2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/drivers/infiniband/core/umem_odp.c
Haggai Eran 4fc701ead7 IB/core: Properly handle registration of on-demand paging MRs after dereg
When the last on-demand paging MR is released the notifier count is
left non-zero so that concurrent page faults will have to abort. If a
new MR is then registered, the counter is reset. However, the decision
is made to put the new MR in the list waiting for the notifier count
to reach zero, before the counter is reset. An invalidation or another
MR registration can release the MR to handle page faults, but without
such an event the MR can wait forever.

The patch fixes this issue by adding a check whether the MR is the
first on-demand paging MR when deciding whether it is ready to handle
page faults. If it is the first MR, we know that there are no mmu
notifiers running in parallel to the registration.

Fixes: 882214e2b1 ("IB/core: Implement support for MMU notifiers regarding on demand paging regions")
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Signed-off-by: Roland Dreier <roland@purestorage.com>
2015-02-17 22:14:56 -08:00

670 lines
20 KiB
C

/*
* Copyright (c) 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pid.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
static void ib_umem_notifier_start_account(struct ib_umem *item)
{
mutex_lock(&item->odp_data->umem_mutex);
/* Only update private counters for this umem if it has them.
* Otherwise skip it. All page faults will be delayed for this umem. */
if (item->odp_data->mn_counters_active) {
int notifiers_count = item->odp_data->notifiers_count++;
if (notifiers_count == 0)
/* Initialize the completion object for waiting on
* notifiers. Since notifier_count is zero, no one
* should be waiting right now. */
reinit_completion(&item->odp_data->notifier_completion);
}
mutex_unlock(&item->odp_data->umem_mutex);
}
static void ib_umem_notifier_end_account(struct ib_umem *item)
{
mutex_lock(&item->odp_data->umem_mutex);
/* Only update private counters for this umem if it has them.
* Otherwise skip it. All page faults will be delayed for this umem. */
if (item->odp_data->mn_counters_active) {
/*
* This sequence increase will notify the QP page fault that
* the page that is going to be mapped in the spte could have
* been freed.
*/
++item->odp_data->notifiers_seq;
if (--item->odp_data->notifiers_count == 0)
complete_all(&item->odp_data->notifier_completion);
}
mutex_unlock(&item->odp_data->umem_mutex);
}
/* Account for a new mmu notifier in an ib_ucontext. */
static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
{
atomic_inc(&context->notifier_count);
}
/* Account for a terminating mmu notifier in an ib_ucontext.
*
* Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
* the function takes the semaphore itself. */
static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
{
int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
if (zero_notifiers &&
!list_empty(&context->no_private_counters)) {
/* No currently running mmu notifiers. Now is the chance to
* add private accounting to all previously added umems. */
struct ib_umem_odp *odp_data, *next;
/* Prevent concurrent mmu notifiers from working on the
* no_private_counters list. */
down_write(&context->umem_rwsem);
/* Read the notifier_count again, with the umem_rwsem
* semaphore taken for write. */
if (!atomic_read(&context->notifier_count)) {
list_for_each_entry_safe(odp_data, next,
&context->no_private_counters,
no_private_counters) {
mutex_lock(&odp_data->umem_mutex);
odp_data->mn_counters_active = true;
list_del(&odp_data->no_private_counters);
complete_all(&odp_data->notifier_completion);
mutex_unlock(&odp_data->umem_mutex);
}
}
up_write(&context->umem_rwsem);
}
}
static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
u64 end, void *cookie) {
/*
* Increase the number of notifiers running, to
* prevent any further fault handling on this MR.
