2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/arch/powerpc/kvm/mpic.c
Arseny Solokha 1945606031 kvm/ppc/mpic: drop unused IRQ_testbit
Drop unused static procedure which doesn't have callers within its
translation unit. It had been already removed independently in QEMU[1]
from the OpenPIC implementation borrowed from the kernel.

[1] https://lists.gnu.org/archive/html/qemu-devel/2014-06/msg01812.html

Signed-off-by: Arseny Solokha <asolokha@kb.kras.ru>
Cc: Alexander Graf <agraf@suse.de>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1424768706-23150-3-git-send-email-asolokha@kb.kras.ru>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:46:58 +02:00

1853 lines
42 KiB
C

/*
* OpenPIC emulation
*
* Copyright (c) 2004 Jocelyn Mayer
* 2011 Alexander Graf
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/kvm_host.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <asm/uaccess.h>
#include <asm/mpic.h>
#include <asm/kvm_para.h>
#include <asm/kvm_host.h>
#include <asm/kvm_ppc.h>
#include <kvm/iodev.h>
#define MAX_CPU 32
#define MAX_SRC 256
#define MAX_TMR 4
#define MAX_IPI 4
#define MAX_MSI 8
#define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
#define VID 0x03 /* MPIC version ID */
/* OpenPIC capability flags */
#define OPENPIC_FLAG_IDR_CRIT (1 << 0)
#define OPENPIC_FLAG_ILR (2 << 0)
/* OpenPIC address map */
#define OPENPIC_REG_SIZE 0x40000
#define OPENPIC_GLB_REG_START 0x0
#define OPENPIC_GLB_REG_SIZE 0x10F0
#define OPENPIC_TMR_REG_START 0x10F0
#define OPENPIC_TMR_REG_SIZE 0x220
#define OPENPIC_MSI_REG_START 0x1600
#define OPENPIC_MSI_REG_SIZE 0x200
#define OPENPIC_SUMMARY_REG_START 0x3800
#define OPENPIC_SUMMARY_REG_SIZE 0x800
#define OPENPIC_SRC_REG_START 0x10000
#define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
#define OPENPIC_CPU_REG_START 0x20000
#define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
struct fsl_mpic_info {
int max_ext;
};
static struct fsl_mpic_info fsl_mpic_20 = {
.max_ext = 12,
};
static struct fsl_mpic_info fsl_mpic_42 = {
.max_ext = 12,
};
#define FRR_NIRQ_SHIFT 16
#define FRR_NCPU_SHIFT 8
#define FRR_VID_SHIFT 0
#define VID_REVISION_1_2 2
#define VID_REVISION_1_3 3
#define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
#define GCR_RESET 0x80000000
#define GCR_MODE_PASS 0x00000000
#define GCR_MODE_MIXED 0x20000000
#define GCR_MODE_PROXY 0x60000000
#define TBCR_CI 0x80000000 /* count inhibit */
#define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
#define IDR_EP_SHIFT 31
#define IDR_EP_MASK (1 << IDR_EP_SHIFT)
#define IDR_CI0_SHIFT 30
#define IDR_CI1_SHIFT 29
#define IDR_P1_SHIFT 1
#define IDR_P0_SHIFT 0
#define ILR_INTTGT_MASK 0x000000ff
#define ILR_INTTGT_INT 0x00
#define ILR_INTTGT_CINT 0x01 /* critical */
#define ILR_INTTGT_MCP 0x02 /* machine check */
#define NUM_OUTPUTS 3
#define MSIIR_OFFSET 0x140
#define MSIIR_SRS_SHIFT 29
#define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
#define MSIIR_IBS_SHIFT 24
#define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
static int get_current_cpu(void)
{
#if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
return vcpu ? vcpu->arch.irq_cpu_id : -1;
#else
/* XXX */
return -1;
#endif
}
static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
u32 val, int idx);
static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
u32 *ptr, int idx);
static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
uint32_t val);
enum irq_type {
IRQ_TYPE_NORMAL = 0,
IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
};
struct irq_queue {
/* Round up to the nearest 64 IRQs so that the queue length
* won't change when moving between 32 and 64 bit hosts.
