mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
356557be86
UDF does not have separate preallocated table of inodes. So similarly to XFS we pretend that every free block is also a free inode in statfs(2) output. Clarify this in a comment. Signed-off-by: Jan Kara <jack@suse.cz>
2550 lines
67 KiB
C
2550 lines
67 KiB
C
/*
|
|
* super.c
|
|
*
|
|
* PURPOSE
|
|
* Super block routines for the OSTA-UDF(tm) filesystem.
|
|
*
|
|
* DESCRIPTION
|
|
* OSTA-UDF(tm) = Optical Storage Technology Association
|
|
* Universal Disk Format.
|
|
*
|
|
* This code is based on version 2.00 of the UDF specification,
|
|
* and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
|
|
* http://www.osta.org/
|
|
* http://www.ecma.ch/
|
|
* http://www.iso.org/
|
|
*
|
|
* COPYRIGHT
|
|
* This file is distributed under the terms of the GNU General Public
|
|
* License (GPL). Copies of the GPL can be obtained from:
|
|
* ftp://prep.ai.mit.edu/pub/gnu/GPL
|
|
* Each contributing author retains all rights to their own work.
|
|
*
|
|
* (C) 1998 Dave Boynton
|
|
* (C) 1998-2004 Ben Fennema
|
|
* (C) 2000 Stelias Computing Inc
|
|
*
|
|
* HISTORY
|
|
*
|
|
* 09/24/98 dgb changed to allow compiling outside of kernel, and
|
|
* added some debugging.
|
|
* 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
|
|
* 10/16/98 attempting some multi-session support
|
|
* 10/17/98 added freespace count for "df"
|
|
* 11/11/98 gr added novrs option
|
|
* 11/26/98 dgb added fileset,anchor mount options
|
|
* 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
|
|
* vol descs. rewrote option handling based on isofs
|
|
* 12/20/98 find the free space bitmap (if it exists)
|
|
*/
|
|
|
|
#include "udfdecl.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/cdrom.h>
|
|
#include <linux/nls.h>
|
|
#include <linux/vfs.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/crc-itu-t.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "udf_sb.h"
|
|
#include "udf_i.h"
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
enum {
|
|
VDS_POS_PRIMARY_VOL_DESC,
|
|
VDS_POS_UNALLOC_SPACE_DESC,
|
|
VDS_POS_LOGICAL_VOL_DESC,
|
|
VDS_POS_IMP_USE_VOL_DESC,
|
|
VDS_POS_LENGTH
|
|
};
|
|
|
|
#define VSD_FIRST_SECTOR_OFFSET 32768
|
|
#define VSD_MAX_SECTOR_OFFSET 0x800000
|
|
|
|
/*
|
|
* Maximum number of Terminating Descriptor / Logical Volume Integrity
|
|
* Descriptor redirections. The chosen numbers are arbitrary - just that we
|
|
* hopefully don't limit any real use of rewritten inode on write-once media
|
|
* but avoid looping for too long on corrupted media.
|
|
*/
|
|
#define UDF_MAX_TD_NESTING 64
|
|
#define UDF_MAX_LVID_NESTING 1000
|
|
|
|
enum { UDF_MAX_LINKS = 0xffff };
|
|
|
|
/* These are the "meat" - everything else is stuffing */
|
|
static int udf_fill_super(struct super_block *, void *, int);
|
|
static void udf_put_super(struct super_block *);
|
|
static int udf_sync_fs(struct super_block *, int);
|
|
static int udf_remount_fs(struct super_block *, int *, char *);
|
|
static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
|
|
static void udf_open_lvid(struct super_block *);
|
|
static void udf_close_lvid(struct super_block *);
|
|
static unsigned int udf_count_free(struct super_block *);
|
|
static int udf_statfs(struct dentry *, struct kstatfs *);
|
|
static int udf_show_options(struct seq_file *, struct dentry *);
|
|
|
|
struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
|
|
{
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
unsigned int partnum;
|
|
unsigned int offset;
|
|
|
|
if (!UDF_SB(sb)->s_lvid_bh)
|
|
return NULL;
|
|
lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
|
|
partnum = le32_to_cpu(lvid->numOfPartitions);
|
|
if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
|
|
offsetof(struct logicalVolIntegrityDesc, impUse)) /
|
|
(2 * sizeof(uint32_t)) < partnum) {
|
|
udf_err(sb, "Logical volume integrity descriptor corrupted "
|
|
"(numOfPartitions = %u)!\n", partnum);
|
|
return NULL;
|
|
}
|
|
/* The offset is to skip freeSpaceTable and sizeTable arrays */
|
|
offset = partnum * 2 * sizeof(uint32_t);
|
|
return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
|
|
}
|
|
|
|
/* UDF filesystem type */
|
|
static struct dentry *udf_mount(struct file_system_type *fs_type,
|
|
int flags, const char *dev_name, void *data)
|
|
{
|
|
return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
|
|
}
|
|
|
|
static struct file_system_type udf_fstype = {
|
|
.owner = THIS_MODULE,
|
|
.name = "udf",
|
|
.mount = udf_mount,
|
|
.kill_sb = kill_block_super,
|
|
.fs_flags = FS_REQUIRES_DEV,
|
|
};
|
|
MODULE_ALIAS_FS("udf");
|
|
|
|
static struct kmem_cache *udf_inode_cachep;
|
|
|
|
static struct inode *udf_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct udf_inode_info *ei;
|
|
ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
|
|
if (!ei)
|
|
return NULL;
|
|
|
|
ei->i_unique = 0;
|
|
ei->i_lenExtents = 0;
|
|
ei->i_lenStreams = 0;
|
|
ei->i_next_alloc_block = 0;
|
|
ei->i_next_alloc_goal = 0;
|
|
ei->i_strat4096 = 0;
|
|
ei->i_streamdir = 0;
|
|
init_rwsem(&ei->i_data_sem);
|
|
ei->cached_extent.lstart = -1;
|
|
spin_lock_init(&ei->i_extent_cache_lock);
|
|
|
|
return &ei->vfs_inode;
|
|
}
|
|
|
|
static void udf_free_in_core_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(udf_inode_cachep, UDF_I(inode));
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct udf_inode_info *ei = (struct udf_inode_info *)foo;
|
|
|
|
ei->i_ext.i_data = NULL;
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
static int __init init_inodecache(void)
|
|
{
|
|
udf_inode_cachep = kmem_cache_create("udf_inode_cache",
|
|
sizeof(struct udf_inode_info),
|
|
0, (SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_MEM_SPREAD |
|
|
SLAB_ACCOUNT),
|
|
init_once);
|
|
if (!udf_inode_cachep)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_inodecache(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(udf_inode_cachep);
|
|
}
|
|
|
|
/* Superblock operations */
|
|
static const struct super_operations udf_sb_ops = {
|
|
.alloc_inode = udf_alloc_inode,
|
|
.free_inode = udf_free_in_core_inode,
|
|
.write_inode = udf_write_inode,
|
|
.evict_inode = udf_evict_inode,
|
|
.put_super = udf_put_super,
|
|
.sync_fs = udf_sync_fs,
|
|
.statfs = udf_statfs,
|
|
.remount_fs = udf_remount_fs,
|
|
.show_options = udf_show_options,
|
|
};
|
|
|
|
struct udf_options {
|
|
unsigned char novrs;
|
|
unsigned int blocksize;
|
|
unsigned int session;
|
|
unsigned int lastblock;
|
|
unsigned int anchor;
|
|
unsigned int flags;
|
|
umode_t umask;
|
|
kgid_t gid;
|
|
kuid_t uid;
|
|
umode_t fmode;
|
|
umode_t dmode;
|
|
struct nls_table *nls_map;
|
|
};
|
|
|
|
static int __init init_udf_fs(void)
|
|
{
|
|
int err;
|
|
|
|
err = init_inodecache();
|
|
if (err)
|
|
goto out1;
|
|
err = register_filesystem(&udf_fstype);
|
|
if (err)
|
|
goto out;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
destroy_inodecache();
|
|
|
|
out1:
|
|
return err;
|
|
}
|
|
|
|
static void __exit exit_udf_fs(void)
|
|
{
|
|
unregister_filesystem(&udf_fstype);
|
|
destroy_inodecache();
|
|
}
|
|
|
|
static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
|
|
sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
|
|
if (!sbi->s_partmaps) {
|
|
sbi->s_partitions = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sbi->s_partitions = count;
|
|
return 0;
|
|
}
|
|
|
|
static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
|
|
{
|
|
int i;
|
|
int nr_groups = bitmap->s_nr_groups;
|
|
|
|
for (i = 0; i < nr_groups; i++)
|
|
brelse(bitmap->s_block_bitmap[i]);
|
|
|
|
kvfree(bitmap);
|
|
}
|
|
|
|
static void udf_free_partition(struct udf_part_map *map)
|
|
{
|
|
int i;
|
|
struct udf_meta_data *mdata;
|
|
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
|
|
iput(map->s_uspace.s_table);
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
|
|
udf_sb_free_bitmap(map->s_uspace.s_bitmap);
|
|
if (map->s_partition_type == UDF_SPARABLE_MAP15)
|
|
for (i = 0; i < 4; i++)
|
|
brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
|
|
else if (map->s_partition_type == UDF_METADATA_MAP25) {
|
|
mdata = &map->s_type_specific.s_metadata;
|
|
iput(mdata->s_metadata_fe);
|
|
mdata->s_metadata_fe = NULL;
|
|
|
|
iput(mdata->s_mirror_fe);
|
|
mdata->s_mirror_fe = NULL;
|
|
|
|
iput(mdata->s_bitmap_fe);
|
|
mdata->s_bitmap_fe = NULL;
|
|
}
|
|
}
|
|
|
|
static void udf_sb_free_partitions(struct super_block *sb)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int i;
|
|
|
|
if (!sbi->s_partmaps)
|
|
return;
|
|
for (i = 0; i < sbi->s_partitions; i++)
|
|
udf_free_partition(&sbi->s_partmaps[i]);
|
|
kfree(sbi->s_partmaps);
|
|
sbi->s_partmaps = NULL;
|
|
}
|
|
|
|
static int udf_show_options(struct seq_file *seq, struct dentry *root)
|
|
{
|
|
struct super_block *sb = root->d_sb;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
|
|
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
|
|
seq_puts(seq, ",nostrict");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
|
|
seq_printf(seq, ",bs=%lu", sb->s_blocksize);
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
|
|
seq_puts(seq, ",unhide");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
|
|
seq_puts(seq, ",undelete");
|
|
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
|
|
seq_puts(seq, ",noadinicb");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
|
|
seq_puts(seq, ",shortad");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
|
|
seq_puts(seq, ",uid=forget");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
|
|
seq_puts(seq, ",gid=forget");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
|
|
seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
|
|
seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
|
|
if (sbi->s_umask != 0)
|
|
seq_printf(seq, ",umask=%ho", sbi->s_umask);
|
|
if (sbi->s_fmode != UDF_INVALID_MODE)
|
|
seq_printf(seq, ",mode=%ho", sbi->s_fmode);
|
|
if (sbi->s_dmode != UDF_INVALID_MODE)
|
|
seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
|
|
seq_printf(seq, ",session=%d", sbi->s_session);
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
|
|
seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
|
|
if (sbi->s_anchor != 0)
|
|
seq_printf(seq, ",anchor=%u", sbi->s_anchor);
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
|
|
seq_puts(seq, ",utf8");
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
|
|
seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* udf_parse_options
|
|
*
|
|
* PURPOSE
|
|
* Parse mount options.
