2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 04:03:58 +08:00
linux-next/net/sunrpc/svc_xprt.c
J. Bruce Fields 2825a7f907 nfsd4: allow encoding across page boundaries
After this we can handle for example getattr of very large ACLs.

Read, readdir, readlink are still special cases with their own limits.

Also we can't handle a new operation starting close to the end of a
page.

Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2014-05-30 17:31:54 -04:00

1334 lines
35 KiB
C

/*
* linux/net/sunrpc/svc_xprt.c
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/svc_xprt.h>
#include <linux/sunrpc/svcsock.h>
#include <linux/sunrpc/xprt.h>
#include <linux/module.h>
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
static int svc_deferred_recv(struct svc_rqst *rqstp);
static struct cache_deferred_req *svc_defer(struct cache_req *req);
static void svc_age_temp_xprts(unsigned long closure);
static void svc_delete_xprt(struct svc_xprt *xprt);
/* apparently the "standard" is that clients close
* idle connections after 5 minutes, servers after
* 6 minutes
* http://www.connectathon.org/talks96/nfstcp.pdf
*/
static int svc_conn_age_period = 6*60;
/* List of registered transport classes */
static DEFINE_SPINLOCK(svc_xprt_class_lock);
static LIST_HEAD(svc_xprt_class_list);
/* SMP locking strategy:
*
* svc_pool->sp_lock protects most of the fields of that pool.
* svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
* when both need to be taken (rare), svc_serv->sv_lock is first.
* BKL protects svc_serv->sv_nrthread.
* svc_sock->sk_lock protects the svc_sock->sk_deferred list
* and the ->sk_info_authunix cache.
*
* The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
* enqueued multiply. During normal transport processing this bit
* is set by svc_xprt_enqueue and cleared by svc_xprt_received.
* Providers should not manipulate this bit directly.
*
* Some flags can be set to certain values at any time
* providing that certain rules are followed:
*
* XPT_CONN, XPT_DATA:
* - Can be set or cleared at any time.
* - After a set, svc_xprt_enqueue must be called to enqueue
* the transport for processing.
* - After a clear, the transport must be read/accepted.
* If this succeeds, it must be set again.
* XPT_CLOSE:
* - Can set at any time. It is never cleared.
* XPT_DEAD:
* - Can only be set while XPT_BUSY is held which ensures
* that no other thread will be using the transport or will
* try to set XPT_DEAD.
*/
int svc_reg_xprt_class(struct svc_xprt_class *xcl)
{
struct svc_xprt_class *cl;
int res = -EEXIST;
dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
INIT_LIST_HEAD(&xcl->xcl_list);
spin_lock(&svc_xprt_class_lock);
/* Make sure there isn't already a class with the same name */
list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
goto out;
}
list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
res = 0;
out:
spin_unlock(&svc_xprt_class_lock);
return res;
}
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
{
dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
spin_lock(&svc_xprt_class_lock);
list_del_init(&xcl->xcl_list);
spin_unlock(&svc_xprt_class_lock);
}
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
/*
* Format the transport list for printing
*/
int svc_print_xprts(char *buf, int maxlen)
{
struct svc_xprt_class *xcl;
char tmpstr[80];
int len = 0;
buf[0] = '\0';
spin_lock(&svc_xprt_class_lock);
list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
int slen;
sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
slen = strlen(tmpstr);
if (len + slen > maxlen)
break;
len += slen;
strcat(buf, tmpstr);
}
spin_unlock(&svc_xprt_class_lock);
return len;
}
static void svc_xprt_free(struct kref *kref)
{
struct svc_xprt *xprt =
container_of(kref, struct svc_xprt, xpt_ref);
struct module *owner = xprt->xpt_class->xcl_owner;
if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
svcauth_unix_info_release(xprt);
put_net(xprt->xpt_net);
/* See comment on corresponding get in xs_setup_bc_tcp(): */
if (xprt->xpt_bc_xprt)
xprt_put(xprt->xpt_bc_xprt);
xprt->xpt_ops->xpo_free(xprt);
module_put(owner);
}
void svc_xprt_put(struct svc_xprt *xprt)
{
kref_put(&xprt->xpt_ref, svc_xprt_free);
}
EXPORT_SYMBOL_GPL(svc_xprt_put);
/*
* Called by transport drivers to initialize the transport independent
* portion of the transport instance.