*/
unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
int next;
int priority;
};
struct irq_source {
uint32_t ivpr; /* IRQ vector/priority register */
uint32_t idr; /* IRQ destination register */
uint32_t destmask; /* bitmap of CPU destinations */
int last_cpu;
int output; /* IRQ level, e.g. ILR_INTTGT_INT */
int pending; /* TRUE if IRQ is pending */
enum irq_type type;
bool level:1; /* level-triggered */
bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
};
#define IVPR_MASK_SHIFT 31
#define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
#define IVPR_ACTIVITY_SHIFT 30
#define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
#define IVPR_MODE_SHIFT 29
#define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
#define IVPR_POLARITY_SHIFT 23
#define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
#define IVPR_SENSE_SHIFT 22
#define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
#define IVPR_PRIORITY_MASK (0xF << 16)
#define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
#define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
/* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
#define IDR_EP 0x80000000 /* external pin */
#define IDR_CI 0x40000000 /* critical interrupt */
struct irq_dest {
struct kvm_vcpu *vcpu;
int32_t ctpr; /* CPU current task priority */
struct irq_queue raised;
struct irq_queue servicing;
/* Count of IRQ sources asserting on non-INT outputs */
uint32_t outputs_active[NUM_OUTPUTS];
};
#define MAX_MMIO_REGIONS 10
struct openpic {
struct kvm *kvm;
struct kvm_device *dev;
struct kvm_io_device mmio;
const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
int num_mmio_regions;
gpa_t reg_base;
spinlock_t lock;
/* Behavior control */
struct fsl_mpic_info *fsl;
uint32_t model;
uint32_t flags;
uint32_t nb_irqs;
uint32_t vid;
uint32_t vir; /* Vendor identification register */
uint32_t vector_mask;
uint32_t tfrr_reset;
uint32_t ivpr_reset;
uint32_t idr_reset;
uint32_t brr1;
uint32_t mpic_mode_mask;
/* Global registers */
uint32_t frr; /* Feature reporting register */
uint32_t gcr; /* Global configuration register */
uint32_t pir; /* Processor initialization register */
uint32_t spve; /* Spurious vector register */
uint32_t tfrr; /* Timer frequency reporting register */
/* Source registers */
struct irq_source src[MAX_IRQ];
/* Local registers per output pin */
struct irq_dest dst[MAX_CPU];
uint32_t nb_cpus;
/* Timer registers */
struct {
uint32_t tccr; /* Global timer current count register */
uint32_t tbcr; /* Global timer base count register */
} timers[MAX_TMR];
/* Shared MSI registers */
struct {
uint32_t msir; /* Shared Message Signaled Interrupt Register */
} msi[MAX_MSI];
uint32_t max_irq;
uint32_t irq_ipi0;
uint32_t irq_tim0;
uint32_t irq_msi;
};
static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
int output)
{
struct kvm_interrupt irq = {
.irq = KVM_INTERRUPT_SET_LEVEL,
};
if (!dst->vcpu) {
pr_debug("%s: destination cpu %d does not exist\n",
__func__, (int)(dst - &opp->dst[0]));
return;
}
pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
output);
if (output != ILR_INTTGT_INT) /* TODO */
return;
kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
}
static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
int output)
{
if (!dst->vcpu) {
pr_debug("%s: destination cpu %d does not exist\n",
__func__, (int)(dst - &opp->dst[0]));
return;
}
pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
output);
if (output != ILR_INTTGT_INT) /* TODO */
return;
kvmppc_core_dequeue_external(dst->vcpu);
}
static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
{
set_bit(n_IRQ, q->queue);
}
static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
{
clear_bit(n_IRQ, q->queue);
}
static void IRQ_check(struct openpic *opp, struct irq_queue *q)
{
int irq = -1;
int next = -1;
int priority = -1;
for (;;) {
irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
if (irq == opp->max_irq)
break;
pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
next = irq;
priority = IVPR_PRIORITY(opp->src[irq].ivpr);
}
}
q->next = next;
q->priority = priority;
}
static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
{
/* XXX: optimize */
IRQ_check(opp, q);
return q->next;
}
static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
bool active, bool was_active)
{
struct irq_dest *dst;
struct irq_source *src;
int priority;
dst = &opp->dst[n_CPU];
src = &opp->src[n_IRQ];
pr_debug("%s: IRQ %d active %d was %d\n",
__func__, n_IRQ, active, was_active);
if (src->output != ILR_INTTGT_INT) {
pr_debug("%s: output %d irq %d active %d was %d count %d\n",
__func__, src->output, n_IRQ, active, was_active,
dst->outputs_active[src->output]);
/* On Freescale MPIC, critical interrupts ignore priority,
* IACK, EOI, etc. Before MPIC v4.1 they also ignore
* masking.
*/
if (active) {
if (!was_active &&
dst->outputs_active[src->output]++ == 0) {
pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
__func__, src->output, n_CPU, n_IRQ);
mpic_irq_raise(opp, dst, src->output);
}
} else {
if (was_active &&
--dst->outputs_active[src->output] == 0) {
pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
__func__, src->output, n_CPU, n_IRQ);
mpic_irq_lower(opp, dst, src->output);
}
}
return;
}
priority = IVPR_PRIORITY(src->ivpr);
/* Even if the interrupt doesn't have enough priority,
* it is still raised, in case ctpr is lowered later.
*/
if (active)
IRQ_setbit(&dst->raised, n_IRQ);
else
IRQ_resetbit(&dst->raised, n_IRQ);
IRQ_check(opp, &dst->raised);
if (active && priority <= dst->ctpr) {
pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
__func__, n_IRQ, priority, dst->ctpr, n_CPU);
active = 0;
}
if (active) {
if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
priority <= dst->servicing.priority) {
pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
__func__, n_IRQ, dst->servicing.next, n_CPU);
} else {
pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
__func__, n_CPU, n_IRQ, dst->raised.next);
mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
}
} else {
IRQ_get_next(opp, &dst->servicing);
if (dst->raised.priority > dst->ctpr &&
dst->raised.priority > dst->servicing.priority) {
pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
__func__, n_IRQ, dst->raised.next,
dst->raised.priority, dst->ctpr,
dst->servicing.priority, n_CPU);
/* IRQ line stays asserted */
} else {
pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
__func__, n_IRQ, dst->ctpr,
dst->servicing.priority, n_CPU);
mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
}
}
}
/* update pic state because registers for n_IRQ have changed value */
static void openpic_update_irq(struct openpic *opp, int n_IRQ)
{
struct irq_source *src;
bool active, was_active;
int i;
src = &opp->src[n_IRQ];
active = src->pending;
if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
/* Interrupt source is disabled */
pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
active = false;
}
was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
/*
* We don't have a similar check for already-active because
* ctpr may have changed and we need to withdraw the interrupt.