*/
ib_umem_notifier_start_account(item);
item->odp_data->dying = 1;
/* Make sure that the fact the umem is dying is out before we release
* all pending page faults. */
smp_wmb();
complete_all(&item->odp_data->notifier_completion);
item->context->invalidate_range(item, ib_umem_start(item),
ib_umem_end(item));
return 0;
}
static void ib_umem_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
if (!context->invalidate_range)
return;
ib_ucontext_notifier_start_account(context);
down_read(&context->umem_rwsem);
rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
ULLONG_MAX,
ib_umem_notifier_release_trampoline,
NULL);
up_read(&context->umem_rwsem);
}
static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
u64 end, void *cookie)
{
ib_umem_notifier_start_account(item);
item->context->invalidate_range(item, start, start + PAGE_SIZE);
ib_umem_notifier_end_account(item);
return 0;
}
static void ib_umem_notifier_invalidate_page(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
if (!context->invalidate_range)
return;
ib_ucontext_notifier_start_account(context);
down_read(&context->umem_rwsem);
rbt_ib_umem_for_each_in_range(&context->umem_tree, address,
address + PAGE_SIZE,
invalidate_page_trampoline, NULL);
up_read(&context->umem_rwsem);
ib_ucontext_notifier_end_account(context);
}
static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
u64 end, void *cookie)
{
ib_umem_notifier_start_account(item);
item->context->invalidate_range(item, start, end);
return 0;
}
static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
if (!context->invalidate_range)
return;
ib_ucontext_notifier_start_account(context);
down_read(&context->umem_rwsem);
rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
end,
invalidate_range_start_trampoline, NULL);
up_read(&context->umem_rwsem);
}
static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
u64 end, void *cookie)
{
ib_umem_notifier_end_account(item);
return 0;
}
static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
if (!context->invalidate_range)
return;
down_read(&context->umem_rwsem);
rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
end,
invalidate_range_end_trampoline, NULL);
up_read(&context->umem_rwsem);
ib_ucontext_notifier_end_account(context);
}
static struct mmu_notifier_ops ib_umem_notifiers = {
.release = ib_umem_notifier_release,
.invalidate_page = ib_umem_notifier_invalidate_page,
.invalidate_range_start = ib_umem_notifier_invalidate_range_start,
.invalidate_range_end = ib_umem_notifier_invalidate_range_end,
};
int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem)
{
int ret_val;
struct pid *our_pid;
struct mm_struct *mm = get_task_mm(current);
if (!mm)
return -EINVAL;
/* Prevent creating ODP MRs in child processes */
rcu_read_lock();
our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
rcu_read_unlock();
put_pid(our_pid);
if (context->tgid != our_pid) {
ret_val = -EINVAL;
goto out_mm;
}
umem->hugetlb = 0;
umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
if (!umem->odp_data) {
ret_val = -ENOMEM;
goto out_mm;
}
umem->odp_data->umem = umem;
mutex_init(&umem->odp_data->umem_mutex);
init_completion(&umem->odp_data->notifier_completion);
umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
sizeof(*umem->odp_data->page_list));
if (!umem->odp_data->page_list) {
ret_val = -ENOMEM;
goto out_odp_data;
}
umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
sizeof(*umem->odp_data->dma_list));
if (!umem->odp_data->dma_list) {
ret_val = -ENOMEM;
goto out_page_list;
}
/*
* When using MMU notifiers, we will get a
* notification before the "current" task (and MM) is
* destroyed. We use the umem_rwsem semaphore to synchronize.
*/
down_write(&context->umem_rwsem);
context->odp_mrs_count++;
if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
rbt_ib_umem_insert(&umem->odp_data->interval_tree,
&context->umem_tree);
if (likely(!atomic_read(&context->notifier_count)) ||
context->odp_mrs_count == 1)
umem->odp_data->mn_counters_active = true;
else
list_add(&umem->odp_data->no_private_counters,
&context->no_private_counters);
downgrade_write(&context->umem_rwsem);
if (context->odp_mrs_count == 1) {
/*
* Note that at this point, no MMU notifier is running
* for this context!
*/
atomic_set(&context->notifier_count, 0);
INIT_HLIST_NODE(&context->mn.hlist);
context->mn.ops = &ib_umem_notifiers;
/*
* Lock-dep detects a false positive for mmap_sem vs.
* umem_rwsem, due to not grasping downgrade_write correctly.
*/
lockdep_off();
ret_val = mmu_notifier_register(&context->mn, mm);
lockdep_on();
if (ret_val) {
pr_err("Failed to register mmu_notifier %d\n", ret_val);
ret_val = -EBUSY;
goto out_mutex;
}
}
up_read(&context->umem_rwsem);
/*
* Note that doing an mmput can cause a notifier for the relevant mm.
* If the notifier is called while we hold the umem_rwsem, this will
* cause a deadlock. Therefore, we release the reference only after we
* released the semaphore.
*/
mmput(mm);
return 0;
out_mutex:
up_read(&context->umem_rwsem);
vfree(umem->odp_data->dma_list);
out_page_list:
vfree(umem->odp_data->page_list);
out_odp_data:
kfree(umem->odp_data);
out_mm:
mmput(mm);
return ret_val;
}
void ib_umem_odp_release(struct ib_umem *umem)
{
struct ib_ucontext *context = umem->context;
/*
* Ensure that no more pages are mapped in the umem.