*/
void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
struct svc_xprt *xprt, struct svc_serv *serv)
{
memset(xprt, 0, sizeof(*xprt));
xprt->xpt_class = xcl;
xprt->xpt_ops = xcl->xcl_ops;
kref_init(&xprt->xpt_ref);
xprt->xpt_server = serv;
INIT_LIST_HEAD(&xprt->xpt_list);
INIT_LIST_HEAD(&xprt->xpt_ready);
INIT_LIST_HEAD(&xprt->xpt_deferred);
INIT_LIST_HEAD(&xprt->xpt_users);
mutex_init(&xprt->xpt_mutex);
spin_lock_init(&xprt->xpt_lock);
set_bit(XPT_BUSY, &xprt->xpt_flags);
rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
xprt->xpt_net = get_net(net);
}
EXPORT_SYMBOL_GPL(svc_xprt_init);
static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
struct svc_serv *serv,
struct net *net,
const int family,
const unsigned short port,
int flags)
{
struct sockaddr_in sin = {
.sin_family = AF_INET,
.sin_addr.s_addr = htonl(INADDR_ANY),
.sin_port = htons(port),
};
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 sin6 = {
.sin6_family = AF_INET6,
.sin6_addr = IN6ADDR_ANY_INIT,
.sin6_port = htons(port),
};
#endif
struct sockaddr *sap;
size_t len;
switch (family) {
case PF_INET:
sap = (struct sockaddr *)&sin;
len = sizeof(sin);
break;
#if IS_ENABLED(CONFIG_IPV6)
case PF_INET6:
sap = (struct sockaddr *)&sin6;
len = sizeof(sin6);
break;
#endif
default:
return ERR_PTR(-EAFNOSUPPORT);
}
return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
}
/*
* svc_xprt_received conditionally queues the transport for processing
* by another thread. The caller must hold the XPT_BUSY bit and must
* not thereafter touch transport data.
*
* Note: XPT_DATA only gets cleared when a read-attempt finds no (or
* insufficient) data.
*/
static void svc_xprt_received(struct svc_xprt *xprt)
{
WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
return;
/* As soon as we clear busy, the xprt could be closed and
* 'put', so we need a reference to call svc_xprt_enqueue with:
*/
svc_xprt_get(xprt);
clear_bit(XPT_BUSY, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
}
void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
{
clear_bit(XPT_TEMP, &new->xpt_flags);
spin_lock_bh(&serv->sv_lock);
list_add(&new->xpt_list, &serv->sv_permsocks);
spin_unlock_bh(&serv->sv_lock);
svc_xprt_received(new);
}
int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
struct net *net, const int family,
const unsigned short port, int flags)
{
struct svc_xprt_class *xcl;
dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
spin_lock(&svc_xprt_class_lock);
list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
struct svc_xprt *newxprt;
unsigned short newport;
if (strcmp(xprt_name, xcl->xcl_name))
continue;
if (!try_module_get(xcl->xcl_owner))
goto err;
spin_unlock(&svc_xprt_class_lock);
newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
if (IS_ERR(newxprt)) {
module_put(xcl->xcl_owner);
return PTR_ERR(newxprt);
}
svc_add_new_perm_xprt(serv, newxprt);
newport = svc_xprt_local_port(newxprt);
return newport;
}
err:
spin_unlock(&svc_xprt_class_lock);
dprintk("svc: transport %s not found\n", xprt_name);
/* This errno is exposed to user space. Provide a reasonable
* perror msg for a bad transport. */
return -EPROTONOSUPPORT;
}
EXPORT_SYMBOL_GPL(svc_create_xprt);
/*
* Copy the local and remote xprt addresses to the rqstp structure
*/
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
{
memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
rqstp->rq_addrlen = xprt->xpt_remotelen;
/*
* Destination address in request is needed for binding the
* source address in RPC replies/callbacks later.
*/
memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
rqstp->rq_daddrlen = xprt->xpt_locallen;
}
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
/**
* svc_print_addr - Format rq_addr field for printing
* @rqstp: svc_rqst struct containing address to print
* @buf: target buffer for formatted address
* @len: length of target buffer
*
*/
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
{
return __svc_print_addr(svc_addr(rqstp), buf, len);
}
EXPORT_SYMBOL_GPL(svc_print_addr);
/*
* Queue up an idle server thread. Must have pool->sp_lock held.
* Note: this is really a stack rather than a queue, so that we only
* use as many different threads as we need, and the rest don't pollute
* the cache.