*/
if (!active && !was_active) {
pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
return;
}
if (active)
src->ivpr |= IVPR_ACTIVITY_MASK;
else
src->ivpr &= ~IVPR_ACTIVITY_MASK;
if (src->destmask == 0) {
/* No target */
pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
return;
}
if (src->destmask == (1 << src->last_cpu)) {
/* Only one CPU is allowed to receive this IRQ */
IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
} else if (!(src->ivpr & IVPR_MODE_MASK)) {
/* Directed delivery mode */
for (i = 0; i < opp->nb_cpus; i++) {
if (src->destmask & (1 << i)) {
IRQ_local_pipe(opp, i, n_IRQ, active,
was_active);
}
}
} else {
/* Distributed delivery mode */
for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
if (i == opp->nb_cpus)
i = 0;
if (src->destmask & (1 << i)) {
IRQ_local_pipe(opp, i, n_IRQ, active,
was_active);
src->last_cpu = i;
break;
}
}
}
}
static void openpic_set_irq(void *opaque, int n_IRQ, int level)
{
struct openpic *opp = opaque;
struct irq_source *src;
if (n_IRQ >= MAX_IRQ) {
WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
return;
}
src = &opp->src[n_IRQ];
pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
n_IRQ, level, src->ivpr);
if (src->level) {
/* level-sensitive irq */
src->pending = level;
openpic_update_irq(opp, n_IRQ);
} else {
/* edge-sensitive irq */
if (level) {
src->pending = 1;
openpic_update_irq(opp, n_IRQ);
}
if (src->output != ILR_INTTGT_INT) {
/* Edge-triggered interrupts shouldn't be used
* with non-INT delivery, but just in case,
* try to make it do something sane rather than
* cause an interrupt storm. This is close to
* what you'd probably see happen in real hardware.
*/
src->pending = 0;
openpic_update_irq(opp, n_IRQ);
}
}
}
static void openpic_reset(struct openpic *opp)
{
int i;
opp->gcr = GCR_RESET;
/* Initialise controller registers */
opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
(opp->vid << FRR_VID_SHIFT);
opp->pir = 0;
opp->spve = -1 & opp->vector_mask;
opp->tfrr = opp->tfrr_reset;
/* Initialise IRQ sources */
for (i = 0; i < opp->max_irq; i++) {
opp->src[i].ivpr = opp->ivpr_reset;
switch (opp->src[i].type) {
case IRQ_TYPE_NORMAL:
opp->src[i].level =
!!(opp->ivpr_reset & IVPR_SENSE_MASK);
break;
case IRQ_TYPE_FSLINT:
opp->src[i].ivpr |= IVPR_POLARITY_MASK;
break;
case IRQ_TYPE_FSLSPECIAL:
break;
}
write_IRQreg_idr(opp, i, opp->idr_reset);
}
/* Initialise IRQ destinations */
for (i = 0; i < MAX_CPU; i++) {
opp->dst[i].ctpr = 15;
memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
opp->dst[i].raised.next = -1;
memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
opp->dst[i].servicing.next = -1;
}
/* Initialise timers */
for (i = 0; i < MAX_TMR; i++) {
opp->timers[i].tccr = 0;
opp->timers[i].tbcr = TBCR_CI;
}
/* Go out of RESET state */
opp->gcr = 0;
}
static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
{
return opp->src[n_IRQ].idr;
}
static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
{
if (opp->flags & OPENPIC_FLAG_ILR)
return opp->src[n_IRQ].output;
return 0xffffffff;
}
static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
{
return opp->src[n_IRQ].ivpr;
}
static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
uint32_t val)
{
struct irq_source *src = &opp->src[n_IRQ];
uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
uint32_t crit_mask = 0;
uint32_t mask = normal_mask;
int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
int i;
if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
crit_mask = mask << crit_shift;
mask |= crit_mask | IDR_EP;
}
src->idr = val & mask;
pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
if (src->idr & crit_mask) {
if (src->idr & normal_mask) {
pr_debug("%s: IRQ configured for multiple output types, using critical\n",
__func__);
}
src->output = ILR_INTTGT_CINT;
src->nomask = true;
src->destmask = 0;
for (i = 0; i < opp->nb_cpus; i++) {
int n_ci = IDR_CI0_SHIFT - i;
if (src->idr & (1UL << n_ci))
src->destmask |= 1UL << i;
}
} else {
src->output = ILR_INTTGT_INT;
src->nomask = false;
src->destmask = src->idr & normal_mask;
}
} else {
src->destmask = src->idr;
}
}
static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
uint32_t val)
{
if (opp->flags & OPENPIC_FLAG_ILR) {
struct irq_source *src = &opp->src[n_IRQ];
src->output = val & ILR_INTTGT_MASK;
pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
src->output);
/* TODO: on MPIC v4.0 only, set nomask for non-INT */
}
}
static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
uint32_t val)
{
uint32_t mask;
/* NOTE when implementing newer FSL MPIC models: starting with v4.0,
* the polarity bit is read-only on internal interrupts.