*
* It is the driver's responsibility to ensure, before calling us,
* that the hardware will not attempt to access the MR any more.
*/
ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
ib_umem_end(umem));
down_write(&context->umem_rwsem);
if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
rbt_ib_umem_remove(&umem->odp_data->interval_tree,
&context->umem_tree);
context->odp_mrs_count--;
if (!umem->odp_data->mn_counters_active) {
list_del(&umem->odp_data->no_private_counters);
complete_all(&umem->odp_data->notifier_completion);
}
/*
* Downgrade the lock to a read lock. This ensures that the notifiers
* (who lock the mutex for reading) will be able to finish, and we
* will be able to enventually obtain the mmu notifiers SRCU. Note
* that since we are doing it atomically, no other user could register
* and unregister while we do the check.
*/
downgrade_write(&context->umem_rwsem);
if (!context->odp_mrs_count) {
struct task_struct *owning_process = NULL;
struct mm_struct *owning_mm = NULL;
owning_process = get_pid_task(context->tgid,
PIDTYPE_PID);
if (owning_process == NULL)
/*
* The process is already dead, notifier were removed
* already.
*/
goto out;
owning_mm = get_task_mm(owning_process);
if (owning_mm == NULL)
/*
* The process' mm is already dead, notifier were
* removed already.
*/
goto out_put_task;
mmu_notifier_unregister(&context->mn, owning_mm);
mmput(owning_mm);
out_put_task:
put_task_struct(owning_process);
}
out:
up_read(&context->umem_rwsem);
vfree(umem->odp_data->dma_list);
vfree(umem->odp_data->page_list);
kfree(umem->odp_data);
kfree(umem);
}
/*
* Map for DMA and insert a single page into the on-demand paging page tables.
*
* @umem: the umem to insert the page to.
* @page_index: index in the umem to add the page to.
* @page: the page struct to map and add.
* @access_mask: access permissions needed for this page.
* @current_seq: sequence number for synchronization with invalidations.
* the sequence number is taken from
* umem->odp_data->notifiers_seq.
*
* The function returns -EFAULT if the DMA mapping operation fails. It returns
* -EAGAIN if a concurrent invalidation prevents us from updating the page.
*
* The page is released via put_page even if the operation failed. For
* on-demand pinning, the page is released whenever it isn't stored in the
* umem.
*/
static int ib_umem_odp_map_dma_single_page(
struct ib_umem *umem,
int page_index,
u64 base_virt_addr,
struct page *page,
u64 access_mask,
unsigned long current_seq)
{
struct ib_device *dev = umem->context->device;
dma_addr_t dma_addr;
int stored_page = 0;
int remove_existing_mapping = 0;
int ret = 0;
mutex_lock(&umem->odp_data->umem_mutex);
/*
* Note: we avoid writing if seq is different from the initial seq, to
* handle case of a racing notifier. This check also allows us to bail
* early if we have a notifier running in parallel with us.
*/
if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
ret = -EAGAIN;
goto out;
}
if (!(umem->odp_data->dma_list[page_index])) {
dma_addr = ib_dma_map_page(dev,
page,
0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (ib_dma_mapping_error(dev, dma_addr)) {
ret = -EFAULT;
goto out;
}
umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
umem->odp_data->page_list[page_index] = page;
stored_page = 1;
} else if (umem->odp_data->page_list[page_index] == page) {
umem->odp_data->dma_list[page_index] |= access_mask;
} else {
pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
umem->odp_data->page_list[page_index], page);
/* Better remove the mapping now, to prevent any further
* damage. */
remove_existing_mapping = 1;
}
out:
mutex_unlock(&umem->odp_data->umem_mutex);
/* On Demand Paging - avoid pinning the page */
if (umem->context->invalidate_range || !stored_page)
put_page(page);
if (remove_existing_mapping && umem->context->invalidate_range) {
invalidate_page_trampoline(
umem,
base_virt_addr + (page_index * PAGE_SIZE),
base_virt_addr + ((page_index+1)*PAGE_SIZE),
NULL);
ret = -EAGAIN;
}
return ret;
}
/**
* ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
*
* Pins the range of pages passed in the argument, and maps them to
* DMA addresses. The DMA addresses of the mapped pages is updated in
* umem->odp_data->dma_list.
*
* Returns the number of pages mapped in success, negative error code
* for failure.
* An -EAGAIN error code is returned when a concurrent mmu notifier prevents
* the function from completing its task.
