2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/crypto/crypto_engine.c
Peter Zijlstra dbc6d0d5a5 sched,crypto: Convert to sched_set_fifo*()
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.

Use sched_set_fifo() to request SCHED_FIFO and delegate
actual priority selection to userspace. Effectively no change in
behaviour.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-06-15 14:10:20 +02:00

567 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Handle async block request by crypto hardware engine.
*
* Copyright (C) 2016 Linaro, Inc.
*
* Author: Baolin Wang <baolin.wang@linaro.org>
*/
#include <linux/err.h>
#include <linux/delay.h>
#include <crypto/engine.h>
#include <uapi/linux/sched/types.h>
#include "internal.h"
#define CRYPTO_ENGINE_MAX_QLEN 10
/**
* crypto_finalize_request - finalize one request if the request is done
* @engine: the hardware engine
* @req: the request need to be finalized
* @err: error number
*/
static void crypto_finalize_request(struct crypto_engine *engine,
struct crypto_async_request *req, int err)
{
unsigned long flags;
bool finalize_req = false;
int ret;
struct crypto_engine_ctx *enginectx;
/*
* If hardware cannot enqueue more requests
* and retry mechanism is not supported
* make sure we are completing the current request
*/
if (!engine->retry_support) {
spin_lock_irqsave(&engine->queue_lock, flags);
if (engine->cur_req == req) {
finalize_req = true;
engine->cur_req = NULL;
}
spin_unlock_irqrestore(&engine->queue_lock, flags);
}
if (finalize_req || engine->retry_support) {
enginectx = crypto_tfm_ctx(req->tfm);
if (enginectx->op.prepare_request &&
enginectx->op.unprepare_request) {
ret = enginectx->op.unprepare_request(engine, req);
if (ret)
dev_err(engine->dev, "failed to unprepare request\n");
}
}
req->complete(req, err);
kthread_queue_work(engine->kworker, &engine->pump_requests);
}
/**
* crypto_pump_requests - dequeue one request from engine queue to process
* @engine: the hardware engine
* @in_kthread: true if we are in the context of the request pump thread
*
* This function checks if there is any request in the engine queue that
* needs processing and if so call out to the driver to initialize hardware
* and handle each request.
*/
static void crypto_pump_requests(struct crypto_engine *engine,
bool in_kthread)
{
struct crypto_async_request *async_req, *backlog;
unsigned long flags;
bool was_busy = false;
int ret;
struct crypto_engine_ctx *enginectx;
spin_lock_irqsave(&engine->queue_lock, flags);
/* Make sure we are not already running a request */
if (!engine->retry_support && engine->cur_req)
goto out;
/* If another context is idling then defer */
if (engine->idling) {
kthread_queue_work(engine->kworker, &engine->pump_requests);
goto out;
}
/* Check if the engine queue is idle */
if (!crypto_queue_len(&engine->queue) || !engine->running) {
if (!engine->busy)
goto out;
/* Only do teardown in the thread */
if (!in_kthread) {
kthread_queue_work(engine->kworker,
&engine->pump_requests);
goto out;
}
engine->busy = false;
engine->idling = true;
spin_unlock_irqrestore(&engine->queue_lock, flags);
if (engine->unprepare_crypt_hardware &&
engine->unprepare_crypt_hardware(engine))
dev_err(engine->dev, "failed to unprepare crypt hardware\n");
spin_lock_irqsave(&engine->queue_lock, flags);
engine->idling = false;
goto out;
}
start_request:
/* Get the fist request from the engine queue to handle */
backlog = crypto_get_backlog(&engine->queue);
async_req = crypto_dequeue_request(&engine->queue);
if (!async_req)
goto out;
/*
* If hardware doesn't support the retry mechanism,
* keep track of the request we are processing now.
* We'll need it on completion (crypto_finalize_request).
*/
if (!engine->retry_support)
engine->cur_req = async_req;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
if (engine->busy)
was_busy = true;
else
engine->busy = true;
spin_unlock_irqrestore(&engine->queue_lock, flags);
/* Until here we get the request need to be encrypted successfully */
if (!was_busy && engine->prepare_crypt_hardware) {
ret = engine->prepare_crypt_hardware(engine);
if (ret) {
dev_err(engine->dev, "failed to prepare crypt hardware\n");
goto req_err_2;
}
}
enginectx = crypto_tfm_ctx(async_req->tfm);
if (enginectx->op.prepare_request) {
ret = enginectx->op.prepare_request(engine, async_req);
if (ret) {
dev_err(engine->dev, "failed to prepare request: %d\n",
ret);
goto req_err_2;
}
}
if (!enginectx->op.do_one_request) {
dev_err(engine->dev, "failed to do request\n");
ret = -EINVAL;
goto req_err_1;
}
ret = enginectx->op.do_one_request(engine, async_req);
/* Request unsuccessfully executed by hardware */
if (ret < 0) {
/*
* If hardware queue is full (-ENOSPC), requeue request
* regardless of backlog flag.