*/
mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
IVPR_POLARITY_MASK | opp->vector_mask;
/* ACTIVITY bit is read-only */
opp->src[n_IRQ].ivpr =
(opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
/* For FSL internal interrupts, The sense bit is reserved and zero,
* and the interrupt is always level-triggered. Timers and IPIs
* have no sense or polarity bits, and are edge-triggered.
*/
switch (opp->src[n_IRQ].type) {
case IRQ_TYPE_NORMAL:
opp->src[n_IRQ].level =
!!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
break;
case IRQ_TYPE_FSLINT:
opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
break;
case IRQ_TYPE_FSLSPECIAL:
opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
break;
}
openpic_update_irq(opp, n_IRQ);
pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
opp->src[n_IRQ].ivpr);
}
static void openpic_gcr_write(struct openpic *opp, uint64_t val)
{
if (val & GCR_RESET) {
openpic_reset(opp);
return;
}
opp->gcr &= ~opp->mpic_mode_mask;
opp->gcr |= val & opp->mpic_mode_mask;
}
static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
{
struct openpic *opp = opaque;
int err = 0;
pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
if (addr & 0xF)
return 0;
switch (addr) {
case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
break;
case 0x40:
case 0x50:
case 0x60:
case 0x70:
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
err = openpic_cpu_write_internal(opp, addr, val,
get_current_cpu());
break;
case 0x1000: /* FRR */
break;
case 0x1020: /* GCR */
openpic_gcr_write(opp, val);
break;
case 0x1080: /* VIR */
break;
case 0x1090: /* PIR */
/*
* This register is used to reset a CPU core --
* let userspace handle it.
*/
err = -ENXIO;
break;
case 0x10A0: /* IPI_IVPR */
case 0x10B0:
case 0x10C0:
case 0x10D0: {
int idx;
idx = (addr - 0x10A0) >> 4;
write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
break;
}
case 0x10E0: /* SPVE */
opp->spve = val & opp->vector_mask;
break;
default:
break;
}
return err;
}
static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
{
struct openpic *opp = opaque;
u32 retval;
int err = 0;
pr_debug("%s: addr %#llx\n", __func__, addr);
retval = 0xFFFFFFFF;
if (addr & 0xF)
goto out;
switch (addr) {
case 0x1000: /* FRR */
retval = opp->frr;
retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
break;
case 0x1020: /* GCR */
retval = opp->gcr;
break;
case 0x1080: /* VIR */
retval = opp->vir;
break;
case 0x1090: /* PIR */
retval = 0x00000000;
break;
case 0x00: /* Block Revision Register1 (BRR1) */
retval = opp->brr1;
break;
case 0x40:
case 0x50:
case 0x60:
case 0x70:
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
err = openpic_cpu_read_internal(opp, addr,
&retval, get_current_cpu());
break;
case 0x10A0: /* IPI_IVPR */
case 0x10B0:
case 0x10C0:
case 0x10D0:
{
int idx;
idx = (addr - 0x10A0) >> 4;
retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
}
break;
case 0x10E0: /* SPVE */
retval = opp->spve;
break;
default:
break;
}
out:
pr_debug("%s: => 0x%08x\n", __func__, retval);
*ptr = retval;
return err;
}
static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
{
struct openpic *opp = opaque;
int idx;
addr += 0x10f0;
pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
if (addr & 0xF)
return 0;
if (addr == 0x10f0) {
/* TFRR */
opp->tfrr = val;
return 0;
}
idx = (addr >> 6) & 0x3;
addr = addr & 0x30;
switch (addr & 0x30) {
case 0x00: /* TCCR */
break;
case 0x10: /* TBCR */
if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
(val & TBCR_CI) == 0 &&
(opp->timers[idx].tbcr & TBCR_CI) != 0)
opp->timers[idx].tccr &= ~TCCR_TOG;
opp->timers[idx].tbcr = val;
break;
case 0x20: /* TVPR */
write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
break;
case 0x30: /* TDR */
write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
break;
}
return 0;
}
static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
{
struct openpic *opp = opaque;
uint32_t retval = -1;
int idx;
pr_debug("%s: addr %#llx\n", __func__, addr);
if (addr & 0xF)
goto out;
idx = (addr >> 6) & 0x3;
if (addr == 0x0) {
/* TFRR */
retval = opp->tfrr;
goto out;
}
switch (addr & 0x30) {
case 0x00: /* TCCR */
retval = opp->timers[idx].tccr;
break;
case 0x10: /* TBCR */
retval = opp->timers[idx].tbcr;
break;
case 0x20: /* TIPV */
retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
break;
case 0x30: /* TIDE (TIDR) */
retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
break;
}
out:
pr_debug("%s: => 0x%08x\n", __func__, retval);
*ptr = retval;
return 0;
}
static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
{
struct openpic *opp = opaque;
int idx;
pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
addr = addr & 0xffff;
idx = addr >> 5;
switch (addr & 0x1f) {
case 0x00:
write_IRQreg_ivpr(opp, idx, val);
break;
case 0x10:
write_IRQreg_idr(opp, idx, val);
break;
case 0x18:
write_IRQreg_ilr(opp, idx, val);
break;
}
return 0;
}