*
* @umem: the umem to map and pin
* @user_virt: the address from which we need to map.
* @bcnt: the minimal number of bytes to pin and map. The mapping might be
* bigger due to alignment, and may also be smaller in case of an error
* pinning or mapping a page. The actual pages mapped is returned in
* the return value.
* @access_mask: bit mask of the requested access permissions for the given
* range.
* @current_seq: the MMU notifiers sequance value for synchronization with
* invalidations. the sequance number is read from
* umem->odp_data->notifiers_seq before calling this function
*/
int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
u64 access_mask, unsigned long current_seq)
{
struct task_struct *owning_process = NULL;
struct mm_struct *owning_mm = NULL;
struct page **local_page_list = NULL;
u64 off;
int j, k, ret = 0, start_idx, npages = 0;
u64 base_virt_addr;
if (access_mask == 0)
return -EINVAL;
if (user_virt < ib_umem_start(umem) ||
user_virt + bcnt > ib_umem_end(umem))
return -EFAULT;
local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
if (!local_page_list)
return -ENOMEM;
off = user_virt & (~PAGE_MASK);
user_virt = user_virt & PAGE_MASK;
base_virt_addr = user_virt;
bcnt += off; /* Charge for the first page offset as well. */
owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
if (owning_process == NULL) {
ret = -EINVAL;
goto out_no_task;
}
owning_mm = get_task_mm(owning_process);
if (owning_mm == NULL) {
ret = -EINVAL;
goto out_put_task;
}
start_idx = (user_virt - ib_umem_start(umem)) >> PAGE_SHIFT;
k = start_idx;
while (bcnt > 0) {
const size_t gup_num_pages =
min_t(size_t, ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
PAGE_SIZE / sizeof(struct page *));
down_read(&owning_mm->mmap_sem);
/*
* Note: this might result in redundent page getting. We can
* avoid this by checking dma_list to be 0 before calling
* get_user_pages. However, this make the code much more
* complex (and doesn't gain us much performance in most use
* cases).
*/
npages = get_user_pages(owning_process, owning_mm, user_virt,
gup_num_pages,
access_mask & ODP_WRITE_ALLOWED_BIT, 0,
local_page_list, NULL);
up_read(&owning_mm->mmap_sem);
if (npages < 0)
break;
bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
user_virt += npages << PAGE_SHIFT;
for (j = 0; j < npages; ++j) {
ret = ib_umem_odp_map_dma_single_page(
umem, k, base_virt_addr, local_page_list[j],
access_mask, current_seq);
if (ret < 0)
break;
k++;
}
if (ret < 0) {
/* Release left over pages when handling errors. */
for (++j; j < npages; ++j)
put_page(local_page_list[j]);
break;
}
}
if (ret >= 0) {
if (npages < 0 && k == start_idx)
ret = npages;
else
ret = k - start_idx;
}
mmput(owning_mm);
out_put_task:
put_task_struct(owning_process);
out_no_task:
free_page((unsigned long)local_page_list);
return ret;
}
EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
u64 bound)
{
int idx;
u64 addr;
struct ib_device *dev = umem->context->device;
virt = max_t(u64, virt, ib_umem_start(umem));
bound = min_t(u64, bound, ib_umem_end(umem));
/* Note that during the run of this function, the
* notifiers_count of the MR is > 0, preventing any racing
* faults from completion. We might be racing with other
* invalidations, so we must make sure we free each page only
* once. */
for (addr = virt; addr < bound; addr += (u64)umem->page_size) {
idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
mutex_lock(&umem->odp_data->umem_mutex);
if (umem->odp_data->page_list[idx]) {
struct page *page = umem->odp_data->page_list[idx];
struct page *head_page = compound_head(page);
dma_addr_t dma = umem->odp_data->dma_list[idx];
dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
WARN_ON(!dma_addr);
ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma & ODP_WRITE_ALLOWED_BIT)
/*
* set_page_dirty prefers being called with
* the page lock. However, MMU notifiers are
* called sometimes with and sometimes without
* the lock. We rely on the umem_mutex instead
* to prevent other mmu notifiers from
* continuing and allowing the page mapping to
* be removed.
*/
set_page_dirty(head_page);
/* on demand pinning support */
if (!umem->context->invalidate_range)
put_page(page);
umem->odp_data->page_list[idx] = NULL;
umem->odp_data->dma_list[idx] = 0;
}
mutex_unlock(&umem->odp_data->umem_mutex);
}
}
EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);