*/
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
list_add(&rqstp->rq_list, &pool->sp_threads);
}
/*
* Dequeue an nfsd thread. Must have pool->sp_lock held.
*/
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
list_del(&rqstp->rq_list);
}
static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
{
if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
return true;
if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
return xprt->xpt_ops->xpo_has_wspace(xprt);
return false;
}
/*
* Queue up a transport with data pending. If there are idle nfsd
* processes, wake 'em up.
*
*/
void svc_xprt_enqueue(struct svc_xprt *xprt)
{
struct svc_pool *pool;
struct svc_rqst *rqstp;
int cpu;
if (!svc_xprt_has_something_to_do(xprt))
return;
cpu = get_cpu();
pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
put_cpu();
spin_lock_bh(&pool->sp_lock);
if (!list_empty(&pool->sp_threads) &&
!list_empty(&pool->sp_sockets))
printk(KERN_ERR
"svc_xprt_enqueue: "
"threads and transports both waiting??\n");
pool->sp_stats.packets++;
/* Mark transport as busy. It will remain in this state until
* the provider calls svc_xprt_received. We update XPT_BUSY
* atomically because it also guards against trying to enqueue
* the transport twice.
*/
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
/* Don't enqueue transport while already enqueued */
dprintk("svc: transport %p busy, not enqueued\n", xprt);
goto out_unlock;
}
if (!list_empty(&pool->sp_threads)) {
rqstp = list_entry(pool->sp_threads.next,
struct svc_rqst,
rq_list);
dprintk("svc: transport %p served by daemon %p\n",
xprt, rqstp);
svc_thread_dequeue(pool, rqstp);
if (rqstp->rq_xprt)
printk(KERN_ERR
"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
rqstp, rqstp->rq_xprt);
rqstp->rq_xprt = xprt;
svc_xprt_get(xprt);
pool->sp_stats.threads_woken++;
wake_up(&rqstp->rq_wait);
} else {
dprintk("svc: transport %p put into queue\n", xprt);
list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
pool->sp_stats.sockets_queued++;
}
out_unlock:
spin_unlock_bh(&pool->sp_lock);
}
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
/*
* Dequeue the first transport. Must be called with the pool->sp_lock held.
*/
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
{
struct svc_xprt *xprt;
if (list_empty(&pool->sp_sockets))
return NULL;
xprt = list_entry(pool->sp_sockets.next,
struct svc_xprt, xpt_ready);
list_del_init(&xprt->xpt_ready);
dprintk("svc: transport %p dequeued, inuse=%d\n",
xprt, atomic_read(&xprt->xpt_ref.refcount));
return xprt;
}
/**
* svc_reserve - change the space reserved for the reply to a request.
* @rqstp: The request in question
* @space: new max space to reserve
*
* Each request reserves some space on the output queue of the transport
* to make sure the reply fits. This function reduces that reserved
* space to be the amount of space used already, plus @space.
*
*/
void svc_reserve(struct svc_rqst *rqstp, int space)
{
space += rqstp->rq_res.head[0].iov_len;
if (space < rqstp->rq_reserved) {
struct svc_xprt *xprt = rqstp->rq_xprt;
atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
rqstp->rq_reserved = space;
svc_xprt_enqueue(xprt);
}
}
EXPORT_SYMBOL_GPL(svc_reserve);
static void svc_xprt_release(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt = rqstp->rq_xprt;
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
kfree(rqstp->rq_deferred);
rqstp->rq_deferred = NULL;
svc_free_res_pages(rqstp);
rqstp->rq_res.page_len = 0;
rqstp->rq_res.page_base = 0;
/* Reset response buffer and release
* the reservation.
* But first, check that enough space was reserved
* for the reply, otherwise we have a bug!
*/
if ((rqstp->rq_res.len) > rqstp->rq_reserved)
printk(KERN_ERR "RPC request reserved %d but used %d\n",
rqstp->rq_reserved,
rqstp->rq_res.len);
rqstp->rq_res.head[0].iov_len = 0;
svc_reserve(rqstp, 0);
rqstp->rq_xprt = NULL;
svc_xprt_put(xprt);
}
/*
* External function to wake up a server waiting for data
* This really only makes sense for services like lockd
* which have exactly one thread anyway.