static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
{
struct openpic *opp = opaque;
uint32_t retval;
int idx;
pr_debug("%s: addr %#llx\n", __func__, addr);
retval = 0xFFFFFFFF;
addr = addr & 0xffff;
idx = addr >> 5;
switch (addr & 0x1f) {
case 0x00:
retval = read_IRQreg_ivpr(opp, idx);
break;
case 0x10:
retval = read_IRQreg_idr(opp, idx);
break;
case 0x18:
retval = read_IRQreg_ilr(opp, idx);
break;
}
pr_debug("%s: => 0x%08x\n", __func__, retval);
*ptr = retval;
return 0;
}
static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
{
struct openpic *opp = opaque;
int idx = opp->irq_msi;
int srs, ibs;
pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
if (addr & 0xF)
return 0;
switch (addr) {
case MSIIR_OFFSET:
srs = val >> MSIIR_SRS_SHIFT;
idx += srs;
ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
opp->msi[srs].msir |= 1 << ibs;
openpic_set_irq(opp, idx, 1);
break;
default:
/* most registers are read-only, thus ignored */
break;
}
return 0;
}
static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
{
struct openpic *opp = opaque;
uint32_t r = 0;
int i, srs;
pr_debug("%s: addr %#llx\n", __func__, addr);
if (addr & 0xF)
return -ENXIO;
srs = addr >> 4;
switch (addr) {
case 0x00:
case 0x10:
case 0x20:
case 0x30:
case 0x40:
case 0x50:
case 0x60:
case 0x70: /* MSIRs */
r = opp->msi[srs].msir;
/* Clear on read */
opp->msi[srs].msir = 0;
openpic_set_irq(opp, opp->irq_msi + srs, 0);
break;
case 0x120: /* MSISR */
for (i = 0; i < MAX_MSI; i++)
r |= (opp->msi[i].msir ? 1 : 0) << i;
break;
}
pr_debug("%s: => 0x%08x\n", __func__, r);
*ptr = r;
return 0;
}
static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
{
uint32_t r = 0;
pr_debug("%s: addr %#llx\n", __func__, addr);
/* TODO: EISR/EIMR */
*ptr = r;
return 0;
}
static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
{
pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
/* TODO: EISR/EIMR */
return 0;
}
static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
u32 val, int idx)
{
struct openpic *opp = opaque;
struct irq_source *src;
struct irq_dest *dst;
int s_IRQ, n_IRQ;
pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
addr, val);
if (idx < 0)
return 0;
if (addr & 0xF)
return 0;
dst = &opp->dst[idx];
addr &= 0xFF0;
switch (addr) {
case 0x40: /* IPIDR */
case 0x50:
case 0x60:
case 0x70:
idx = (addr - 0x40) >> 4;
/* we use IDE as mask which CPUs to deliver the IPI to still. */
opp->src[opp->irq_ipi0 + idx].destmask |= val;
openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
break;
case 0x80: /* CTPR */
dst->ctpr = val & 0x0000000F;
pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
__func__, idx, dst->ctpr, dst->raised.priority,
dst->servicing.priority);
if (dst->raised.priority <= dst->ctpr) {
pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
__func__, idx);
mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
} else if (dst->raised.priority > dst->servicing.priority) {
pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
__func__, idx, dst->raised.next);
mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
}
break;
case 0x90: /* WHOAMI */
/* Read-only register */
break;
case 0xA0: /* IACK */
/* Read-only register */
break;
case 0xB0: { /* EOI */
int notify_eoi;
pr_debug("EOI\n");
s_IRQ = IRQ_get_next(opp, &dst->servicing);
if (s_IRQ < 0) {
pr_debug("%s: EOI with no interrupt in service\n",
__func__);
break;
}
IRQ_resetbit(&dst->servicing, s_IRQ);
/* Notify listeners that the IRQ is over */
notify_eoi = s_IRQ;
/* Set up next servicing IRQ */
s_IRQ = IRQ_get_next(opp, &dst->servicing);
/* Check queued interrupts. */
n_IRQ = IRQ_get_next(opp, &dst->raised);
src = &opp->src[n_IRQ];
if (n_IRQ != -1 &&
(s_IRQ == -1 ||
IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
idx, n_IRQ);
mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
}
spin_unlock(&opp->lock);
kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
spin_lock(&opp->lock);
break;
}
default:
break;
}
return 0;
}
static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
{
struct openpic *opp = opaque;
return openpic_cpu_write_internal(opp, addr, val,
(addr & 0x1f000) >> 12);
}
static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
int cpu)
{
struct irq_source *src;
int retval, irq;
pr_debug("Lower OpenPIC INT output\n");
mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
irq = IRQ_get_next(opp, &dst->raised);
pr_debug("IACK: irq=%d\n", irq);
if (irq == -1)
/* No more interrupt pending */
return opp->spve;
src = &opp->src[irq];
if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
!(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
__func__, irq, dst->ctpr, src->ivpr);
openpic_update_irq(opp, irq);
retval = opp->spve;
} else {
/* IRQ enter servicing state */
IRQ_setbit(&dst->servicing, irq);
retval = IVPR_VECTOR(opp, src->ivpr);
}
if (!src->level) {
/* edge-sensitive IRQ */
src->ivpr &= ~IVPR_ACTIVITY_MASK;
src->pending = 0;