|
|
*
|
|
* DESCRIPTION
|
|
* The following mount options are supported:
|
|
*
|
|
* gid= Set the default group.
|
|
* umask= Set the default umask.
|
|
* mode= Set the default file permissions.
|
|
* dmode= Set the default directory permissions.
|
|
* uid= Set the default user.
|
|
* bs= Set the block size.
|
|
* unhide Show otherwise hidden files.
|
|
* undelete Show deleted files in lists.
|
|
* adinicb Embed data in the inode (default)
|
|
* noadinicb Don't embed data in the inode
|
|
* shortad Use short ad's
|
|
* longad Use long ad's (default)
|
|
* nostrict Unset strict conformance
|
|
* iocharset= Set the NLS character set
|
|
*
|
|
* The remaining are for debugging and disaster recovery:
|
|
*
|
|
* novrs Skip volume sequence recognition
|
|
*
|
|
* The following expect a offset from 0.
|
|
*
|
|
* session= Set the CDROM session (default= last session)
|
|
* anchor= Override standard anchor location. (default= 256)
|
|
* volume= Override the VolumeDesc location. (unused)
|
|
* partition= Override the PartitionDesc location. (unused)
|
|
* lastblock= Set the last block of the filesystem/
|
|
*
|
|
* The following expect a offset from the partition root.
|
|
*
|
|
* fileset= Override the fileset block location. (unused)
|
|
* rootdir= Override the root directory location. (unused)
|
|
* WARNING: overriding the rootdir to a non-directory may
|
|
* yield highly unpredictable results.
|
|
*
|
|
* PRE-CONDITIONS
|
|
* options Pointer to mount options string.
|
|
* uopts Pointer to mount options variable.
|
|
*
|
|
* POST-CONDITIONS
|
|
* <return> 1 Mount options parsed okay.
|
|
* <return> 0 Error parsing mount options.
|
|
*
|
|
* HISTORY
|
|
* July 1, 1997 - Andrew E. Mileski
|
|
* Written, tested, and released.
|
|
*/
|
|
|
|
enum {
|
|
Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
|
|
Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
|
|
Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
|
|
Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
|
|
Opt_rootdir, Opt_utf8, Opt_iocharset,
|
|
Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
|
|
Opt_fmode, Opt_dmode
|
|
};
|
|
|
|
static const match_table_t tokens = {
|
|
{Opt_novrs, "novrs"},
|
|
{Opt_nostrict, "nostrict"},
|
|
{Opt_bs, "bs=%u"},
|
|
{Opt_unhide, "unhide"},
|
|
{Opt_undelete, "undelete"},
|
|
{Opt_noadinicb, "noadinicb"},
|
|
{Opt_adinicb, "adinicb"},
|
|
{Opt_shortad, "shortad"},
|
|
{Opt_longad, "longad"},
|
|
{Opt_uforget, "uid=forget"},
|
|
{Opt_uignore, "uid=ignore"},
|
|
{Opt_gforget, "gid=forget"},
|
|
{Opt_gignore, "gid=ignore"},
|
|
{Opt_gid, "gid=%u"},
|
|
{Opt_uid, "uid=%u"},
|
|
{Opt_umask, "umask=%o"},
|
|
{Opt_session, "session=%u"},
|
|
{Opt_lastblock, "lastblock=%u"},
|
|
{Opt_anchor, "anchor=%u"},
|
|
{Opt_volume, "volume=%u"},
|
|
{Opt_partition, "partition=%u"},
|
|
{Opt_fileset, "fileset=%u"},
|
|
{Opt_rootdir, "rootdir=%u"},
|
|
{Opt_utf8, "utf8"},
|
|
{Opt_iocharset, "iocharset=%s"},
|
|
{Opt_fmode, "mode=%o"},
|
|
{Opt_dmode, "dmode=%o"},
|
|
{Opt_err, NULL}
|
|
};
|
|
|
|
static int udf_parse_options(char *options, struct udf_options *uopt,
|
|
bool remount)
|
|
{
|
|
char *p;
|
|
int option;
|
|
|
|
uopt->novrs = 0;
|
|
uopt->session = 0xFFFFFFFF;
|
|
uopt->lastblock = 0;
|
|
uopt->anchor = 0;
|
|
|
|
if (!options)
|
|
return 1;
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
substring_t args[MAX_OPT_ARGS];
|
|
int token;
|
|
unsigned n;
|
|
if (!*p)
|
|
continue;
|
|
|
|
token = match_token(p, tokens, args);
|
|
switch (token) {
|
|
case Opt_novrs:
|
|
uopt->novrs = 1;
|
|
break;
|
|
case Opt_bs:
|
|
if (match_int(&args[0], &option))
|
|
return 0;
|
|
n = option;
|
|
if (n != 512 && n != 1024 && n != 2048 && n != 4096)
|
|
return 0;
|
|
uopt->blocksize = n;
|
|
uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
|
|
break;
|
|
case Opt_unhide:
|
|
uopt->flags |= (1 << UDF_FLAG_UNHIDE);
|
|
break;
|
|
case Opt_undelete:
|
|
uopt->flags |= (1 << UDF_FLAG_UNDELETE);
|
|
break;
|
|
case Opt_noadinicb:
|
|
uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
|
|
break;
|
|
case Opt_adinicb:
|
|
uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
|
|
break;
|
|
case Opt_shortad:
|
|
uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
|
|
break;
|
|
case Opt_longad:
|
|
uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
|
|
break;
|
|
case Opt_gid:
|
|
if (match_int(args, &option))
|
|
return 0;
|
|
uopt->gid = make_kgid(current_user_ns(), option);
|
|
if (!gid_valid(uopt->gid))
|
|
return 0;
|
|
uopt->flags |= (1 << UDF_FLAG_GID_SET);
|
|
break;
|
|
case Opt_uid:
|
|
if (match_int(args, &option))
|
|
return 0;
|
|
uopt->uid = make_kuid(current_user_ns(), option);
|
|
if (!uid_valid(uopt->uid))
|
|
return 0;
|
|
uopt->flags |= (1 << UDF_FLAG_UID_SET);
|
|
break;
|
|
case Opt_umask:
|
|
if (match_octal(args, &option))
|
|
return 0;
|
|
uopt->umask = option;
|
|
break;
|
|
case Opt_nostrict:
|
|
uopt->flags &= ~(1 << UDF_FLAG_STRICT);
|
|
break;
|
|
case Opt_session:
|
|
if (match_int(args, &option))
|
|
return 0;
|
|
uopt->session = option;
|
|
if (!remount)
|
|
uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
|
|
break;
|
|
case Opt_lastblock:
|
|
if (match_int(args, &option))
|
|
return 0;
|
|
uopt->lastblock = option;
|
|
if (!remount)
|
|
uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
|
|
break;
|
|
case Opt_anchor:
|
|
if (match_int(args, &option))
|
|
return 0;
|
|
uopt->anchor = option;
|
|
break;
|
|
case Opt_volume:
|
|
case Opt_partition:
|
|
case Opt_fileset:
|
|
case Opt_rootdir:
|
|
/* Ignored (never implemented properly) */
|
|
break;
|
|
case Opt_utf8:
|
|
uopt->flags |= (1 << UDF_FLAG_UTF8);
|
|
break;
|
|
case Opt_iocharset:
|
|
if (!remount) {
|
|
if (uopt->nls_map)
|
|
unload_nls(uopt->nls_map);
|
|
/*
|
|
* load_nls() failure is handled later in
|
|
* udf_fill_super() after all options are
|
|
* parsed.
|
|
*/
|
|
uopt->nls_map = load_nls(args[0].from);
|
|
uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
|
|
}
|
|
break;
|
|
case Opt_uforget:
|
|
uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
|
|
break;
|
|
case Opt_uignore:
|
|
case Opt_gignore:
|
|
/* These options are superseeded by uid=<number> */
|
|
break;
|
|
case Opt_gforget:
|
|
uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
|
|
break;
|
|
case Opt_fmode:
|
|
if (match_octal(args, &option))
|
|
return 0;
|
|
uopt->fmode = option & 0777;
|
|
break;
|
|
case Opt_dmode:
|
|
if (match_octal(args, &option))
|
|
return 0;
|
|
uopt->dmode = option & 0777;
|
|
break;
|
|
default:
|
|
pr_err("bad mount option \"%s\" or missing value\n", p);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
|
|
{
|
|
struct udf_options uopt;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int error = 0;
|
|
|
|
if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
|
|
return -EACCES;
|
|
|
|
sync_filesystem(sb);
|
|
|
|
uopt.flags = sbi->s_flags;
|
|
uopt.uid = sbi->s_uid;
|
|
uopt.gid = sbi->s_gid;
|
|
uopt.umask = sbi->s_umask;
|
|
uopt.fmode = sbi->s_fmode;
|
|
uopt.dmode = sbi->s_dmode;
|
|
uopt.nls_map = NULL;
|
|
|
|
if (!udf_parse_options(options, &uopt, true))
|
|
return -EINVAL;
|
|
|
|
write_lock(&sbi->s_cred_lock);
|
|
sbi->s_flags = uopt.flags;
|
|
sbi->s_uid = uopt.uid;
|
|
sbi->s_gid = uopt.gid;
|
|
sbi->s_umask = uopt.umask;
|
|
sbi->s_fmode = uopt.fmode;
|
|
sbi->s_dmode = uopt.dmode;
|
|
write_unlock(&sbi->s_cred_lock);
|
|
|
|
if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
|
|
goto out_unlock;
|
|
|
|
if (*flags & SB_RDONLY)
|
|
udf_close_lvid(sb);
|
|
else
|
|
udf_open_lvid(sb);
|
|
|
|
out_unlock:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Check VSD descriptor. Returns -1 in case we are at the end of volume
|
|
* recognition area, 0 if the descriptor is valid but non-interesting, 1 if
|
|
* we found one of NSR descriptors we are looking for.
