async_notification - SATA async notification handler
* @ap: ATA port where async notification is received
*
* Handler to be called when async notification via SDB FIS is
* received. This function schedules EH if necessary.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*
* RETURNS:
* 1 if EH is scheduled, 0 otherwise.
*/
int sata_async_notification(struct ata_port *ap)
{
u32 sntf;
int rc;
if (!(ap->flags & ATA_FLAG_AN))
return 0;
rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
if (rc == 0)
sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
if (!sata_pmp_attached(ap) || rc) {
/* PMP is not attached or SNTF is not available */
if (!sata_pmp_attached(ap)) {
/* PMP is not attached. Check whether ATAPI
* AN is configured. If so, notify media
* change.
*/
struct ata_device *dev = ap->link.device;
if ((dev->class == ATA_DEV_ATAPI) &&
(dev->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(dev);
return 0;
} else {
/* PMP is attached but SNTF is not available.
* ATAPI async media change notification is
* not used. The PMP must be reporting PHY
* status change, schedule EH.
*/
ata_port_schedule_eh(ap);
return 1;
}
} else {
/* PMP is attached and SNTF is available */
struct ata_link *link;
/* check and notify ATAPI AN */
ata_for_each_link(link, ap, EDGE) {
if (!(sntf & (1 << link->pmp)))
continue;
if ((link->device->class == ATA_DEV_ATAPI) &&
(link->device->flags & ATA_DFLAG_AN))
ata_scsi_media_change_notify(link->device);
}
/* If PMP is reporting that PHY status of some
* downstream ports has changed, schedule EH.
*/
if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
ata_port_schedule_eh(ap);
return 1;
}
return 0;
}
}
EXPORT_SYMBOL_GPL(sata_async_notification);
/**
* ata_eh_read_log_10h - Read log page 10h for NCQ error details
* @dev: Device to read log page 10h from
* @tag: Resulting tag of the failed command
* @tf: Resulting taskfile registers of the failed command
*
* Read log page 10h to obtain NCQ error details and clear error
* condition.
*
* LOCKING:
* Kernel thread context (may sleep).
*
* RETURNS:
* 0 on success, -errno otherwise.
*/
static int ata_eh_read_log_10h(struct ata_device *dev,
int *tag, struct ata_taskfile *tf)
{
u8 *buf = dev->link->ap->sector_buf;
unsigned int err_mask;
u8 csum;
int i;
err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
if (err_mask)
return -EIO;
csum = 0;
for (i = 0; i < ATA_SECT_SIZE; i++)
csum += buf[i];
if (csum)
ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
csum);
if (buf[0] & 0x80)
return -ENOENT;
*tag = buf[0] & 0x1f;
tf->command = buf[2];
tf->feature = buf[3];
tf->lbal = buf[4];
tf->lbam = buf[5];
tf->lbah = buf[6];
tf->device = buf[7];
tf->hob_lbal = buf[8];
tf->hob_lbam = buf[9];
tf->hob_lbah = buf[10];
tf->nsect = buf[12];
tf->hob_nsect = buf[13];
if (dev->class == ATA_DEV_ZAC && ata_id_has_ncq_autosense(dev->id))
tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
return 0;
}
/**
* ata_eh_analyze_ncq_error - analyze NCQ error
* @link: ATA link to analyze NCQ error for
*
* Read log page 10h, determine the offending qc and acquire
* error status TF. For NCQ device errors, all LLDDs have to do
* is setting AC_ERR_DEV in ehi->err_mask. This function takes
* care of the rest.
*
* LOCKING:
* Kernel thread context (may sleep).
*/
void ata_eh_analyze_ncq_error(struct ata_link *link)
{
struct ata_port *ap = link->ap;
struct ata_eh_context *ehc = &link->eh_context;
struct ata_device *dev = link->device;
struct ata_queued_cmd *qc;
struct ata_taskfile tf;
int tag, rc;
/* if frozen, we can't do much */
if (ap->pflags & ATA_PFLAG_FROZEN)
return;
/* is it NCQ device error? */
if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
return;
/* has LLDD analyzed already? */
ata_qc_for_each_raw(ap, qc, tag) {
if (!(qc->flags & ATA_QCFLAG_FAILED))
continue;
if (qc->err_mask)
return;
}
/* okay, this error is ours */
memset(&tf, 0, sizeof(tf));
rc = ata_eh_read_log_10h(dev, &tag, &tf);
if (rc) {
ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
rc);
return;
}
if (!(link->sactive & (1 << tag))) {
ata_link_err(link, "log page 10h reported inactive tag %d\n",
tag);
return;
}
/* we've got the perpetrator, condemn it */
qc = __ata_qc_from_tag(ap, tag);
memcpy(&qc->result_tf, &tf, sizeof(tf));
qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
if (dev->class == ATA_DEV_ZAC &&
((qc->result_tf.command & ATA_SENSE) || qc->result_tf.auxiliary)) {
char sense_key, asc, ascq;
sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
asc = (qc->result_tf.auxiliary >> 8) & 0xff;
ascq = qc->result_tf.auxiliary & 0xff;
ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc, ascq);
ata_scsi_set_sense_information(dev, qc->scsicmd,
&qc->result_tf);
qc->flags |= ATA_QCFLAG_SENSE_VALID;
}
ehc->i.err_mask &= ~AC_ERR_DEV;
}
EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);