IRQ_resetbit(&dst->raised, irq);
}
if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
src->destmask &= ~(1 << cpu);
if (src->destmask && !src->level) {
/* trigger on CPUs that didn't know about it yet */
openpic_set_irq(opp, irq, 1);
openpic_set_irq(opp, irq, 0);
/* if all CPUs knew about it, set active bit again */
src->ivpr |= IVPR_ACTIVITY_MASK;
}
}
return retval;
}
void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
{
struct openpic *opp = vcpu->arch.mpic;
int cpu = vcpu->arch.irq_cpu_id;
unsigned long flags;
spin_lock_irqsave(&opp->lock, flags);
if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
spin_unlock_irqrestore(&opp->lock, flags);
}
static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
u32 *ptr, int idx)
{
struct openpic *opp = opaque;
struct irq_dest *dst;
uint32_t retval;
pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
retval = 0xFFFFFFFF;
if (idx < 0)
goto out;
if (addr & 0xF)
goto out;
dst = &opp->dst[idx];
addr &= 0xFF0;
switch (addr) {
case 0x80: /* CTPR */
retval = dst->ctpr;
break;
case 0x90: /* WHOAMI */
retval = idx;
break;
case 0xA0: /* IACK */
retval = openpic_iack(opp, dst, idx);
break;
case 0xB0: /* EOI */
retval = 0;
break;
default:
break;
}
pr_debug("%s: => 0x%08x\n", __func__, retval);
out:
*ptr = retval;
return 0;
}
static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
{
struct openpic *opp = opaque;
return openpic_cpu_read_internal(opp, addr, ptr,
(addr & 0x1f000) >> 12);
}
struct mem_reg {
int (*read)(void *opaque, gpa_t addr, u32 *ptr);
int (*write)(void *opaque, gpa_t addr, u32 val);
gpa_t start_addr;
int size;
};
static const struct mem_reg openpic_gbl_mmio = {
.write = openpic_gbl_write,
.read = openpic_gbl_read,
.start_addr = OPENPIC_GLB_REG_START,
.size = OPENPIC_GLB_REG_SIZE,
};
static const struct mem_reg openpic_tmr_mmio = {
.write = openpic_tmr_write,
.read = openpic_tmr_read,
.start_addr = OPENPIC_TMR_REG_START,
.size = OPENPIC_TMR_REG_SIZE,
};
static const struct mem_reg openpic_cpu_mmio = {
.write = openpic_cpu_write,
.read = openpic_cpu_read,
.start_addr = OPENPIC_CPU_REG_START,
.size = OPENPIC_CPU_REG_SIZE,
};
static const struct mem_reg openpic_src_mmio = {
.write = openpic_src_write,
.read = openpic_src_read,
.start_addr = OPENPIC_SRC_REG_START,
.size = OPENPIC_SRC_REG_SIZE,
};
static const struct mem_reg openpic_msi_mmio = {
.read = openpic_msi_read,
.write = openpic_msi_write,
.start_addr = OPENPIC_MSI_REG_START,
.size = OPENPIC_MSI_REG_SIZE,
};
static const struct mem_reg openpic_summary_mmio = {
.read = openpic_summary_read,
.write = openpic_summary_write,
.start_addr = OPENPIC_SUMMARY_REG_START,
.size = OPENPIC_SUMMARY_REG_SIZE,
};
static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
{
if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
WARN(1, "kvm mpic: too many mmio regions\n");
return;
}
opp->mmio_regions[opp->num_mmio_regions++] = mr;
}
static void fsl_common_init(struct openpic *opp)
{
int i;
int virq = MAX_SRC;
add_mmio_region(opp, &openpic_msi_mmio);
add_mmio_region(opp, &openpic_summary_mmio);
opp->vid = VID_REVISION_1_2;
opp->vir = VIR_GENERIC;
opp->vector_mask = 0xFFFF;
opp->tfrr_reset = 0;
opp->ivpr_reset = IVPR_MASK_MASK;
opp->idr_reset = 1 << 0;
opp->max_irq = MAX_IRQ;
opp->irq_ipi0 = virq;
virq += MAX_IPI;
opp->irq_tim0 = virq;
virq += MAX_TMR;
BUG_ON(virq > MAX_IRQ);
opp->irq_msi = 224;
for (i = 0; i < opp->fsl->max_ext; i++)
opp->src[i].level = false;
/* Internal interrupts, including message and MSI */
for (i = 16; i < MAX_SRC; i++) {
opp->src[i].type = IRQ_TYPE_FSLINT;
opp->src[i].level = true;
}
/* timers and IPIs */
for (i = MAX_SRC; i < virq; i++) {
opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
opp->src[i].level = false;
}
}
static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
{
int i;
for (i = 0; i < opp->num_mmio_regions; i++) {
const struct mem_reg *mr = opp->mmio_regions[i];
if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
continue;
return mr->read(opp, addr - mr->start_addr, ptr);
}
return -ENXIO;
}
static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
{
int i;
for (i = 0; i < opp->num_mmio_regions; i++) {
const struct mem_reg *mr = opp->mmio_regions[i];
if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
continue;
return mr->write(opp, addr - mr->start_addr, val);
}
return -ENXIO;
}
static int kvm_mpic_read(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, void *ptr)
{
struct openpic *opp = container_of(this, struct openpic, mmio);
int ret;
union {
u32 val;
u8 bytes[4];
} u;
if (addr & (len - 1)) {
pr_debug("%s: bad alignment %llx/%d\n",
__func__, addr, len);
return -EINVAL;
}
spin_lock_irq(&opp->lock);
ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
spin_unlock_irq(&opp->lock);
/*
* Technically only 32-bit accesses are allowed, but be nice to
* people dumping registers a byte at a time -- it works in real
* hardware (reads only, not writes).