|
|
*/
|
|
static int identify_vsd(const struct volStructDesc *vsd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
|
|
switch (vsd->structType) {
|
|
case 0:
|
|
udf_debug("ISO9660 Boot Record found\n");
|
|
break;
|
|
case 1:
|
|
udf_debug("ISO9660 Primary Volume Descriptor found\n");
|
|
break;
|
|
case 2:
|
|
udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
|
|
break;
|
|
case 3:
|
|
udf_debug("ISO9660 Volume Partition Descriptor found\n");
|
|
break;
|
|
case 255:
|
|
udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
|
|
break;
|
|
default:
|
|
udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
|
|
break;
|
|
}
|
|
} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
|
|
; /* ret = 0 */
|
|
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
|
|
ret = 1;
|
|
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
|
|
ret = 1;
|
|
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
|
|
; /* ret = 0 */
|
|
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
|
|
; /* ret = 0 */
|
|
else {
|
|
/* TEA01 or invalid id : end of volume recognition area */
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check Volume Structure Descriptors (ECMA 167 2/9.1)
|
|
* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
|
|
* @return 1 if NSR02 or NSR03 found,
|
|
* -1 if first sector read error, 0 otherwise
|
|
*/
|
|
static int udf_check_vsd(struct super_block *sb)
|
|
{
|
|
struct volStructDesc *vsd = NULL;
|
|
loff_t sector = VSD_FIRST_SECTOR_OFFSET;
|
|
int sectorsize;
|
|
struct buffer_head *bh = NULL;
|
|
int nsr = 0;
|
|
struct udf_sb_info *sbi;
|
|
|
|
sbi = UDF_SB(sb);
|
|
if (sb->s_blocksize < sizeof(struct volStructDesc))
|
|
sectorsize = sizeof(struct volStructDesc);
|
|
else
|
|
sectorsize = sb->s_blocksize;
|
|
|
|
sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
|
|
|
|
udf_debug("Starting at sector %u (%lu byte sectors)\n",
|
|
(unsigned int)(sector >> sb->s_blocksize_bits),
|
|
sb->s_blocksize);
|
|
/* Process the sequence (if applicable). The hard limit on the sector
|
|
* offset is arbitrary, hopefully large enough so that all valid UDF
|
|
* filesystems will be recognised. There is no mention of an upper
|
|
* bound to the size of the volume recognition area in the standard.
|
|
* The limit will prevent the code to read all the sectors of a
|
|
* specially crafted image (like a bluray disc full of CD001 sectors),
|
|
* potentially causing minutes or even hours of uninterruptible I/O
|
|
* activity. This actually happened with uninitialised SSD partitions
|
|
* (all 0xFF) before the check for the limit and all valid IDs were
|
|
* added */
|
|
for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
|
|
/* Read a block */
|
|
bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
|
|
if (!bh)
|
|
break;
|
|
|
|
vsd = (struct volStructDesc *)(bh->b_data +
|
|
(sector & (sb->s_blocksize - 1)));
|
|
nsr = identify_vsd(vsd);
|
|
/* Found NSR or end? */
|
|
if (nsr) {
|
|
brelse(bh);
|
|
break;
|
|
}
|
|
/*
|
|
* Special handling for improperly formatted VRS (e.g., Win10)
|
|
* where components are separated by 2048 bytes even though
|
|
* sectors are 4K
|
|
*/
|
|
if (sb->s_blocksize == 4096) {
|
|
nsr = identify_vsd(vsd + 1);
|
|
/* Ignore unknown IDs... */
|
|
if (nsr < 0)
|
|
nsr = 0;
|
|
}
|
|
brelse(bh);
|
|
}
|
|
|
|
if (nsr > 0)
|
|
return 1;
|
|
else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
|
|
VSD_FIRST_SECTOR_OFFSET)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int udf_verify_domain_identifier(struct super_block *sb,
|
|
struct regid *ident, char *dname)
|
|
{
|
|
struct domainIdentSuffix *suffix;
|
|
|
|
if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
|
|
udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
|
|
goto force_ro;
|
|
}
|
|
if (ident->flags & ENTITYID_FLAGS_DIRTY) {
|
|
udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
|
|
dname);
|
|
goto force_ro;
|
|
}
|
|
suffix = (struct domainIdentSuffix *)ident->identSuffix;
|
|
if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
|
|
(suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
|
|
if (!sb_rdonly(sb)) {
|
|
udf_warn(sb, "Descriptor for %s marked write protected."
|
|
" Forcing read only mount.\n", dname);
|
|
}
|
|
goto force_ro;
|
|
}
|
|
return 0;
|
|
|
|
force_ro:
|
|
if (!sb_rdonly(sb))
|
|
return -EACCES;
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
return 0;
|
|
}
|
|
|
|
static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
|
|
struct kernel_lb_addr *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
|
|
UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
|
|
|
|
udf_debug("Rootdir at block=%u, partition=%u\n",
|
|
root->logicalBlockNum, root->partitionReferenceNum);
|
|
return 0;
|
|
}
|
|
|
|
static int udf_find_fileset(struct super_block *sb,
|
|
struct kernel_lb_addr *fileset,
|
|
struct kernel_lb_addr *root)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
uint16_t ident;
|
|
int ret;
|
|
|
|
if (fileset->logicalBlockNum == 0xFFFFFFFF &&
|
|
fileset->partitionReferenceNum == 0xFFFF)
|
|
return -EINVAL;
|
|
|
|
bh = udf_read_ptagged(sb, fileset, 0, &ident);
|
|
if (!bh)
|
|
return -EIO;
|
|
if (ident != TAG_IDENT_FSD) {
|
|
brelse(bh);
|
|
return -EINVAL;
|
|
}
|
|
|
|
udf_debug("Fileset at block=%u, partition=%u\n",
|
|
fileset->logicalBlockNum, fileset->partitionReferenceNum);
|
|
|
|
UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
|
|
ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
|
|
brelse(bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Load primary Volume Descriptor Sequence
|
|
*
|
|
* Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
|
|
* should be tried.
|
|
*/
|
|
static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
|
|
{
|
|
struct primaryVolDesc *pvoldesc;
|
|
uint8_t *outstr;
|
|
struct buffer_head *bh;
|
|
uint16_t ident;
|
|
int ret = -ENOMEM;
|
|
struct timestamp *ts;
|
|
|
|
outstr = kmalloc(128, GFP_NOFS);
|
|
if (!outstr)
|
|
return -ENOMEM;
|
|
|
|
bh = udf_read_tagged(sb, block, block, &ident);
|
|
if (!bh) {
|
|
ret = -EAGAIN;
|
|
goto out2;
|
|
}
|
|
|
|
if (ident != TAG_IDENT_PVD) {
|
|
ret = -EIO;
|
|
goto out_bh;
|
|
}
|
|
|
|
pvoldesc = (struct primaryVolDesc *)bh->b_data;
|
|
|
|
udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
|
|
pvoldesc->recordingDateAndTime);
|
|
ts = &pvoldesc->recordingDateAndTime;
|
|
udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
|
|
le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
|
|
ts->minute, le16_to_cpu(ts->typeAndTimezone));
|
|
|
|
ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
|
|
if (ret < 0) {
|
|
strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
|
|
pr_warn("incorrect volume identification, setting to "
|
|
"'InvalidName'\n");
|
|
} else {
|
|
strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
|
|
}
|
|
udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
|
|
|
|
ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out_bh;
|
|
}
|
|
outstr[ret] = 0;
|
|
udf_debug("volSetIdent[] = '%s'\n", outstr);
|
|
|
|
ret = 0;
|
|
out_bh:
|
|
brelse(bh);
|
|
out2:
|
|
kfree(outstr);
|
|
return ret;
|
|
}
|
|
|
|
struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
|
|
u32 meta_file_loc, u32 partition_ref)
|
|
{
|
|
struct kernel_lb_addr addr;
|
|
struct inode *metadata_fe;
|
|
|
|
addr.logicalBlockNum = meta_file_loc;
|
|
addr.partitionReferenceNum = partition_ref;
|
|
|
|
metadata_fe = udf_iget_special(sb, &addr);
|
|
|
|
if (IS_ERR(metadata_fe)) {
|
|
udf_warn(sb, "metadata inode efe not found\n");
|
|
return metadata_fe;
|
|
}
|
|
if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
|
|
udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
|
|
iput(metadata_fe);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
return metadata_fe;
|
|
}
|
|
|
|
static int udf_load_metadata_files(struct super_block *sb, int partition,
|
|
int type1_index)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct udf_part_map *map;
|
|
struct udf_meta_data *mdata;
|
|
struct kernel_lb_addr addr;
|
|
struct inode *fe;
|
|
|
|
map = &sbi->s_partmaps[partition];
|
|
mdata = &map->s_type_specific.s_metadata;
|
|
mdata->s_phys_partition_ref = type1_index;
|
|
|
|
/* metadata address */
|
|
udf_debug("Metadata file location: block = %u part = %u\n",
|
|
mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
|
|
|
|
fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
|
|
mdata->s_phys_partition_ref);
|
|
if (IS_ERR(fe)) {
|
|
/* mirror file entry */
|
|
udf_debug("Mirror metadata file location: block = %u part = %u\n",
|
|
mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
|
|
|
|
fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
|
|
mdata->s_phys_partition_ref);
|
|
|
|
if (IS_ERR(fe)) {
|
|
udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
|
|
return PTR_ERR(fe);
|
|
}
|
|
mdata->s_mirror_fe = fe;
|
|
} else
|
|
mdata->s_metadata_fe = fe;
|
|
|
|
|
|
/*
|
|
* bitmap file entry
|
|
* Note:
|
|
* Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
|
|
*/
|
|
if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
|
|
addr.logicalBlockNum = mdata->s_bitmap_file_loc;
|
|
addr.partitionReferenceNum = mdata->s_phys_partition_ref;
|
|
|
|
udf_debug("Bitmap file location: block = %u part = %u\n",
|
|
addr.logicalBlockNum, addr.partitionReferenceNum);
|
|
|
|
fe = udf_iget_special(sb, &addr);
|
|
if (IS_ERR(fe)) {
|
|
if (sb_rdonly(sb))
|
|
udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
|
|
else {
|
|
udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
|
|
return PTR_ERR(fe);
|
|
}
|
|
} else
|
|
