mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-11 23:03:55 +08:00
21cb47be6f
The inode_owner_or_capable() helper determines whether the caller is the owner of the inode or is capable with respect to that inode. Allow it to handle idmapped mounts. If the inode is accessed through an idmapped mount it according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Similarly, allow the inode_init_owner() helper to handle idmapped mounts. It initializes a new inode on idmapped mounts by mapping the fsuid and fsgid of the caller from the mount's user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
356 lines
9.3 KiB
C
356 lines
9.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/ufs/ialloc.c
|
|
*
|
|
* Copyright (c) 1998
|
|
* Daniel Pirkl <daniel.pirkl@email.cz>
|
|
* Charles University, Faculty of Mathematics and Physics
|
|
*
|
|
* from
|
|
*
|
|
* linux/fs/ext2/ialloc.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* BSD ufs-inspired inode and directory allocation by
|
|
* Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
|
|
* Big-endian to little-endian byte-swapping/bitmaps by
|
|
* David S. Miller (davem@caip.rutgers.edu), 1995
|
|
*
|
|
* UFS2 write support added by
|
|
* Evgeniy Dushistov <dushistov@mail.ru>, 2007
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/time.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/string.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "ufs_fs.h"
|
|
#include "ufs.h"
|
|
#include "swab.h"
|
|
#include "util.h"
|
|
|
|
/*
|
|
* NOTE! When we get the inode, we're the only people
|
|
* that have access to it, and as such there are no
|
|
* race conditions we have to worry about. The inode
|
|
* is not on the hash-lists, and it cannot be reached
|
|
* through the filesystem because the directory entry
|
|
* has been deleted earlier.
|
|
*
|
|
* HOWEVER: we must make sure that we get no aliases,
|
|
* which means that we have to call "clear_inode()"
|
|
* _before_ we mark the inode not in use in the inode
|
|
* bitmaps. Otherwise a newly created file might use
|
|
* the same inode number (not actually the same pointer
|
|
* though), and then we'd have two inodes sharing the
|
|
* same inode number and space on the harddisk.
|
|
*/
|
|
void ufs_free_inode (struct inode * inode)
|
|
{
|
|
struct super_block * sb;
|
|
struct ufs_sb_private_info * uspi;
|
|
struct ufs_cg_private_info * ucpi;
|
|
struct ufs_cylinder_group * ucg;
|
|
int is_directory;
|
|
unsigned ino, cg, bit;
|
|
|
|
UFSD("ENTER, ino %lu\n", inode->i_ino);
|
|
|
|
sb = inode->i_sb;
|
|
uspi = UFS_SB(sb)->s_uspi;
|
|
|
|
ino = inode->i_ino;
|
|
|
|
mutex_lock(&UFS_SB(sb)->s_lock);
|
|
|
|
if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) {
|
|
ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino);
|
|
mutex_unlock(&UFS_SB(sb)->s_lock);
|
|
return;
|
|
}
|
|
|
|
cg = ufs_inotocg (ino);
|
|
bit = ufs_inotocgoff (ino);
|
|
ucpi = ufs_load_cylinder (sb, cg);
|
|
if (!ucpi) {
|
|
mutex_unlock(&UFS_SB(sb)->s_lock);
|
|
return;
|
|
}
|
|
ucg = ubh_get_ucg(UCPI_UBH(ucpi));
|
|
if (!ufs_cg_chkmagic(sb, ucg))
|
|
ufs_panic (sb, "ufs_free_fragments", "internal error, bad cg magic number");
|
|
|
|
ucg->cg_time = ufs_get_seconds(sb);
|
|
|
|
is_directory = S_ISDIR(inode->i_mode);
|
|
|
|
if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit))
|
|
ufs_error(sb, "ufs_free_inode", "bit already cleared for inode %u", ino);
|
|
else {
|
|
ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit);
|
|
if (ino < ucpi->c_irotor)
|
|
ucpi->c_irotor = ino;
|
|
fs32_add(sb, &ucg->cg_cs.cs_nifree, 1);
|
|
uspi->cs_total.cs_nifree++;
|
|