* Otherwise, unprepare and complete the request.
*/
if (!engine->retry_support ||
(ret != -ENOSPC)) {
dev_err(engine->dev,
"Failed to do one request from queue: %d\n",
ret);
goto req_err_1;
}
/*
* If retry mechanism is supported,
* unprepare current request and
* enqueue it back into crypto-engine queue.
*/
if (enginectx->op.unprepare_request) {
ret = enginectx->op.unprepare_request(engine,
async_req);
if (ret)
dev_err(engine->dev,
"failed to unprepare request\n");
}
spin_lock_irqsave(&engine->queue_lock, flags);
/*
* If hardware was unable to execute request, enqueue it
* back in front of crypto-engine queue, to keep the order
* of requests.
*/
crypto_enqueue_request_head(&engine->queue, async_req);
kthread_queue_work(engine->kworker, &engine->pump_requests);
goto out;
}
goto retry;
req_err_1:
if (enginectx->op.unprepare_request) {
ret = enginectx->op.unprepare_request(engine, async_req);
if (ret)
dev_err(engine->dev, "failed to unprepare request\n");
}
req_err_2:
async_req->complete(async_req, ret);
retry:
/* If retry mechanism is supported, send new requests to engine */
if (engine->retry_support) {
spin_lock_irqsave(&engine->queue_lock, flags);
goto start_request;
}
return;
out:
spin_unlock_irqrestore(&engine->queue_lock, flags);
/*
* Batch requests is possible only if
* hardware can enqueue multiple requests
*/
if (engine->do_batch_requests) {
ret = engine->do_batch_requests(engine);
if (ret)
dev_err(engine->dev, "failed to do batch requests: %d\n",
ret);
}
return;
}
static void crypto_pump_work(struct kthread_work *work)
{
struct crypto_engine *engine =
container_of(work, struct crypto_engine, pump_requests);
crypto_pump_requests(engine, true);
}
/**
* crypto_transfer_request - transfer the new request into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
static int crypto_transfer_request(struct crypto_engine *engine,
struct crypto_async_request *req,
bool need_pump)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&engine->queue_lock, flags);
if (!engine->running) {
spin_unlock_irqrestore(&engine->queue_lock, flags);
return -ESHUTDOWN;
}
ret = crypto_enqueue_request(&engine->queue, req);
if (!engine->busy && need_pump)
kthread_queue_work(engine->kworker, &engine->pump_requests);
spin_unlock_irqrestore(&engine->queue_lock, flags);
return ret;
}
/**
* crypto_transfer_request_to_engine - transfer one request to list
* into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
struct crypto_async_request *req)
{
return crypto_transfer_request(engine, req, true);
}
/**
* crypto_transfer_aead_request_to_engine - transfer one aead_request
* to list into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
struct aead_request *req)
{
return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
/**
* crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
* to list into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
struct akcipher_request *req)
{
return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
/**
* crypto_transfer_hash_request_to_engine - transfer one ahash_request
* to list into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
struct ahash_request *req)
{
return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
/**
* crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
* to list into the engine queue
* @engine: the hardware engine
* @req: the request need to be listed into the engine queue
*/
int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
struct skcipher_request *req)
{
return crypto_transfer_request_to_engine(engine, &req->base);
}
EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
/**
* crypto_finalize_aead_request - finalize one aead_request if
* the request is done
* @engine: the hardware engine
* @req: the request need to be finalized
* @err: error number
*/
void crypto_finalize_aead_request(struct crypto_engine *engine,
struct aead_request *req, int err)
{
return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
/**
* crypto_finalize_akcipher_request - finalize one akcipher_request if
* the request is done
* @engine: the hardware engine
* @req: the request need to be finalized
* @err: error number
*/
void crypto_finalize_akcipher_request(struct crypto_engine *engine,
struct akcipher_request *req, int err)
{
return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
/**
* crypto_finalize_hash_request - finalize one ahash_request if
* the request is done
* @engine: the hardware engine
* @req: the request need to be finalized
* @err: error number
*/
void crypto_finalize_hash_request(struct crypto_engine *engine,
struct ahash_request *req, int err)
{
return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
/**
* crypto_finalize_skcipher_request - finalize one skcipher_request if
* the request is done
* @engine: the hardware engine
* @req: the request need to be finalized
* @err: error number
*/
void crypto_finalize_skcipher_request(struct crypto_engine *engine,
struct skcipher_request *req, int err)
{
return crypto_finalize_request(engine, &req->base, err);
}
EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
/**
* crypto_engine_start - start the hardware engine
* @engine: the hardware engine need to be started
*
* Return 0 on success, else on fail.