mdata->s_bitmap_fe = fe;
|
|
}
|
|
|
|
udf_debug("udf_load_metadata_files Ok\n");
|
|
return 0;
|
|
}
|
|
|
|
int udf_compute_nr_groups(struct super_block *sb, u32 partition)
|
|
{
|
|
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
|
|
return DIV_ROUND_UP(map->s_partition_len +
|
|
(sizeof(struct spaceBitmapDesc) << 3),
|
|
sb->s_blocksize * 8);
|
|
}
|
|
|
|
static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
|
|
{
|
|
struct udf_bitmap *bitmap;
|
|
int nr_groups;
|
|
int size;
|
|
|
|
nr_groups = udf_compute_nr_groups(sb, index);
|
|
size = sizeof(struct udf_bitmap) +
|
|
(sizeof(struct buffer_head *) * nr_groups);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
bitmap = kzalloc(size, GFP_KERNEL);
|
|
else
|
|
bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
|
|
|
|
if (!bitmap)
|
|
return NULL;
|
|
|
|
bitmap->s_nr_groups = nr_groups;
|
|
return bitmap;
|
|
}
|
|
|
|
static int check_partition_desc(struct super_block *sb,
|
|
struct partitionDesc *p,
|
|
struct udf_part_map *map)
|
|
{
|
|
bool umap, utable, fmap, ftable;
|
|
struct partitionHeaderDesc *phd;
|
|
|
|
switch (le32_to_cpu(p->accessType)) {
|
|
case PD_ACCESS_TYPE_READ_ONLY:
|
|
case PD_ACCESS_TYPE_WRITE_ONCE:
|
|
case PD_ACCESS_TYPE_NONE:
|
|
goto force_ro;
|
|
}
|
|
|
|
/* No Partition Header Descriptor? */
|
|
if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
|
|
strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
|
|
goto force_ro;
|
|
|
|
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
|
|
utable = phd->unallocSpaceTable.extLength;
|
|
umap = phd->unallocSpaceBitmap.extLength;
|
|
ftable = phd->freedSpaceTable.extLength;
|
|
fmap = phd->freedSpaceBitmap.extLength;
|
|
|
|
/* No allocation info? */
|
|
if (!utable && !umap && !ftable && !fmap)
|
|
goto force_ro;
|
|
|
|
/* We don't support blocks that require erasing before overwrite */
|
|
if (ftable || fmap)
|
|
goto force_ro;
|
|
/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
|
|
if (utable && umap)
|
|
goto force_ro;
|
|
|
|
if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
|
|
map->s_partition_type == UDF_VIRTUAL_MAP20 ||
|
|
map->s_partition_type == UDF_METADATA_MAP25)
|
|
goto force_ro;
|
|
|
|
return 0;
|
|
force_ro:
|
|
if (!sb_rdonly(sb))
|
|
return -EACCES;
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
return 0;
|
|
}
|
|
|
|
static int udf_fill_partdesc_info(struct super_block *sb,
|
|
struct partitionDesc *p, int p_index)
|
|
{
|
|
struct udf_part_map *map;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct partitionHeaderDesc *phd;
|
|
int err;
|
|
|
|
map = &sbi->s_partmaps[p_index];
|
|
|
|
map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
|
|
map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
|
|
|
|
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
|
|
map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
|
|
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
|
|
map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
|
|
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
|
|
map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
|
|
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
|
|
map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
|
|
|
|
udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
|
|
p_index, map->s_partition_type,
|
|
map->s_partition_root, map->s_partition_len);
|
|
|
|
err = check_partition_desc(sb, p, map);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Skip loading allocation info it we cannot ever write to the fs.
|
|
* This is a correctness thing as we may have decided to force ro mount
|
|
* to avoid allocation info we don't support.
|
|
*/
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
|
|
return 0;
|
|
|
|
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
|
|
if (phd->unallocSpaceTable.extLength) {
|
|
struct kernel_lb_addr loc = {
|
|
.logicalBlockNum = le32_to_cpu(
|
|
phd->unallocSpaceTable.extPosition),
|
|
.partitionReferenceNum = p_index,
|
|
};
|
|
struct inode *inode;
|
|
|
|
inode = udf_iget_special(sb, &loc);
|
|
if (IS_ERR(inode)) {
|
|
udf_debug("cannot load unallocSpaceTable (part %d)\n",
|
|
p_index);
|
|
return PTR_ERR(inode);
|
|
}
|
|
map->s_uspace.s_table = inode;
|
|
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
|
|
udf_debug("unallocSpaceTable (part %d) @ %lu\n",
|
|
p_index, map->s_uspace.s_table->i_ino);
|
|
}
|
|
|
|
if (phd->unallocSpaceBitmap.extLength) {
|
|
struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
|
|
if (!bitmap)
|
|
return -ENOMEM;
|
|
map->s_uspace.s_bitmap = bitmap;
|
|
bitmap->s_extPosition = le32_to_cpu(
|
|
phd->unallocSpaceBitmap.extPosition);
|
|
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
|
|
udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
|
|
p_index, bitmap->s_extPosition);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void udf_find_vat_block(struct super_block *sb, int p_index,
|
|
int type1_index, sector_t start_block)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct udf_part_map *map = &sbi->s_partmaps[p_index];
|
|
sector_t vat_block;
|
|
struct kernel_lb_addr ino;
|
|
struct inode *inode;
|
|
|
|
/*
|
|
* VAT file entry is in the last recorded block. Some broken disks have
|
|
* it a few blocks before so try a bit harder...
|
|
*/
|
|
ino.partitionReferenceNum = type1_index;
|
|
for (vat_block = start_block;
|
|
vat_block >= map->s_partition_root &&
|
|
vat_block >= start_block - 3; vat_block--) {
|
|
ino.logicalBlockNum = vat_block - map->s_partition_root;
|
|
inode = udf_iget_special(sb, &ino);
|
|
if (!IS_ERR(inode)) {
|
|
sbi->s_vat_inode = inode;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct udf_part_map *map = &sbi->s_partmaps[p_index];
|
|
struct buffer_head *bh = NULL;
|
|
struct udf_inode_info *vati;
|
|
uint32_t pos;
|
|
struct virtualAllocationTable20 *vat20;
|
|
sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
|
|
sb->s_blocksize_bits;
|
|
|
|
udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
|
|
if (!sbi->s_vat_inode &&
|
|
sbi->s_last_block != blocks - 1) {
|
|
pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
|
|
(unsigned long)sbi->s_last_block,
|
|
(unsigned long)blocks - 1);
|
|
udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
|
|
}
|
|
if (!sbi->s_vat_inode)
|
|
return -EIO;
|
|
|
|
if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
|
|
map->s_type_specific.s_virtual.s_start_offset = 0;
|
|
map->s_type_specific.s_virtual.s_num_entries =
|
|
(sbi->s_vat_inode->i_size - 36) >> 2;
|
|
} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
|
|
vati = UDF_I(sbi->s_vat_inode);
|
|
if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
|
|
pos = udf_block_map(sbi->s_vat_inode, 0);
|
|
bh = sb_bread(sb, pos);
|
|
if (!bh)
|
|
return -EIO;
|
|
vat20 = (struct virtualAllocationTable20 *)bh->b_data;
|
|
} else {
|
|
vat20 = (struct virtualAllocationTable20 *)
|
|
vati->i_ext.i_data;
|
|
}
|
|
|
|
map->s_type_specific.s_virtual.s_start_offset =
|
|
le16_to_cpu(vat20->lengthHeader);
|
|
map->s_type_specific.s_virtual.s_num_entries =
|
|
(sbi->s_vat_inode->i_size -
|
|
map->s_type_specific.s_virtual.
|
|
s_start_offset) >> 2;
|
|
brelse(bh);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Load partition descriptor block
|
|
*
|
|
* Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
|
|
* sequence.
|
|
*/
|
|
static int udf_load_partdesc(struct super_block *sb, sector_t block)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct partitionDesc *p;
|
|
struct udf_part_map *map;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int i, type1_idx;
|
|
uint16_t partitionNumber;
|
|
uint16_t ident;
|
|
int ret;
|
|
|
|
bh = udf_read_tagged(sb, block, block, &ident);
|
|
if (!bh)
|
|
return -EAGAIN;
|
|
if (ident != TAG_IDENT_PD) {
|
|
ret = 0;
|
|
goto out_bh;
|
|
}
|
|
|
|
p = (struct partitionDesc *)bh->b_data;
|
|
partitionNumber = le16_to_cpu(p->partitionNumber);
|
|
|
|
/* First scan for TYPE1 and SPARABLE partitions */
|
|
for (i = 0; i < sbi->s_partitions; i++) {
|
|
map = &sbi->s_partmaps[i];
|
|
udf_debug("Searching map: (%u == %u)\n",
|
|
map->s_partition_num, partitionNumber);
|
|
if (map->s_partition_num == partitionNumber &&
|
|
(map->s_partition_type == UDF_TYPE1_MAP15 ||
|
|
map->s_partition_type == UDF_SPARABLE_MAP15))
|
|
break;
|
|
}
|
|
|
|
if (i >= sbi->s_partitions) {
|
|
udf_debug("Partition (%u) not found in partition map\n",
|
|
partitionNumber);
|
|
ret = 0;
|
|
goto out_bh;
|
|
}
|
|
|
|
ret = udf_fill_partdesc_info(sb, p, i);
|
|
if (ret < 0)
|
|
goto out_bh;
|
|
|
|
/*
|
|
* Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
|
|
* PHYSICAL partitions are already set up
|
|
*/
|
|
type1_idx = i;
|
|
map = NULL; /* supress 'maybe used uninitialized' warning */
|
|
for (i = 0; i < sbi->s_partitions; i++) {
|
|
map = &sbi->s_partmaps[i];
|
|
|
|
if (map->s_partition_num == partitionNumber &&
|
|
(map->s_partition_type == UDF_VIRTUAL_MAP15 ||
|
|
map->s_partition_type == UDF_VIRTUAL_MAP20 ||
|
|
map->s_partition_type == UDF_METADATA_MAP25))
|
|
break;
|
|
}
|
|
|
|
if (i >= sbi->s_partitions) {
|
|
ret = 0;
|
|
goto out_bh;
|
|
}
|
|
|
|
ret = udf_fill_partdesc_info(sb, p, i);
|
|
if (ret < 0)
|
|
goto out_bh;
|
|
|
|
if (map->s_partition_type == UDF_METADATA_MAP25) {
|
|
ret = udf_load_metadata_files(sb, i, type1_idx);
|
|
if (ret < 0) {
|
|
udf_err(sb, "error loading MetaData partition map %d\n",
|
|
i);
|
|
goto out_bh;
|
|
}
|
|
} else {
|
|
/*
|
|
* If we have a partition with virtual map, we don't handle
|
|
* writing to it (we overwrite blocks instead of relocating
|
|
* them).