*/
void svc_wake_up(struct svc_serv *serv)
{
struct svc_rqst *rqstp;
unsigned int i;
struct svc_pool *pool;
for (i = 0; i < serv->sv_nrpools; i++) {
pool = &serv->sv_pools[i];
spin_lock_bh(&pool->sp_lock);
if (!list_empty(&pool->sp_threads)) {
rqstp = list_entry(pool->sp_threads.next,
struct svc_rqst,
rq_list);
dprintk("svc: daemon %p woken up.\n", rqstp);
/*
svc_thread_dequeue(pool, rqstp);
rqstp->rq_xprt = NULL;
*/
wake_up(&rqstp->rq_wait);
} else
pool->sp_task_pending = 1;
spin_unlock_bh(&pool->sp_lock);
}
}
EXPORT_SYMBOL_GPL(svc_wake_up);
int svc_port_is_privileged(struct sockaddr *sin)
{
switch (sin->sa_family) {
case AF_INET:
return ntohs(((struct sockaddr_in *)sin)->sin_port)
< PROT_SOCK;
case AF_INET6:
return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
< PROT_SOCK;
default:
return 0;
}
}
/*
* Make sure that we don't have too many active connections. If we have,
* something must be dropped. It's not clear what will happen if we allow
* "too many" connections, but when dealing with network-facing software,
* we have to code defensively. Here we do that by imposing hard limits.
*
* There's no point in trying to do random drop here for DoS
* prevention. The NFS clients does 1 reconnect in 15 seconds. An
* attacker can easily beat that.
*
* The only somewhat efficient mechanism would be if drop old
* connections from the same IP first. But right now we don't even
* record the client IP in svc_sock.
*
* single-threaded services that expect a lot of clients will probably
* need to set sv_maxconn to override the default value which is based
* on the number of threads
*/
static void svc_check_conn_limits(struct svc_serv *serv)
{
unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
(serv->sv_nrthreads+3) * 20;
if (serv->sv_tmpcnt > limit) {
struct svc_xprt *xprt = NULL;
spin_lock_bh(&serv->sv_lock);
if (!list_empty(&serv->sv_tempsocks)) {
/* Try to help the admin */
net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
serv->sv_name, serv->sv_maxconn ?
"max number of connections" :
"number of threads");
/*
* Always select the oldest connection. It's not fair,
* but so is life
*/
xprt = list_entry(serv->sv_tempsocks.prev,
struct svc_xprt,
xpt_list);
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_get(xprt);
}
spin_unlock_bh(&serv->sv_lock);
if (xprt) {
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
}
}
}
static int svc_alloc_arg(struct svc_rqst *rqstp)
{
struct svc_serv *serv = rqstp->rq_server;
struct xdr_buf *arg;
int pages;
int i;
/* now allocate needed pages. If we get a failure, sleep briefly */
pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
if (pages >= RPCSVC_MAXPAGES)
/* use as many pages as possible */
pages = RPCSVC_MAXPAGES - 1;
for (i = 0; i < pages ; i++)
while (rqstp->rq_pages[i] == NULL) {
struct page *p = alloc_page(GFP_KERNEL);
if (!p) {
set_current_state(TASK_INTERRUPTIBLE);
if (signalled() || kthread_should_stop()) {
set_current_state(TASK_RUNNING);
return -EINTR;
}
schedule_timeout(msecs_to_jiffies(500));
}
rqstp->rq_pages[i] = p;
}
rqstp->rq_page_end = &rqstp->rq_pages[i];
rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
/* Make arg->head point to first page and arg->pages point to rest */
arg = &rqstp->rq_arg;
arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
arg->head[0].iov_len = PAGE_SIZE;
arg->pages = rqstp->rq_pages + 1;
arg->page_base = 0;
/* save at least one page for response */
arg->page_len = (pages-2)*PAGE_SIZE;
arg->len = (pages-1)*PAGE_SIZE;
arg->tail[0].iov_len = 0;
return 0;
}
static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
{
struct svc_xprt *xprt;
struct svc_pool *pool = rqstp->rq_pool;
DECLARE_WAITQUEUE(wait, current);
long time_left;
/* Normally we will wait up to 5 seconds for any required
* cache information to be provided.
*/
rqstp->rq_chandle.thread_wait = 5*HZ;
spin_lock_bh(&pool->sp_lock);
xprt = svc_xprt_dequeue(pool);
if (xprt) {
rqstp->rq_xprt = xprt;
svc_xprt_get(xprt);
/* As there is a shortage of threads and this request
* had to be queued, don't allow the thread to wait so
* long for cache updates.