fs32_add(sb, &UFS_SB(sb)->fs_cs(cg).cs_nifree, 1);
|
|
|
|
if (is_directory) {
|
|
fs32_sub(sb, &ucg->cg_cs.cs_ndir, 1);
|
|
uspi->cs_total.cs_ndir--;
|
|
fs32_sub(sb, &UFS_SB(sb)->fs_cs(cg).cs_ndir, 1);
|
|
}
|
|
}
|
|
|
|
ubh_mark_buffer_dirty (USPI_UBH(uspi));
|
|
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
|
|
if (sb->s_flags & SB_SYNCHRONOUS)
|
|
ubh_sync_block(UCPI_UBH(ucpi));
|
|
|
|
ufs_mark_sb_dirty(sb);
|
|
mutex_unlock(&UFS_SB(sb)->s_lock);
|
|
UFSD("EXIT\n");
|
|
}
|
|
|
|
/*
|
|
* Nullify new chunk of inodes,
|
|
* BSD people also set ui_gen field of inode
|
|
* during nullification, but we not care about
|
|
* that because of linux ufs do not support NFS
|
|
*/
|
|
static void ufs2_init_inodes_chunk(struct super_block *sb,
|
|
struct ufs_cg_private_info *ucpi,
|
|
struct ufs_cylinder_group *ucg)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
|
|
sector_t beg = uspi->s_sbbase +
|
|
ufs_inotofsba(ucpi->c_cgx * uspi->s_ipg +
|
|
fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_initediblk));
|
|
sector_t end = beg + uspi->s_fpb;
|
|
|
|
UFSD("ENTER cgno %d\n", ucpi->c_cgx);
|
|
|
|
for (; beg < end; ++beg) {
|
|
bh = sb_getblk(sb, beg);
|
|
lock_buffer(bh);
|
|
memset(bh->b_data, 0, sb->s_blocksize);
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
unlock_buffer(bh);
|
|
if (sb->s_flags & SB_SYNCHRONOUS)
|
|
sync_dirty_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
fs32_add(sb, &ucg->cg_u.cg_u2.cg_initediblk, uspi->s_inopb);
|
|
ubh_mark_buffer_dirty(UCPI_UBH(ucpi));
|
|
if (sb->s_flags & SB_SYNCHRONOUS)
|
|
ubh_sync_block(UCPI_UBH(ucpi));
|
|
|
|
UFSD("EXIT\n");
|
|
}
|
|
|
|
/*
|
|
* There are two policies for allocating an inode. If the new inode is
|
|
* a directory, then a forward search is made for a block group with both
|
|
* free space and a low directory-to-inode ratio; if that fails, then of
|
|
* the groups with above-average free space, that group with the fewest
|
|
* directories already is chosen.
|
|
*
|
|
* For other inodes, search forward from the parent directory's block
|
|
* group to find a free inode.
|
|
*/
|
|
struct inode *ufs_new_inode(struct inode *dir, umode_t mode)
|
|
{
|
|
struct super_block * sb;
|
|
struct ufs_sb_info * sbi;
|
|
struct ufs_sb_private_info * uspi;
|
|
struct ufs_cg_private_info * ucpi;
|
|
struct ufs_cylinder_group * ucg;
|
|
struct inode * inode;
|
|
struct timespec64 ts;
|
|
unsigned cg, bit, i, j, start;
|
|
struct ufs_inode_info *ufsi;
|
|
int err = -ENOSPC;
|
|
|
|
UFSD("ENTER\n");
|
|
|
|
/* Cannot create files in a deleted directory */
|
|
if (!dir || !dir->i_nlink)
|
|
return ERR_PTR(-EPERM);
|
|
sb = dir->i_sb;
|
|
inode = new_inode(sb);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
ufsi = UFS_I(inode);
|
|
sbi = UFS_SB(sb);
|
|
uspi = sbi->s_uspi;
|
|
|
|
mutex_lock(&sbi->s_lock);
|
|
|
|
/*
|
|
* Try to place the inode in its parent directory
|
|
*/
|
|
i = ufs_inotocg(dir->i_ino);
|
|
if (sbi->fs_cs(i).cs_nifree) {
|
|
cg = i;
|
|
goto cg_found;
|
|
}
|
|
|
|
/*
|
|
* Use a quadratic hash to find a group with a free inode
|
|
*/
|
|
for ( j = 1; j < uspi->s_ncg; j <<= 1 ) {
|
|
i += j;
|
|
if (i >= uspi->s_ncg)
|
|
i -= uspi->s_ncg;
|
|
if (sbi->fs_cs(i).cs_nifree) {
|
|
cg = i;
|
|
goto cg_found;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* That failed: try linear search for a free inode
|
|
*/
|
|
i = ufs_inotocg(dir->i_ino) + 1;
|
|
for (j = 2; j < uspi->s_ncg; j++) {
|
|
i++;
|
|
if (i >= uspi->s_ncg)
|
|
i = 0;
|
|
if (sbi->fs_cs(i).cs_nifree) {
|
|
cg = i;
|
|
goto cg_found;
|
|
}
|
|
}
|
|
|
|
goto failed;
|
|
|
|
cg_found:
|
|
ucpi = ufs_load_cylinder (sb, cg);
|
|