|
|
*/
|
|
if (!sb_rdonly(sb)) {
|
|
ret = -EACCES;
|
|
goto out_bh;
|
|
}
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
ret = udf_load_vat(sb, i, type1_idx);
|
|
if (ret < 0)
|
|
goto out_bh;
|
|
}
|
|
ret = 0;
|
|
out_bh:
|
|
/* In case loading failed, we handle cleanup in udf_fill_super */
|
|
brelse(bh);
|
|
return ret;
|
|
}
|
|
|
|
static int udf_load_sparable_map(struct super_block *sb,
|
|
struct udf_part_map *map,
|
|
struct sparablePartitionMap *spm)
|
|
{
|
|
uint32_t loc;
|
|
uint16_t ident;
|
|
struct sparingTable *st;
|
|
struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
|
|
int i;
|
|
struct buffer_head *bh;
|
|
|
|
map->s_partition_type = UDF_SPARABLE_MAP15;
|
|
sdata->s_packet_len = le16_to_cpu(spm->packetLength);
|
|
if (!is_power_of_2(sdata->s_packet_len)) {
|
|
udf_err(sb, "error loading logical volume descriptor: "
|
|
"Invalid packet length %u\n",
|
|
(unsigned)sdata->s_packet_len);
|
|
return -EIO;
|
|
}
|
|
if (spm->numSparingTables > 4) {
|
|
udf_err(sb, "error loading logical volume descriptor: "
|
|
"Too many sparing tables (%d)\n",
|
|
(int)spm->numSparingTables);
|
|
return -EIO;
|
|
}
|
|
|
|
for (i = 0; i < spm->numSparingTables; i++) {
|
|
loc = le32_to_cpu(spm->locSparingTable[i]);
|
|
bh = udf_read_tagged(sb, loc, loc, &ident);
|
|
if (!bh)
|
|
continue;
|
|
|
|
st = (struct sparingTable *)bh->b_data;
|
|
if (ident != 0 ||
|
|
strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
|
|
strlen(UDF_ID_SPARING)) ||
|
|
sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
|
|
sb->s_blocksize) {
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
sdata->s_spar_map[i] = bh;
|
|
}
|
|
map->s_partition_func = udf_get_pblock_spar15;
|
|
return 0;
|
|
}
|
|
|
|
static int udf_load_logicalvol(struct super_block *sb, sector_t block,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
struct logicalVolDesc *lvd;
|
|
int i, offset;
|
|
uint8_t type;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct genericPartitionMap *gpm;
|
|
uint16_t ident;
|
|
struct buffer_head *bh;
|
|
unsigned int table_len;
|
|
int ret;
|
|
|
|
bh = udf_read_tagged(sb, block, block, &ident);
|
|
if (!bh)
|
|
return -EAGAIN;
|
|
BUG_ON(ident != TAG_IDENT_LVD);
|
|
lvd = (struct logicalVolDesc *)bh->b_data;
|
|
table_len = le32_to_cpu(lvd->mapTableLength);
|
|
if (table_len > sb->s_blocksize - sizeof(*lvd)) {
|
|
udf_err(sb, "error loading logical volume descriptor: "
|
|
"Partition table too long (%u > %lu)\n", table_len,
|
|
sb->s_blocksize - sizeof(*lvd));
|
|
ret = -EIO;
|
|
goto out_bh;
|
|
}
|
|
|
|
ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
|
|
"logical volume");
|
|
if (ret)
|
|
goto out_bh;
|
|
ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
|
|
if (ret)
|
|
goto out_bh;
|
|
|
|
for (i = 0, offset = 0;
|
|
i < sbi->s_partitions && offset < table_len;
|
|
i++, offset += gpm->partitionMapLength) {
|
|
struct udf_part_map *map = &sbi->s_partmaps[i];
|
|
gpm = (struct genericPartitionMap *)
|
|
&(lvd->partitionMaps[offset]);
|
|
type = gpm->partitionMapType;
|
|
if (type == 1) {
|
|
struct genericPartitionMap1 *gpm1 =
|
|
(struct genericPartitionMap1 *)gpm;
|
|
map->s_partition_type = UDF_TYPE1_MAP15;
|
|
map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
|
|
map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
|
|
map->s_partition_func = NULL;
|
|
} else if (type == 2) {
|
|
struct udfPartitionMap2 *upm2 =
|
|
(struct udfPartitionMap2 *)gpm;
|
|
if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
|
|
strlen(UDF_ID_VIRTUAL))) {
|
|
u16 suf =
|
|
le16_to_cpu(((__le16 *)upm2->partIdent.
|
|
identSuffix)[0]);
|
|
if (suf < 0x0200) {
|
|
map->s_partition_type =
|
|
UDF_VIRTUAL_MAP15;
|
|
map->s_partition_func =
|
|
udf_get_pblock_virt15;
|
|
} else {
|
|
map->s_partition_type =
|
|
UDF_VIRTUAL_MAP20;
|
|
map->s_partition_func =
|
|
udf_get_pblock_virt20;
|
|
}
|
|
} else if (!strncmp(upm2->partIdent.ident,
|
|
UDF_ID_SPARABLE,
|
|
strlen(UDF_ID_SPARABLE))) {
|
|
ret = udf_load_sparable_map(sb, map,
|
|
(struct sparablePartitionMap *)gpm);
|
|
if (ret < 0)
|
|
goto out_bh;
|
|
} else if (!strncmp(upm2->partIdent.ident,
|
|
UDF_ID_METADATA,
|
|
strlen(UDF_ID_METADATA))) {
|
|
struct udf_meta_data *mdata =
|
|
&map->s_type_specific.s_metadata;
|
|
struct metadataPartitionMap *mdm =
|
|
(struct metadataPartitionMap *)
|
|
&(lvd->partitionMaps[offset]);
|
|
udf_debug("Parsing Logical vol part %d type %u id=%s\n",
|
|
i, type, UDF_ID_METADATA);
|
|
|
|
map->s_partition_type = UDF_METADATA_MAP25;
|
|
map->s_partition_func = udf_get_pblock_meta25;
|
|
|
|
mdata->s_meta_file_loc =
|
|
le32_to_cpu(mdm->metadataFileLoc);
|
|
mdata->s_mirror_file_loc =
|
|
le32_to_cpu(mdm->metadataMirrorFileLoc);
|
|
mdata->s_bitmap_file_loc =
|
|
le32_to_cpu(mdm->metadataBitmapFileLoc);
|
|
mdata->s_alloc_unit_size =
|
|
le32_to_cpu(mdm->allocUnitSize);
|
|
mdata->s_align_unit_size =
|
|
le16_to_cpu(mdm->alignUnitSize);
|
|
if (mdm->flags & 0x01)
|
|
mdata->s_flags |= MF_DUPLICATE_MD;
|
|
|
|
udf_debug("Metadata Ident suffix=0x%x\n",
|
|
le16_to_cpu(*(__le16 *)
|
|
mdm->partIdent.identSuffix));
|
|
udf_debug("Metadata part num=%u\n",
|
|
le16_to_cpu(mdm->partitionNum));
|
|
udf_debug("Metadata part alloc unit size=%u\n",
|
|
le32_to_cpu(mdm->allocUnitSize));
|
|
udf_debug("Metadata file loc=%u\n",
|
|
le32_to_cpu(mdm->metadataFileLoc));
|
|
udf_debug("Mirror file loc=%u\n",
|
|
le32_to_cpu(mdm->metadataMirrorFileLoc));
|
|
udf_debug("Bitmap file loc=%u\n",
|
|
le32_to_cpu(mdm->metadataBitmapFileLoc));
|
|
udf_debug("Flags: %d %u\n",
|
|
mdata->s_flags, mdm->flags);
|
|
} else {
|
|
udf_debug("Unknown ident: %s\n",
|
|
upm2->partIdent.ident);
|
|
continue;
|
|
}
|
|
map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
|
|
map->s_partition_num = le16_to_cpu(upm2->partitionNum);
|
|
}
|
|
udf_debug("Partition (%d:%u) type %u on volume %u\n",
|
|
i, map->s_partition_num, type, map->s_volumeseqnum);
|
|
}
|
|
|
|
if (fileset) {
|
|
struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
|
|
|
|
*fileset = lelb_to_cpu(la->extLocation);
|
|
udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
|
|
fileset->logicalBlockNum,
|
|
fileset->partitionReferenceNum);
|
|
}
|
|
if (lvd->integritySeqExt.extLength)
|
|
udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
|
|
ret = 0;
|
|
|
|
if (!sbi->s_lvid_bh) {
|
|
/* We can't generate unique IDs without a valid LVID */
|
|
if (sb_rdonly(sb)) {
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
} else {
|
|
udf_warn(sb, "Damaged or missing LVID, forcing "
|
|
"readonly mount\n");
|
|
ret = -EACCES;
|
|
}
|
|
}
|
|
out_bh:
|
|
brelse(bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Find the prevailing Logical Volume Integrity Descriptor.