*/
rqstp->rq_chandle.thread_wait = 1*HZ;
pool->sp_task_pending = 0;
} else {
if (pool->sp_task_pending) {
pool->sp_task_pending = 0;
spin_unlock_bh(&pool->sp_lock);
return ERR_PTR(-EAGAIN);
}
/* No data pending. Go to sleep */
svc_thread_enqueue(pool, rqstp);
/*
* We have to be able to interrupt this wait
* to bring down the daemons ...
*/
set_current_state(TASK_INTERRUPTIBLE);
/*
* checking kthread_should_stop() here allows us to avoid
* locking and signalling when stopping kthreads that call
* svc_recv. If the thread has already been woken up, then
* we can exit here without sleeping. If not, then it
* it'll be woken up quickly during the schedule_timeout
*/
if (kthread_should_stop()) {
set_current_state(TASK_RUNNING);
spin_unlock_bh(&pool->sp_lock);
return ERR_PTR(-EINTR);
}
add_wait_queue(&rqstp->rq_wait, &wait);
spin_unlock_bh(&pool->sp_lock);
time_left = schedule_timeout(timeout);
try_to_freeze();
spin_lock_bh(&pool->sp_lock);
remove_wait_queue(&rqstp->rq_wait, &wait);
if (!time_left)
pool->sp_stats.threads_timedout++;
xprt = rqstp->rq_xprt;
if (!xprt) {
svc_thread_dequeue(pool, rqstp);
spin_unlock_bh(&pool->sp_lock);
dprintk("svc: server %p, no data yet\n", rqstp);
if (signalled() || kthread_should_stop())
return ERR_PTR(-EINTR);
else
return ERR_PTR(-EAGAIN);
}
}
spin_unlock_bh(&pool->sp_lock);
return xprt;
}
static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
{
spin_lock_bh(&serv->sv_lock);
set_bit(XPT_TEMP, &newxpt->xpt_flags);
list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
serv->sv_tmpcnt++;
if (serv->sv_temptimer.function == NULL) {
/* setup timer to age temp transports */
setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
(unsigned long)serv);
mod_timer(&serv->sv_temptimer,
jiffies + svc_conn_age_period * HZ);
}
spin_unlock_bh(&serv->sv_lock);
svc_xprt_received(newxpt);
}
static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
{
struct svc_serv *serv = rqstp->rq_server;
int len = 0;
if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
dprintk("svc_recv: found XPT_CLOSE\n");
svc_delete_xprt(xprt);
/* Leave XPT_BUSY set on the dead xprt: */
return 0;
}
if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
struct svc_xprt *newxpt;
/*
* We know this module_get will succeed because the
* listener holds a reference too
*/
__module_get(xprt->xpt_class->xcl_owner);
svc_check_conn_limits(xprt->xpt_server);
newxpt = xprt->xpt_ops->xpo_accept(xprt);
if (newxpt)
svc_add_new_temp_xprt(serv, newxpt);
else
module_put(xprt->xpt_class->xcl_owner);
} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
/* XPT_DATA|XPT_DEFERRED case: */
dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
rqstp, rqstp->rq_pool->sp_id, xprt,
atomic_read(&xprt->xpt_ref.refcount));
rqstp->rq_deferred = svc_deferred_dequeue(xprt);
if (rqstp->rq_deferred)
len = svc_deferred_recv(rqstp);
else
len = xprt->xpt_ops->xpo_recvfrom(rqstp);
dprintk("svc: got len=%d\n", len);
rqstp->rq_reserved = serv->sv_max_mesg;
atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
}
/* clear XPT_BUSY: */
svc_xprt_received(xprt);
return len;
}
/*
* Receive the next request on any transport. This code is carefully
* organised not to touch any cachelines in the shared svc_serv
* structure, only cachelines in the local svc_pool.