*/
int crypto_engine_start(struct crypto_engine *engine)
{
unsigned long flags;
spin_lock_irqsave(&engine->queue_lock, flags);
if (engine->running || engine->busy) {
spin_unlock_irqrestore(&engine->queue_lock, flags);
return -EBUSY;
}
engine->running = true;
spin_unlock_irqrestore(&engine->queue_lock, flags);
kthread_queue_work(engine->kworker, &engine->pump_requests);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_start);
/**
* crypto_engine_stop - stop the hardware engine
* @engine: the hardware engine need to be stopped
*
* Return 0 on success, else on fail.
*/
int crypto_engine_stop(struct crypto_engine *engine)
{
unsigned long flags;
unsigned int limit = 500;
int ret = 0;
spin_lock_irqsave(&engine->queue_lock, flags);
/*
* If the engine queue is not empty or the engine is on busy state,
* we need to wait for a while to pump the requests of engine queue.
*/
while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
spin_unlock_irqrestore(&engine->queue_lock, flags);
msleep(20);
spin_lock_irqsave(&engine->queue_lock, flags);
}
if (crypto_queue_len(&engine->queue) || engine->busy)
ret = -EBUSY;
else
engine->running = false;
spin_unlock_irqrestore(&engine->queue_lock, flags);
if (ret)
dev_warn(engine->dev, "could not stop engine\n");
return ret;
}
EXPORT_SYMBOL_GPL(crypto_engine_stop);
/**
* crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
* and initialize it by setting the maximum number of entries in the software
* crypto-engine queue.
* @dev: the device attached with one hardware engine
* @retry_support: whether hardware has support for retry mechanism
* @cbk_do_batch: pointer to a callback function to be invoked when executing a
* a batch of requests.
* This has the form:
* callback(struct crypto_engine *engine)
* where:
* @engine: the crypto engine structure.
* @rt: whether this queue is set to run as a realtime task
* @qlen: maximum size of the crypto-engine queue
*
* This must be called from context that can sleep.
* Return: the crypto engine structure on success, else NULL.
*/
struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
bool retry_support,
int (*cbk_do_batch)(struct crypto_engine *engine),
bool rt, int qlen)
{
struct crypto_engine *engine;
if (!dev)
return NULL;
engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
if (!engine)
return NULL;
engine->dev = dev;
engine->rt = rt;
engine->running = false;
engine->busy = false;
engine->idling = false;
engine->retry_support = retry_support;
engine->priv_data = dev;
/*
* Batch requests is possible only if
* hardware has support for retry mechanism.
*/
engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
snprintf(engine->name, sizeof(engine->name),
"%s-engine", dev_name(dev));
crypto_init_queue(&engine->queue, qlen);
spin_lock_init(&engine->queue_lock);
engine->kworker = kthread_create_worker(0, "%s", engine->name);
if (IS_ERR(engine->kworker)) {
dev_err(dev, "failed to create crypto request pump task\n");
return NULL;
}
kthread_init_work(&engine->pump_requests, crypto_pump_work);
if (engine->rt) {
dev_info(dev, "will run requests pump with realtime priority\n");
sched_set_fifo(engine->kworker->task);
}
return engine;
}
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
/**
* crypto_engine_alloc_init - allocate crypto hardware engine structure and
* initialize it.
* @dev: the device attached with one hardware engine
* @rt: whether this queue is set to run as a realtime task
*
* This must be called from context that can sleep.
* Return: the crypto engine structure on success, else NULL.
*/
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
{
return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
CRYPTO_ENGINE_MAX_QLEN);
}
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
/**
* crypto_engine_exit - free the resources of hardware engine when exit
* @engine: the hardware engine need to be freed
*
* Return 0 for success.
*/
int crypto_engine_exit(struct crypto_engine *engine)
{
int ret;
ret = crypto_engine_stop(engine);
if (ret)
return ret;
kthread_destroy_worker(engine->kworker);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Crypto hardware engine framework");