|
|
*/
|
|
static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
|
|
{
|
|
struct buffer_head *bh, *final_bh;
|
|
uint16_t ident;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
int indirections = 0;
|
|
|
|
while (++indirections <= UDF_MAX_LVID_NESTING) {
|
|
final_bh = NULL;
|
|
while (loc.extLength > 0 &&
|
|
(bh = udf_read_tagged(sb, loc.extLocation,
|
|
loc.extLocation, &ident))) {
|
|
if (ident != TAG_IDENT_LVID) {
|
|
brelse(bh);
|
|
break;
|
|
}
|
|
|
|
brelse(final_bh);
|
|
final_bh = bh;
|
|
|
|
loc.extLength -= sb->s_blocksize;
|
|
loc.extLocation++;
|
|
}
|
|
|
|
if (!final_bh)
|
|
return;
|
|
|
|
brelse(sbi->s_lvid_bh);
|
|
sbi->s_lvid_bh = final_bh;
|
|
|
|
lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
|
|
if (lvid->nextIntegrityExt.extLength == 0)
|
|
return;
|
|
|
|
loc = leea_to_cpu(lvid->nextIntegrityExt);
|
|
}
|
|
|
|
udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
|
|
UDF_MAX_LVID_NESTING);
|
|
brelse(sbi->s_lvid_bh);
|
|
sbi->s_lvid_bh = NULL;
|
|
}
|
|
|
|
/*
|
|
* Step for reallocation of table of partition descriptor sequence numbers.
|
|
* Must be power of 2.
|
|
*/
|
|
#define PART_DESC_ALLOC_STEP 32
|
|
|
|
struct part_desc_seq_scan_data {
|
|
struct udf_vds_record rec;
|
|
u32 partnum;
|
|
};
|
|
|
|
struct desc_seq_scan_data {
|
|
struct udf_vds_record vds[VDS_POS_LENGTH];
|
|
unsigned int size_part_descs;
|
|
unsigned int num_part_descs;
|
|
struct part_desc_seq_scan_data *part_descs_loc;
|
|
};
|
|
|
|
static struct udf_vds_record *handle_partition_descriptor(
|
|
struct buffer_head *bh,
|
|
struct desc_seq_scan_data *data)
|
|
{
|
|
struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
|
|
int partnum;
|
|
int i;
|
|
|
|
partnum = le16_to_cpu(desc->partitionNumber);
|
|
for (i = 0; i < data->num_part_descs; i++)
|
|
if (partnum == data->part_descs_loc[i].partnum)
|
|
return &(data->part_descs_loc[i].rec);
|
|
if (data->num_part_descs >= data->size_part_descs) {
|
|
struct part_desc_seq_scan_data *new_loc;
|
|
unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
|
|
|
|
new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
|
|
if (!new_loc)
|
|
return ERR_PTR(-ENOMEM);
|
|
memcpy(new_loc, data->part_descs_loc,
|
|
data->size_part_descs * sizeof(*new_loc));
|
|
kfree(data->part_descs_loc);
|
|
data->part_descs_loc = new_loc;
|
|
data->size_part_descs = new_size;
|
|
}
|
|
return &(data->part_descs_loc[data->num_part_descs++].rec);
|
|
}
|
|
|
|
|
|
static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
|
|
struct buffer_head *bh, struct desc_seq_scan_data *data)
|
|
{
|
|
switch (ident) {
|
|
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
|
|
return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
|
|
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
|
|
return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
|
|
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
|
|
return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
|
|
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
|
|
return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
|
|
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
|
|
return handle_partition_descriptor(bh, data);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Process a main/reserve volume descriptor sequence.
|
|
* @block First block of first extent of the sequence.
|
|
* @lastblock Lastblock of first extent of the sequence.
|
|
* @fileset There we store extent containing root fileset
|
|
*
|
|
* Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
|
|
* sequence
|
|
*/
|
|
static noinline int udf_process_sequence(
|
|
struct super_block *sb,
|
|
sector_t block, sector_t lastblock,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
struct udf_vds_record *curr;
|
|
struct generic_desc *gd;
|
|
struct volDescPtr *vdp;
|
|
bool done = false;
|
|
uint32_t vdsn;
|
|
uint16_t ident;
|
|
int ret;
|
|
unsigned int indirections = 0;
|
|
struct desc_seq_scan_data data;
|
|
unsigned int i;
|
|
|
|
memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
|
|
data.size_part_descs = PART_DESC_ALLOC_STEP;
|
|
data.num_part_descs = 0;
|
|
data.part_descs_loc = kcalloc(data.size_part_descs,
|
|
sizeof(*data.part_descs_loc),
|
|
GFP_KERNEL);
|
|
if (!data.part_descs_loc)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Read the main descriptor sequence and find which descriptors
|
|
* are in it.
|
|
*/
|
|
for (; (!done && block <= lastblock); block++) {
|
|
bh = udf_read_tagged(sb, block, block, &ident);
|
|
if (!bh)
|
|
break;
|
|
|
|
/* Process each descriptor (ISO 13346 3/8.3-8.4) */
|
|
gd = (struct generic_desc *)bh->b_data;
|
|
vdsn = le32_to_cpu(gd->volDescSeqNum);
|
|
switch (ident) {
|
|
case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
|
|
if (++indirections > UDF_MAX_TD_NESTING) {
|
|
udf_err(sb, "too many Volume Descriptor "
|
|
"Pointers (max %u supported)\n",
|
|
UDF_MAX_TD_NESTING);
|
|
brelse(bh);
|
|
return -EIO;
|
|
}
|
|
|
|
vdp = (struct volDescPtr *)bh->b_data;
|
|
block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
|
|
lastblock = le32_to_cpu(
|
|
vdp->nextVolDescSeqExt.extLength) >>
|
|
sb->s_blocksize_bits;
|
|
lastblock += block - 1;
|
|
/* For loop is going to increment 'block' again */
|
|
block--;
|
|
break;
|
|
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
|
|
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
|
|
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
|
|
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
|
|
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
|
|
curr = get_volume_descriptor_record(ident, bh, &data);
|
|
if (IS_ERR(curr)) {
|
|
brelse(bh);
|
|
return PTR_ERR(curr);
|
|
}
|
|
/* Descriptor we don't care about? */
|
|
if (!curr)
|
|
break;
|
|
if (vdsn >= curr->volDescSeqNum) {
|
|
curr->volDescSeqNum = vdsn;
|
|
curr->block = block;
|
|
}
|
|
break;
|
|
case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
|
|
done = true;
|
|
break;
|
|
}
|
|
brelse(bh);
|
|
}
|
|
/*
|
|
* Now read interesting descriptors again and process them
|
|
* in a suitable order
|
|
*/
|
|
if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
|
|
udf_err(sb, "Primary Volume Descriptor not found!\n");
|
|
return -EAGAIN;
|
|
}
|
|
ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
|
|
ret = udf_load_logicalvol(sb,
|
|
data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
|
|
fileset);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Now handle prevailing Partition Descriptors */
|
|
for (i = 0; i < data.num_part_descs; i++) {
|
|
ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Load Volume Descriptor Sequence described by anchor in bh
|
|
*
|
|
* Returns <0 on error, 0 on success
|
|
*/
|
|
static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
struct anchorVolDescPtr *anchor;
|
|
sector_t main_s, main_e, reserve_s, reserve_e;
|
|
int ret;
|
|
|
|
anchor = (struct anchorVolDescPtr *)bh->b_data;
|
|
|
|
/* Locate the main sequence */
|
|
main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
|
|
main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
|
|
main_e = main_e >> sb->s_blocksize_bits;
|
|
main_e += main_s - 1;
|
|
|
|
/* Locate the reserve sequence */
|
|
reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
|
|
reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
|
|
reserve_e = reserve_e >> sb->s_blocksize_bits;
|
|
reserve_e += reserve_s - 1;
|
|
|
|
/* Process the main & reserve sequences */
|
|
/* responsible for finding the PartitionDesc(s) */
|
|
ret = udf_process_sequence(sb, main_s, main_e, fileset);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
udf_sb_free_partitions(sb);
|
|
ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
|
|
if (ret < 0) {
|
|
udf_sb_free_partitions(sb);
|
|
/* No sequence was OK, return -EIO */
|
|
if (ret == -EAGAIN)
|
|
ret = -EIO;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check whether there is an anchor block in the given block and
|
|
* load Volume Descriptor Sequence if so.
|
|
*
|
|
* Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
|
|
* block
|
|
*/
|
|
static int udf_check_anchor_block(struct super_block *sb, sector_t block,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
struct buffer_head *bh;
|
|
uint16_t ident;
|
|
int ret;
|
|
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
|
|
udf_fixed_to_variable(block) >=
|
|
i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
|
|
return -EAGAIN;
|
|
|
|
bh = udf_read_tagged(sb, block, block, &ident);
|
|
if (!bh)
|
|
return -EAGAIN;
|
|
if (ident != TAG_IDENT_AVDP) {
|
|
brelse(bh);
|
|
return -EAGAIN;
|
|
}
|
|
ret = udf_load_sequence(sb, bh, fileset);
|
|
brelse(bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search for an anchor volume descriptor pointer.
|
|
*
|
|
* Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
|
|
* of anchors.
|
|
*/
|
|
static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
sector_t last[6];
|
|
int i;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int last_count = 0;
|
|
int ret;
|
|
|
|
/* First try user provided anchor */
|
|
if (sbi->s_anchor) {
|
|
ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
}
|
|
/*
|
|
* according to spec, anchor is in either:
|
|
* block 256
|
|
* lastblock-256
|
|
* lastblock
|
|
* however, if the disc isn't closed, it could be 512.
|
|
*/
|
|
ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
/*
|
|
* The trouble is which block is the last one. Drives often misreport
|
|
* this so we try various possibilities.