*/
int svc_recv(struct svc_rqst *rqstp, long timeout)
{
struct svc_xprt *xprt = NULL;
struct svc_serv *serv = rqstp->rq_server;
int len, err;
dprintk("svc: server %p waiting for data (to = %ld)\n",
rqstp, timeout);
if (rqstp->rq_xprt)
printk(KERN_ERR
"svc_recv: service %p, transport not NULL!\n",
rqstp);
if (waitqueue_active(&rqstp->rq_wait))
printk(KERN_ERR
"svc_recv: service %p, wait queue active!\n",
rqstp);
err = svc_alloc_arg(rqstp);
if (err)
return err;
try_to_freeze();
cond_resched();
if (signalled() || kthread_should_stop())
return -EINTR;
xprt = svc_get_next_xprt(rqstp, timeout);
if (IS_ERR(xprt))
return PTR_ERR(xprt);
len = svc_handle_xprt(rqstp, xprt);
/* No data, incomplete (TCP) read, or accept() */
if (len <= 0)
goto out;
clear_bit(XPT_OLD, &xprt->xpt_flags);
rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
rqstp->rq_chandle.defer = svc_defer;
if (serv->sv_stats)
serv->sv_stats->netcnt++;
return len;
out:
rqstp->rq_res.len = 0;
svc_xprt_release(rqstp);
return -EAGAIN;
}
EXPORT_SYMBOL_GPL(svc_recv);
/*
* Drop request
*/
void svc_drop(struct svc_rqst *rqstp)
{
dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
svc_xprt_release(rqstp);
}
EXPORT_SYMBOL_GPL(svc_drop);
/*
* Return reply to client.
*/
int svc_send(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt;
int len;
struct xdr_buf *xb;
xprt = rqstp->rq_xprt;
if (!xprt)
return -EFAULT;
/* release the receive skb before sending the reply */
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
/* calculate over-all length */
xb = &rqstp->rq_res;
xb->len = xb->head[0].iov_len +
xb->page_len +
xb->tail[0].iov_len;
/* Grab mutex to serialize outgoing data. */
mutex_lock(&xprt->xpt_mutex);
if (test_bit(XPT_DEAD, &xprt->xpt_flags)
|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
len = -ENOTCONN;
else
len = xprt->xpt_ops->xpo_sendto(rqstp);
mutex_unlock(&xprt->xpt_mutex);
rpc_wake_up(&xprt->xpt_bc_pending);
svc_xprt_release(rqstp);
if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
return 0;
return len;
}
/*
* Timer function to close old temporary transports, using
* a mark-and-sweep algorithm.
*/
static void svc_age_temp_xprts(unsigned long closure)
{
struct svc_serv *serv = (struct svc_serv *)closure;
struct svc_xprt *xprt;
struct list_head *le, *next;
dprintk("svc_age_temp_xprts\n");
if (!spin_trylock_bh(&serv->sv_lock)) {
/* busy, try again 1 sec later */
dprintk("svc_age_temp_xprts: busy\n");
mod_timer(&serv->sv_temptimer, jiffies + HZ);
return;
}
list_for_each_safe(le, next, &serv->sv_tempsocks) {
xprt = list_entry(le, struct svc_xprt, xpt_list);
/* First time through, just mark it OLD. Second time
* through, close it. */
if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
continue;
if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
test_bit(XPT_BUSY, &xprt->xpt_flags))
continue;
list_del_init(le);
set_bit(XPT_CLOSE, &xprt->xpt_flags);
set_bit(XPT_DETACHED, &xprt->xpt_flags);
dprintk("queuing xprt %p for closing\n", xprt);
/* a thread will dequeue and close it soon */
svc_xprt_enqueue(xprt);
}
spin_unlock_bh(&serv->sv_lock);
mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
}
static void call_xpt_users(struct svc_xprt *xprt)
{
struct svc_xpt_user *u;
spin_lock(&xprt->xpt_lock);
while (!list_empty(&xprt->xpt_users)) {
u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
list_del(&u->list);
u->callback(u);
}
spin_unlock(&xprt->xpt_lock);
}
/*
* Remove a dead transport
*/
static void svc_delete_xprt(struct svc_xprt *xprt)
{
struct svc_serv *serv = xprt->xpt_server;
struct svc_deferred_req *dr;
/* Only do this once */
if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
BUG();
dprintk("svc: svc_delete_xprt(%p)\n", xprt);
xprt->xpt_ops->xpo_detach(xprt);
spin_lock_bh(&serv->sv_lock);
if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
list_del_init(&xprt->xpt_list);
WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
if (test_bit(XPT_TEMP, &xprt->xpt_flags))
serv->sv_tmpcnt--;
spin_unlock_bh(&serv->sv_lock);
while ((dr = svc_deferred_dequeue(xprt)) != NULL)
kfree(dr);
call_xpt_users(xprt);
svc_xprt_put(xprt);
}
void svc_close_xprt(struct svc_xprt *xprt)
{
set_bit(XPT_CLOSE, &xprt->xpt_flags);
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
/* someone else will have to effect the close */
return;
/*
* We expect svc_close_xprt() to work even when no threads are