if (!ucpi) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
ucg = ubh_get_ucg(UCPI_UBH(ucpi));
|
|
if (!ufs_cg_chkmagic(sb, ucg))
|
|
ufs_panic (sb, "ufs_new_inode", "internal error, bad cg magic number");
|
|
|
|
start = ucpi->c_irotor;
|
|
bit = ubh_find_next_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, uspi->s_ipg, start);
|
|
if (!(bit < uspi->s_ipg)) {
|
|
bit = ubh_find_first_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, start);
|
|
if (!(bit < start)) {
|
|
ufs_error (sb, "ufs_new_inode",
|
|
"cylinder group %u corrupted - error in inode bitmap\n", cg);
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
}
|
|
UFSD("start = %u, bit = %u, ipg = %u\n", start, bit, uspi->s_ipg);
|
|
if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit))
|
|
ubh_setbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit);
|
|
else {
|
|
ufs_panic (sb, "ufs_new_inode", "internal error");
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
|
|
if (uspi->fs_magic == UFS2_MAGIC) {
|
|
u32 initediblk = fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_initediblk);
|
|
|
|
if (bit + uspi->s_inopb > initediblk &&
|
|
initediblk < fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_niblk))
|
|
ufs2_init_inodes_chunk(sb, ucpi, ucg);
|
|
}
|
|
|
|
fs32_sub(sb, &ucg->cg_cs.cs_nifree, 1);
|
|
uspi->cs_total.cs_nifree--;
|
|
fs32_sub(sb, &sbi->fs_cs(cg).cs_nifree, 1);
|
|
|
|
if (S_ISDIR(mode)) {
|
|
fs32_add(sb, &ucg->cg_cs.cs_ndir, 1);
|
|
uspi->cs_total.cs_ndir++;
|
|
fs32_add(sb, &sbi->fs_cs(cg).cs_ndir, 1);
|
|
}
|
|
ubh_mark_buffer_dirty (USPI_UBH(uspi));
|
|
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
|
|
if (sb->s_flags & SB_SYNCHRONOUS)
|
|
ubh_sync_block(UCPI_UBH(ucpi));
|
|
ufs_mark_sb_dirty(sb);
|
|
|
|
inode->i_ino = cg * uspi->s_ipg + bit;
|
|
inode_init_owner(&init_user_ns, inode, dir, mode);
|
|
inode->i_blocks = 0;
|
|
inode->i_generation = 0;
|
|
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
|
|
ufsi->i_flags = UFS_I(dir)->i_flags;
|
|
ufsi->i_lastfrag = 0;
|
|
ufsi->i_shadow = 0;
|
|
ufsi->i_osync = 0;
|
|
ufsi->i_oeftflag = 0;
|
|
ufsi->i_dir_start_lookup = 0;
|
|
memset(&ufsi->i_u1, 0, sizeof(ufsi->i_u1));
|
|
if (insert_inode_locked(inode) < 0) {
|
|
err = -EIO;
|
|
goto failed;
|
|
}
|
|
mark_inode_dirty(inode);
|
|
|
|
if (uspi->fs_magic == UFS2_MAGIC) {
|
|
struct buffer_head *bh;
|
|
struct ufs2_inode *ufs2_inode;
|
|
|
|
/*
|
|
* setup birth date, we do it here because of there is no sense
|
|
* to hold it in struct ufs_inode_info, and lose 64 bit
|
|
*/
|
|
bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
|
|
if (!bh) {
|
|
ufs_warning(sb, "ufs_read_inode",
|
|
"unable to read inode %lu\n",
|
|
inode->i_ino);
|
|
err = -EIO;
|
|
goto fail_remove_inode;
|
|
}
|
|
lock_buffer(bh);
|
|
ufs2_inode = (struct ufs2_inode *)bh->b_data;
|
|
ufs2_inode += ufs_inotofsbo(inode->i_ino);
|
|
ktime_get_real_ts64(&ts);
|
|
ufs2_inode->ui_birthtime = cpu_to_fs64(sb, ts.tv_sec);
|
|
ufs2_inode->ui_birthnsec = cpu_to_fs32(sb, ts.tv_nsec);
|
|
mark_buffer_dirty(bh);
|
|
unlock_buffer(bh);
|
|
if (sb->s_flags & SB_SYNCHRONOUS)
|
|
sync_dirty_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
mutex_unlock(&sbi->s_lock);
|
|
|
|
UFSD("allocating inode %lu\n", inode->i_ino);
|
|
UFSD("EXIT\n");
|
|
return inode;
|
|
|
|
fail_remove_inode:
|
|
mutex_unlock(&sbi->s_lock);
|
|
clear_nlink(inode);
|
|
discard_new_inode(inode);
|
|
UFSD("EXIT (FAILED): err %d\n", err);
|
|
return ERR_PTR(err);
|
|
failed:
|
|
mutex_unlock(&sbi->s_lock);
|
|
make_bad_inode(inode);
|
|
iput (inode);
|
|
UFSD("EXIT (FAILED): err %d\n", err);
|
|
return ERR_PTR(err);
|
|
}
|