*/
if (len == 4) {
*(u32 *)ptr = u.val;
pr_debug("%s: addr %llx ret %d len 4 val %x\n",
__func__, addr, ret, u.val);
} else if (len == 1) {
*(u8 *)ptr = u.bytes[addr & 3];
pr_debug("%s: addr %llx ret %d len 1 val %x\n",
__func__, addr, ret, u.bytes[addr & 3]);
} else {
pr_debug("%s: bad length %d\n", __func__, len);
return -EINVAL;
}
return ret;
}
static int kvm_mpic_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, const void *ptr)
{
struct openpic *opp = container_of(this, struct openpic, mmio);
int ret;
if (len != 4) {
pr_debug("%s: bad length %d\n", __func__, len);
return -EOPNOTSUPP;
}
if (addr & 3) {
pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
return -EOPNOTSUPP;
}
spin_lock_irq(&opp->lock);
ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
*(const u32 *)ptr);
spin_unlock_irq(&opp->lock);
pr_debug("%s: addr %llx ret %d val %x\n",
__func__, addr, ret, *(const u32 *)ptr);
return ret;
}
static const struct kvm_io_device_ops mpic_mmio_ops = {
.read = kvm_mpic_read,
.write = kvm_mpic_write,
};
static void map_mmio(struct openpic *opp)
{
kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
opp->reg_base, OPENPIC_REG_SIZE,
&opp->mmio);
}
static void unmap_mmio(struct openpic *opp)
{
kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
}
static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
{
u64 base;
if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
return -EFAULT;
if (base & 0x3ffff) {
pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
__func__, base);
return -EINVAL;
}
if (base == opp->reg_base)
return 0;
mutex_lock(&opp->kvm->slots_lock);
unmap_mmio(opp);
opp->reg_base = base;
pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
__func__, base);
if (base == 0)
goto out;
map_mmio(opp);
out:
mutex_unlock(&opp->kvm->slots_lock);
return 0;
}
#define ATTR_SET 0
#define ATTR_GET 1
static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
{
int ret;
if (addr & 3)
return -ENXIO;
spin_lock_irq(&opp->lock);
if (type == ATTR_SET)
ret = kvm_mpic_write_internal(opp, addr, *val);
else
ret = kvm_mpic_read_internal(opp, addr, val);
spin_unlock_irq(&opp->lock);
pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
return ret;
}
static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
struct openpic *opp = dev->private;
u32 attr32;
switch (attr->group) {
case KVM_DEV_MPIC_GRP_MISC:
switch (attr->attr) {
case KVM_DEV_MPIC_BASE_ADDR:
return set_base_addr(opp, attr);
}
break;
case KVM_DEV_MPIC_GRP_REGISTER:
if (get_user(attr32, (u32 __user *)(long)attr->addr))
return -EFAULT;
return access_reg(opp, attr->attr, &attr32, ATTR_SET);
case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
if (attr->attr > MAX_SRC)
return -EINVAL;
if (get_user(attr32, (u32 __user *)(long)attr->addr))
return -EFAULT;
if (attr32 != 0 && attr32 != 1)
return -EINVAL;
spin_lock_irq(&opp->lock);
openpic_set_irq(opp, attr->attr, attr32);
spin_unlock_irq(&opp->lock);
return 0;
}
return -ENXIO;
}
static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
struct openpic *opp = dev->private;
u64 attr64;
u32 attr32;
int ret;
switch (attr->group) {
case KVM_DEV_MPIC_GRP_MISC:
switch (attr->attr) {
case KVM_DEV_MPIC_BASE_ADDR:
mutex_lock(&opp->kvm->slots_lock);
attr64 = opp->reg_base;
mutex_unlock(&opp->kvm->slots_lock);
if (copy_to_user((u64 __user *)(long)attr->addr,
&attr64, sizeof(u64)))
return -EFAULT;
return 0;
}
break;
case KVM_DEV_MPIC_GRP_REGISTER:
ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
if (ret)
return ret;
if (put_user(attr32, (u32 __user *)(long)attr->addr))
return -EFAULT;
return 0;
case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
if (attr->attr > MAX_SRC)
return -EINVAL;
spin_lock_irq(&opp->lock);
attr32 = opp->src[attr->attr].pending;
spin_unlock_irq(&opp->lock);
if (put_user(attr32, (u32 __user *)(long)attr->addr))
return -EFAULT;
return 0;
}
return -ENXIO;
}
static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_MPIC_GRP_MISC:
switch (attr->attr) {
case KVM_DEV_MPIC_BASE_ADDR:
return 0;
}
break;
case KVM_DEV_MPIC_GRP_REGISTER:
return 0;
case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
if (attr->attr > MAX_SRC)
break;
return 0;
}
return -ENXIO;
}
static void mpic_destroy(struct kvm_device *dev)
{
struct openpic *opp = dev->private;
dev->kvm->arch.mpic = NULL;