* running (e.g., while configuring the server before starting
* any threads), so if the transport isn't busy, we delete
* it ourself:
*/
svc_delete_xprt(xprt);
}
EXPORT_SYMBOL_GPL(svc_close_xprt);
static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
{
struct svc_xprt *xprt;
int ret = 0;
spin_lock(&serv->sv_lock);
list_for_each_entry(xprt, xprt_list, xpt_list) {
if (xprt->xpt_net != net)
continue;
ret++;
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
}
spin_unlock(&serv->sv_lock);
return ret;
}
static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
{
struct svc_pool *pool;
struct svc_xprt *xprt;
struct svc_xprt *tmp;
int i;
for (i = 0; i < serv->sv_nrpools; i++) {
pool = &serv->sv_pools[i];
spin_lock_bh(&pool->sp_lock);
list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
if (xprt->xpt_net != net)
continue;
list_del_init(&xprt->xpt_ready);
spin_unlock_bh(&pool->sp_lock);
return xprt;
}
spin_unlock_bh(&pool->sp_lock);
}
return NULL;
}
static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
{
struct svc_xprt *xprt;
while ((xprt = svc_dequeue_net(serv, net))) {
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_delete_xprt(xprt);
}
}
/*
* Server threads may still be running (especially in the case where the
* service is still running in other network namespaces).
*
* So we shut down sockets the same way we would on a running server, by
* setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
* the close. In the case there are no such other threads,
* threads running, svc_clean_up_xprts() does a simple version of a
* server's main event loop, and in the case where there are other
* threads, we may need to wait a little while and then check again to
* see if they're done.
*/
void svc_close_net(struct svc_serv *serv, struct net *net)
{
int delay = 0;
while (svc_close_list(serv, &serv->sv_permsocks, net) +
svc_close_list(serv, &serv->sv_tempsocks, net)) {
svc_clean_up_xprts(serv, net);
msleep(delay++);
}
}
/*
* Handle defer and revisit of requests
*/
static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
{
struct svc_deferred_req *dr =
container_of(dreq, struct svc_deferred_req, handle);
struct svc_xprt *xprt = dr->xprt;
spin_lock(&xprt->xpt_lock);
set_bit(XPT_DEFERRED, &xprt->xpt_flags);
if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
spin_unlock(&xprt->xpt_lock);
dprintk("revisit canceled\n");
svc_xprt_put(xprt);
kfree(dr);
return;
}
dprintk("revisit queued\n");
dr->xprt = NULL;
list_add(&dr->handle.recent, &xprt->xpt_deferred);
spin_unlock(&xprt->xpt_lock);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
}
/*
* Save the request off for later processing. The request buffer looks
* like this:
*
* <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
*
* This code can only handle requests that consist of an xprt-header
* and rpc-header.
*/
static struct cache_deferred_req *svc_defer(struct cache_req *req)
{
struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
struct svc_deferred_req *dr;
if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
return NULL; /* if more than a page, give up FIXME */
if (rqstp->rq_deferred) {
dr = rqstp->rq_deferred;
rqstp->rq_deferred = NULL;
} else {
size_t skip;
size_t size;
/* FIXME maybe discard if size too large */
size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
dr = kmalloc(size, GFP_KERNEL);
if (dr == NULL)
return NULL;
dr->handle.owner = rqstp->rq_server;
dr->prot = rqstp->rq_prot;
memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
dr->addrlen = rqstp->rq_addrlen;
dr->daddr = rqstp->rq_daddr;
dr->argslen = rqstp->rq_arg.len >> 2;
dr->xprt_hlen = rqstp->rq_xprt_hlen;
/* back up head to the start of the buffer and copy */
skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
dr->argslen << 2);
}
svc_xprt_get(rqstp->rq_xprt);
dr->xprt = rqstp->rq_xprt;
rqstp->rq_dropme = true;
dr->handle.revisit = svc_revisit;
return &dr->handle;
}
/*
* recv data from a deferred request into an active one
*/
static int svc_deferred_recv(struct svc_rqst *rqstp)
{
struct svc_deferred_req *dr = rqstp->rq_deferred;
/* setup iov_base past transport header */
rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
/* The iov_len does not include the transport header bytes */
rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
rqstp->rq_arg.page_len = 0;
/* The rq_arg.len includes the transport header bytes */