|
|
*/
|
|
last[last_count++] = *lastblock;
|
|
if (*lastblock >= 1)
|
|
last[last_count++] = *lastblock - 1;
|
|
last[last_count++] = *lastblock + 1;
|
|
if (*lastblock >= 2)
|
|
last[last_count++] = *lastblock - 2;
|
|
if (*lastblock >= 150)
|
|
last[last_count++] = *lastblock - 150;
|
|
if (*lastblock >= 152)
|
|
last[last_count++] = *lastblock - 152;
|
|
|
|
for (i = 0; i < last_count; i++) {
|
|
if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
|
|
sb->s_blocksize_bits)
|
|
continue;
|
|
ret = udf_check_anchor_block(sb, last[i], fileset);
|
|
if (ret != -EAGAIN) {
|
|
if (!ret)
|
|
*lastblock = last[i];
|
|
return ret;
|
|
}
|
|
if (last[i] < 256)
|
|
continue;
|
|
ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
|
|
if (ret != -EAGAIN) {
|
|
if (!ret)
|
|
*lastblock = last[i];
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Finally try block 512 in case media is open */
|
|
return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
|
|
}
|
|
|
|
/*
|
|
* Find an anchor volume descriptor and load Volume Descriptor Sequence from
|
|
* area specified by it. The function expects sbi->s_lastblock to be the last
|
|
* block on the media.
|
|
*
|
|
* Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
|
|
* was not found.
|
|
*/
|
|
static int udf_find_anchor(struct super_block *sb,
|
|
struct kernel_lb_addr *fileset)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
sector_t lastblock = sbi->s_last_block;
|
|
int ret;
|
|
|
|
ret = udf_scan_anchors(sb, &lastblock, fileset);
|
|
if (ret != -EAGAIN)
|
|
goto out;
|
|
|
|
/* No anchor found? Try VARCONV conversion of block numbers */
|
|
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
|
|
lastblock = udf_variable_to_fixed(sbi->s_last_block);
|
|
/* Firstly, we try to not convert number of the last block */
|
|
ret = udf_scan_anchors(sb, &lastblock, fileset);
|
|
if (ret != -EAGAIN)
|
|
goto out;
|
|
|
|
lastblock = sbi->s_last_block;
|
|
/* Secondly, we try with converted number of the last block */
|
|
ret = udf_scan_anchors(sb, &lastblock, fileset);
|
|
if (ret < 0) {
|
|
/* VARCONV didn't help. Clear it. */
|
|
UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
|
|
}
|
|
out:
|
|
if (ret == 0)
|
|
sbi->s_last_block = lastblock;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check Volume Structure Descriptor, find Anchor block and load Volume
|
|
* Descriptor Sequence.
|
|
*
|
|
* Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
|
|
* block was not found.
|
|
*/
|
|
static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
|
|
int silent, struct kernel_lb_addr *fileset)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
int nsr = 0;
|
|
int ret;
|
|
|
|
if (!sb_set_blocksize(sb, uopt->blocksize)) {
|
|
if (!silent)
|
|
udf_warn(sb, "Bad block size\n");
|
|
return -EINVAL;
|
|
}
|
|
sbi->s_last_block = uopt->lastblock;
|
|
if (!uopt->novrs) {
|
|
/* Check that it is NSR02 compliant */
|
|
nsr = udf_check_vsd(sb);
|
|
if (!nsr) {
|
|
if (!silent)
|
|
udf_warn(sb, "No VRS found\n");
|
|
return -EINVAL;
|
|
}
|
|
if (nsr == -1)
|
|
udf_debug("Failed to read sector at offset %d. "
|
|
"Assuming open disc. Skipping validity "
|
|
"check\n", VSD_FIRST_SECTOR_OFFSET);
|
|
if (!sbi->s_last_block)
|
|
sbi->s_last_block = udf_get_last_block(sb);
|
|
} else {
|
|
udf_debug("Validity check skipped because of novrs option\n");
|
|
}
|
|
|
|
/* Look for anchor block and load Volume Descriptor Sequence */
|
|
sbi->s_anchor = uopt->anchor;
|
|
ret = udf_find_anchor(sb, fileset);
|
|
if (ret < 0) {
|
|
if (!silent && ret == -EAGAIN)
|
|
udf_warn(sb, "No anchor found\n");
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
|
|
{
|
|
struct timespec64 ts;
|
|
|
|
ktime_get_real_ts64(&ts);
|
|
udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
|
|
lvid->descTag.descCRC = cpu_to_le16(
|
|
crc_itu_t(0, (char *)lvid + sizeof(struct tag),
|
|
le16_to_cpu(lvid->descTag.descCRCLength)));
|
|
lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
|
|
}
|
|
|
|
static void udf_open_lvid(struct super_block *sb)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct buffer_head *bh = sbi->s_lvid_bh;
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
struct logicalVolIntegrityDescImpUse *lvidiu;
|
|
|
|
if (!bh)
|
|
return;
|
|
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
|
|
lvidiu = udf_sb_lvidiu(sb);
|
|
if (!lvidiu)
|
|
return;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
|
|
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
|
|
if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
|
|
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
|
|
else
|
|
UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
|
|
|
|
udf_finalize_lvid(lvid);
|
|
mark_buffer_dirty(bh);
|
|
sbi->s_lvid_dirty = 0;
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
/* Make opening of filesystem visible on the media immediately */
|
|
sync_dirty_buffer(bh);
|
|
}
|
|
|
|
static void udf_close_lvid(struct super_block *sb)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct buffer_head *bh = sbi->s_lvid_bh;
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
struct logicalVolIntegrityDescImpUse *lvidiu;
|
|
|
|
if (!bh)
|
|
return;
|
|
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
|
|
lvidiu = udf_sb_lvidiu(sb);
|
|
if (!lvidiu)
|
|
return;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
|
|
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
|
|
if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
|
|
lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
|
|
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
|
|
lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
|
|
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
|
|
lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
|
|
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
|
|
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
|
|
|
|
/*
|
|
* We set buffer uptodate unconditionally here to avoid spurious
|
|
* warnings from mark_buffer_dirty() when previous EIO has marked
|
|
* the buffer as !uptodate
|
|
*/
|
|
set_buffer_uptodate(bh);
|
|
udf_finalize_lvid(lvid);
|
|
mark_buffer_dirty(bh);
|
|
sbi->s_lvid_dirty = 0;
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
/* Make closing of filesystem visible on the media immediately */
|
|
sync_dirty_buffer(bh);
|
|
}
|
|
|
|
u64 lvid_get_unique_id(struct super_block *sb)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
struct logicalVolHeaderDesc *lvhd;
|
|
u64 uniqueID;
|
|
u64 ret;
|
|
|
|
bh = sbi->s_lvid_bh;
|
|
if (!bh)
|
|
return 0;
|
|
|
|
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
|
|
lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
|
|
if (!(++uniqueID & 0xFFFFFFFF))
|
|
uniqueID += 16;
|
|
lvhd->uniqueID = cpu_to_le64(uniqueID);
|
|
udf_updated_lvid(sb);
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int udf_fill_super(struct super_block *sb, void *options, int silent)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct inode *inode = NULL;
|
|
struct udf_options uopt;
|
|
struct kernel_lb_addr rootdir, fileset;
|
|
struct udf_sb_info *sbi;
|
|
bool lvid_open = false;
|
|
|
|
uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
|
|
/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
|
|
uopt.uid = make_kuid(current_user_ns(), overflowuid);
|
|
uopt.gid = make_kgid(current_user_ns(), overflowgid);
|
|
uopt.umask = 0;
|
|
uopt.fmode = UDF_INVALID_MODE;
|
|
uopt.dmode = UDF_INVALID_MODE;
|
|
uopt.nls_map = NULL;
|
|
|
|
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
|
|
if (!sbi)
|
|
return -ENOMEM;
|
|
|
|
sb->s_fs_info = sbi;
|
|
|
|
mutex_init(&sbi->s_alloc_mutex);
|
|
|
|
if (!udf_parse_options((char *)options, &uopt, false))
|
|
goto parse_options_failure;
|
|
|
|
if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
|
|
uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
|
|
udf_err(sb, "utf8 cannot be combined with iocharset\n");
|
|
goto parse_options_failure;
|
|
}
|
|
if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
|
|
uopt.nls_map = load_nls_default();
|
|
if (!uopt.nls_map)
|
|
uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
|
|
else
|
|
udf_debug("Using default NLS map\n");
|
|
}
|
|
if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
|
|
uopt.flags |= (1 << UDF_FLAG_UTF8);
|
|
|
|
fileset.logicalBlockNum = 0xFFFFFFFF;
|
|
fileset.partitionReferenceNum = 0xFFFF;
|
|
|
|
sbi->s_flags = uopt.flags;
|
|
sbi->s_uid = uopt.uid;
|
|
sbi->s_gid = uopt.gid;
|
|
sbi->s_umask = uopt.umask;
|
|
sbi->s_fmode = uopt.fmode;
|
|
sbi->s_dmode = uopt.dmode;
|
|
sbi->s_nls_map = uopt.nls_map;
|
|
rwlock_init(&sbi->s_cred_lock);
|
|
|
|
if (uopt.session == 0xFFFFFFFF)
|
|
sbi->s_session = udf_get_last_session(sb);
|
|
else
|
|
sbi->s_session = uopt.session;
|
|
|
|
udf_debug("Multi-session=%d\n", sbi->s_session);
|
|
|
|
/* Fill in the rest of the superblock */
|
|
sb->s_op = &udf_sb_ops;
|
|
sb->s_export_op = &udf_export_ops;
|
|
|
|
sb->s_magic = UDF_SUPER_MAGIC;
|
|
sb->s_time_gran = 1000;
|
|
|
|
if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
|
|
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
|
|
} else {
|
|
uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
|
|
while (uopt.blocksize <= 4096) {
|
|
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
|
|
if (ret < 0) {
|
|
if (!silent && ret != -EACCES) {
|
|
pr_notice("Scanning with blocksize %u failed\n",
|
|
uopt.blocksize);
|
|
}
|
|
brelse(sbi->s_lvid_bh);
|
|
sbi->s_lvid_bh = NULL;
|
|
/*
|
|
* EACCES is special - we want to propagate to
|
|
* upper layers that we cannot handle RW mount.