kfree(opp);
kfree(dev);
}
static int mpic_set_default_irq_routing(struct openpic *opp)
{
struct kvm_irq_routing_entry *routing;
/* Create a nop default map, so that dereferencing it still works */
routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
if (!routing)
return -ENOMEM;
kvm_set_irq_routing(opp->kvm, routing, 0, 0);
kfree(routing);
return 0;
}
static int mpic_create(struct kvm_device *dev, u32 type)
{
struct openpic *opp;
int ret;
/* We only support one MPIC at a time for now */
if (dev->kvm->arch.mpic)
return -EINVAL;
opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
if (!opp)
return -ENOMEM;
dev->private = opp;
opp->kvm = dev->kvm;
opp->dev = dev;
opp->model = type;
spin_lock_init(&opp->lock);
add_mmio_region(opp, &openpic_gbl_mmio);
add_mmio_region(opp, &openpic_tmr_mmio);
add_mmio_region(opp, &openpic_src_mmio);
add_mmio_region(opp, &openpic_cpu_mmio);
switch (opp->model) {
case KVM_DEV_TYPE_FSL_MPIC_20:
opp->fsl = &fsl_mpic_20;
opp->brr1 = 0x00400200;
opp->flags |= OPENPIC_FLAG_IDR_CRIT;
opp->nb_irqs = 80;
opp->mpic_mode_mask = GCR_MODE_MIXED;
fsl_common_init(opp);
break;
case KVM_DEV_TYPE_FSL_MPIC_42:
opp->fsl = &fsl_mpic_42;
opp->brr1 = 0x00400402;
opp->flags |= OPENPIC_FLAG_ILR;
opp->nb_irqs = 196;
opp->mpic_mode_mask = GCR_MODE_PROXY;
fsl_common_init(opp);
break;
default:
ret = -ENODEV;
goto err;
}
ret = mpic_set_default_irq_routing(opp);
if (ret)
goto err;
openpic_reset(opp);
smp_wmb();
dev->kvm->arch.mpic = opp;
return 0;
err:
kfree(opp);
return ret;
}
struct kvm_device_ops kvm_mpic_ops = {
.name = "kvm-mpic",
.create = mpic_create,
.destroy = mpic_destroy,
.set_attr = mpic_set_attr,
.get_attr = mpic_get_attr,
.has_attr = mpic_has_attr,
};
int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
u32 cpu)
{
struct openpic *opp = dev->private;
int ret = 0;
if (dev->ops != &kvm_mpic_ops)
return -EPERM;
if (opp->kvm != vcpu->kvm)
return -EPERM;
if (cpu < 0 || cpu >= MAX_CPU)
return -EPERM;
spin_lock_irq(&opp->lock);
if (opp->dst[cpu].vcpu) {
ret = -EEXIST;
goto out;
}
if (vcpu->arch.irq_type) {
ret = -EBUSY;
goto out;
}
opp->dst[cpu].vcpu = vcpu;
opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
vcpu->arch.mpic = opp;
vcpu->arch.irq_cpu_id = cpu;
vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
/* This might need to be changed if GCR gets extended */
if (opp->mpic_mode_mask == GCR_MODE_PROXY)
vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
out:
spin_unlock_irq(&opp->lock);
return ret;
}
/*
* This should only happen immediately before the mpic is destroyed,
* so we shouldn't need to worry about anything still trying to
* access the vcpu pointer.
*/
void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
{
BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
}
/*
* Return value:
* < 0 Interrupt was ignored (masked or not delivered for other reasons)
* = 0 Interrupt was coalesced (previous irq is still pending)
* > 0 Number of CPUs interrupt was delivered to
*/
static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
u32 irq = e->irqchip.pin;
struct openpic *opp = kvm->arch.mpic;
unsigned long flags;
spin_lock_irqsave(&opp->lock, flags);
openpic_set_irq(opp, irq, level);
spin_unlock_irqrestore(&opp->lock, flags);
/* All code paths we care about don't check for the return value */
return 0;
}
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level, bool line_status)
{
struct openpic *opp = kvm->arch.mpic;
unsigned long flags;
spin_lock_irqsave(&opp->lock, flags);
/*
* XXX We ignore the target address for now, as we only support
* a single MSI bank.
*/
openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
spin_unlock_irqrestore(&opp->lock, flags);
/* All code paths we care about don't check for the return value */
return 0;
}
int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue)
{
int r = -EINVAL;
switch (ue->type) {
case KVM_IRQ_ROUTING_IRQCHIP:
e->set = mpic_set_irq;
e->irqchip.irqchip = ue->u.irqchip.irqchip;
e->irqchip.pin = ue->u.irqchip.pin;
if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
goto out;
break;
case KVM_IRQ_ROUTING_MSI:
e->set = kvm_set_msi;
e->msi.address_lo = ue->u.msi.address_lo;
e->msi.address_hi = ue->u.msi.address_hi;
e->msi.data = ue->u.msi.data;
break;
default:
goto out;
}
r = 0;
out:
return r;
}