|
|
*/
|
|
if (ret == -EACCES)
|
|
break;
|
|
} else
|
|
break;
|
|
|
|
uopt.blocksize <<= 1;
|
|
}
|
|
}
|
|
if (ret < 0) {
|
|
if (ret == -EAGAIN) {
|
|
udf_warn(sb, "No partition found (1)\n");
|
|
ret = -EINVAL;
|
|
}
|
|
goto error_out;
|
|
}
|
|
|
|
udf_debug("Lastblock=%u\n", sbi->s_last_block);
|
|
|
|
if (sbi->s_lvid_bh) {
|
|
struct logicalVolIntegrityDescImpUse *lvidiu =
|
|
udf_sb_lvidiu(sb);
|
|
uint16_t minUDFReadRev;
|
|
uint16_t minUDFWriteRev;
|
|
|
|
if (!lvidiu) {
|
|
ret = -EINVAL;
|
|
goto error_out;
|
|
}
|
|
minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
|
|
minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
|
|
if (minUDFReadRev > UDF_MAX_READ_VERSION) {
|
|
udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
|
|
minUDFReadRev,
|
|
UDF_MAX_READ_VERSION);
|
|
ret = -EINVAL;
|
|
goto error_out;
|
|
} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
|
|
if (!sb_rdonly(sb)) {
|
|
ret = -EACCES;
|
|
goto error_out;
|
|
}
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
}
|
|
|
|
sbi->s_udfrev = minUDFWriteRev;
|
|
|
|
if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
|
|
UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
|
|
if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
|
|
UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
|
|
}
|
|
|
|
if (!sbi->s_partitions) {
|
|
udf_warn(sb, "No partition found (2)\n");
|
|
ret = -EINVAL;
|
|
goto error_out;
|
|
}
|
|
|
|
if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
|
|
UDF_PART_FLAG_READ_ONLY) {
|
|
if (!sb_rdonly(sb)) {
|
|
ret = -EACCES;
|
|
goto error_out;
|
|
}
|
|
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
|
|
}
|
|
|
|
ret = udf_find_fileset(sb, &fileset, &rootdir);
|
|
if (ret < 0) {
|
|
udf_warn(sb, "No fileset found\n");
|
|
goto error_out;
|
|
}
|
|
|
|
if (!silent) {
|
|
struct timestamp ts;
|
|
udf_time_to_disk_stamp(&ts, sbi->s_record_time);
|
|
udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
|
|
sbi->s_volume_ident,
|
|
le16_to_cpu(ts.year), ts.month, ts.day,
|
|
ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
|
|
}
|
|
if (!sb_rdonly(sb)) {
|
|
udf_open_lvid(sb);
|
|
lvid_open = true;
|
|
}
|
|
|
|
/* Assign the root inode */
|
|
/* assign inodes by physical block number */
|
|
/* perhaps it's not extensible enough, but for now ... */
|
|
inode = udf_iget(sb, &rootdir);
|
|
if (IS_ERR(inode)) {
|
|
udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
|
|
rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
|
|
ret = PTR_ERR(inode);
|
|
goto error_out;
|
|
}
|
|
|
|
/* Allocate a dentry for the root inode */
|
|
sb->s_root = d_make_root(inode);
|
|
if (!sb->s_root) {
|
|
udf_err(sb, "Couldn't allocate root dentry\n");
|
|
ret = -ENOMEM;
|
|
goto error_out;
|
|
}
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_max_links = UDF_MAX_LINKS;
|
|
return 0;
|
|
|
|
error_out:
|
|
iput(sbi->s_vat_inode);
|
|
parse_options_failure:
|
|
if (uopt.nls_map)
|
|
unload_nls(uopt.nls_map);
|
|
if (lvid_open)
|
|
udf_close_lvid(sb);
|
|
brelse(sbi->s_lvid_bh);
|
|
udf_sb_free_partitions(sb);
|
|
kfree(sbi);
|
|
sb->s_fs_info = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void _udf_err(struct super_block *sb, const char *function,
|
|
const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
void _udf_warn(struct super_block *sb, const char *function,
|
|
const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static void udf_put_super(struct super_block *sb)
|
|
{
|
|
struct udf_sb_info *sbi;
|
|
|
|
sbi = UDF_SB(sb);
|
|
|
|
iput(sbi->s_vat_inode);
|
|
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
|
|
unload_nls(sbi->s_nls_map);
|
|
if (!sb_rdonly(sb))
|
|
udf_close_lvid(sb);
|
|
brelse(sbi->s_lvid_bh);
|
|
udf_sb_free_partitions(sb);
|
|
mutex_destroy(&sbi->s_alloc_mutex);
|
|
kfree(sb->s_fs_info);
|
|
sb->s_fs_info = NULL;
|
|
}
|
|
|
|
static int udf_sync_fs(struct super_block *sb, int wait)
|
|
{
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
|
|
mutex_lock(&sbi->s_alloc_mutex);
|
|
if (sbi->s_lvid_dirty) {
|
|
struct buffer_head *bh = sbi->s_lvid_bh;
|
|
struct logicalVolIntegrityDesc *lvid;
|
|
|
|
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
|
|
udf_finalize_lvid(lvid);
|
|
|
|
/*
|
|
* Blockdevice will be synced later so we don't have to submit
|
|
* the buffer for IO
|
|
*/
|
|
mark_buffer_dirty(bh);
|
|
sbi->s_lvid_dirty = 0;
|
|
}
|
|
mutex_unlock(&sbi->s_alloc_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct logicalVolIntegrityDescImpUse *lvidiu;
|
|
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
|
|
|
|
lvidiu = udf_sb_lvidiu(sb);
|
|
buf->f_type = UDF_SUPER_MAGIC;
|
|
buf->f_bsize = sb->s_blocksize;
|
|
buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
|
|
buf->f_bfree = udf_count_free(sb);
|
|
buf->f_bavail = buf->f_bfree;
|
|
/*
|
|
* Let's pretend each free block is also a free 'inode' since UDF does
|
|
* not have separate preallocated table of inodes.
|
|
*/
|
|
buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
|
|
le32_to_cpu(lvidiu->numDirs)) : 0)
|
|
+ buf->f_bfree;
|
|
buf->f_ffree = buf->f_bfree;
|
|
buf->f_namelen = UDF_NAME_LEN;
|
|
buf->f_fsid.val[0] = (u32)id;
|
|
buf->f_fsid.val[1] = (u32)(id >> 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int udf_count_free_bitmap(struct super_block *sb,
|
|
struct udf_bitmap *bitmap)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
unsigned int accum = 0;
|
|
int index;
|
|
udf_pblk_t block = 0, newblock;
|
|
struct kernel_lb_addr loc;
|
|
uint32_t bytes;
|
|
uint8_t *ptr;
|
|
uint16_t ident;
|
|
struct spaceBitmapDesc *bm;
|
|
|
|
loc.logicalBlockNum = bitmap->s_extPosition;
|
|
loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
|
|
bh = udf_read_ptagged(sb, &loc, 0, &ident);
|
|
|
|
if (!bh) {
|
|
udf_err(sb, "udf_count_free failed\n");
|
|
goto out;
|
|
} else if (ident != TAG_IDENT_SBD) {
|
|
brelse(bh);
|
|
udf_err(sb, "udf_count_free failed\n");
|
|
goto out;
|
|
}
|
|
|
|
bm = (struct spaceBitmapDesc *)bh->b_data;
|
|
bytes = le32_to_cpu(bm->numOfBytes);
|
|
index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
|
|
ptr = (uint8_t *)bh->b_data;
|
|
|
|
while (bytes > 0) {
|
|
u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
|
|
accum += bitmap_weight((const unsigned long *)(ptr + index),
|
|
cur_bytes * 8);
|
|
bytes -= cur_bytes;
|
|
if (bytes) {
|
|
brelse(bh);
|
|
newblock = udf_get_lb_pblock(sb, &loc, ++block);
|
|
bh = udf_tread(sb, newblock);
|
|
if (!bh) {
|
|
udf_debug("read failed\n");
|
|
goto out;
|
|
}
|
|
index = 0;
|
|
ptr = (uint8_t *)bh->b_data;
|
|
}
|
|
}
|
|
brelse(bh);
|
|
out:
|
|
return accum;
|
|
}
|
|
|
|
static unsigned int udf_count_free_table(struct super_block *sb,
|
|
struct inode *table)
|
|
{
|
|
unsigned int accum = 0;
|
|
uint32_t elen;
|
|
struct kernel_lb_addr eloc;
|
|
int8_t etype;
|
|
struct extent_position epos;
|
|
|
|
mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
|
|
epos.block = UDF_I(table)->i_location;
|
|
epos.offset = sizeof(struct unallocSpaceEntry);
|
|
epos.bh = NULL;
|
|
|
|
while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
|
|
accum += (elen >> table->i_sb->s_blocksize_bits);
|
|
|
|
brelse(epos.bh);
|
|
mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
|
|
|
|
return accum;
|
|
}
|
|
|
|
static unsigned int udf_count_free(struct super_block *sb)
|
|
{
|
|
unsigned int accum = 0;
|
|
struct udf_sb_info *sbi = UDF_SB(sb);
|
|
struct udf_part_map *map;
|
|
unsigned int part = sbi->s_partition;
|
|
int ptype = sbi->s_partmaps[part].s_partition_type;
|
|
|
|
if (ptype == UDF_METADATA_MAP25) {
|
|
part = sbi->s_partmaps[part].s_type_specific.s_metadata.
|
|
s_phys_partition_ref;
|
|
} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
|
|
/*
|
|
* Filesystems with VAT are append-only and we cannot write to
|
|
* them. Let's just report 0 here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (sbi->s_lvid_bh) {
|
|
struct logicalVolIntegrityDesc *lvid =
|
|
(struct logicalVolIntegrityDesc *)
|
|
sbi->s_lvid_bh->b_data;
|
|
if (le32_to_cpu(lvid->numOfPartitions) > part) {
|
|
accum = le32_to_cpu(
|
|
lvid->freeSpaceTable[part]);
|
|
if (accum == 0xFFFFFFFF)
|
|
accum = 0;
|
|
}
|
|
}
|
|
|
|
if (accum)
|
|
return accum;
|
|
|
|
map = &sbi->s_partmaps[part];
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
|
|
accum += udf_count_free_bitmap(sb,
|
|
map->s_uspace.s_bitmap);
|
|
}
|
|
if (accum)
|
|
return accum;
|
|
|
|
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
|
|
accum += udf_count_free_table(sb,
|
|
map->s_uspace.s_table);
|
|
}
|
|
return accum;
|
|
}
|
|
|
|
MODULE_AUTHOR("Ben Fennema");
|
|
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
|
|
MODULE_LICENSE("GPL");
|
|
module_init(init_udf_fs)
|
|
module_exit(exit_udf_fs)
|