rqstp->rq_arg.len = dr->argslen<<2;
rqstp->rq_prot = dr->prot;
memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
rqstp->rq_addrlen = dr->addrlen;
/* Save off transport header len in case we get deferred again */
rqstp->rq_xprt_hlen = dr->xprt_hlen;
rqstp->rq_daddr = dr->daddr;
rqstp->rq_respages = rqstp->rq_pages;
return (dr->argslen<<2) - dr->xprt_hlen;
}
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
{
struct svc_deferred_req *dr = NULL;
if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
return NULL;
spin_lock(&xprt->xpt_lock);
if (!list_empty(&xprt->xpt_deferred)) {
dr = list_entry(xprt->xpt_deferred.next,
struct svc_deferred_req,
handle.recent);
list_del_init(&dr->handle.recent);
} else
clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
spin_unlock(&xprt->xpt_lock);
return dr;
}
/**
* svc_find_xprt - find an RPC transport instance
* @serv: pointer to svc_serv to search
* @xcl_name: C string containing transport's class name
* @net: owner net pointer
* @af: Address family of transport's local address
* @port: transport's IP port number
*
* Return the transport instance pointer for the endpoint accepting
* connections/peer traffic from the specified transport class,
* address family and port.
*
* Specifying 0 for the address family or port is effectively a
* wild-card, and will result in matching the first transport in the
* service's list that has a matching class name.
*/
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
struct net *net, const sa_family_t af,
const unsigned short port)
{
struct svc_xprt *xprt;
struct svc_xprt *found = NULL;
/* Sanity check the args */
if (serv == NULL || xcl_name == NULL)
return found;
spin_lock_bh(&serv->sv_lock);
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
if (xprt->xpt_net != net)
continue;
if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
continue;
if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
continue;
if (port != 0 && port != svc_xprt_local_port(xprt))
continue;
found = xprt;
svc_xprt_get(xprt);
break;
}
spin_unlock_bh(&serv->sv_lock);
return found;
}
EXPORT_SYMBOL_GPL(svc_find_xprt);
static int svc_one_xprt_name(const struct svc_xprt *xprt,
char *pos, int remaining)
{
int len;
len = snprintf(pos, remaining, "%s %u\n",
xprt->xpt_class->xcl_name,
svc_xprt_local_port(xprt));
if (len >= remaining)
return -ENAMETOOLONG;
return len;
}
/**
* svc_xprt_names - format a buffer with a list of transport names
* @serv: pointer to an RPC service
* @buf: pointer to a buffer to be filled in
* @buflen: length of buffer to be filled in
*
* Fills in @buf with a string containing a list of transport names,
* each name terminated with '\n'.
*
* Returns positive length of the filled-in string on success; otherwise
* a negative errno value is returned if an error occurs.
*/
int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
{
struct svc_xprt *xprt;
int len, totlen;
char *pos;
/* Sanity check args */
if (!serv)
return 0;
spin_lock_bh(&serv->sv_lock);
pos = buf;
totlen = 0;
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
len = svc_one_xprt_name(xprt, pos, buflen - totlen);
if (len < 0) {
*buf = '\0';
totlen = len;
}
if (len <= 0)
break;
pos += len;
totlen += len;
}
spin_unlock_bh(&serv->sv_lock);
return totlen;
}
EXPORT_SYMBOL_GPL(svc_xprt_names);
/*----------------------------------------------------------------------------*/
static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
{
unsigned int pidx = (unsigned int)*pos;
struct svc_serv *serv = m->private;
dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
if (!pidx)
return SEQ_START_TOKEN;
return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
}
static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
{
struct svc_pool *pool = p;
struct svc_serv *serv = m->private;
dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
if (p == SEQ_START_TOKEN) {
pool = &serv->sv_pools[0];
} else {
unsigned int pidx = (pool - &serv->sv_pools[0]);
if (pidx < serv->sv_nrpools-1)
pool = &serv->sv_pools[pidx+1];
else
pool = NULL;
}
++*pos;
return pool;
}
static void svc_pool_stats_stop(struct seq_file *m, void *p)
{
}
static int svc_pool_stats_show(struct seq_file *m, void *p)
{
struct svc_pool *pool = p;
if (p == SEQ_START_TOKEN) {
seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
return 0;
}
seq_printf(m, "%u %lu %lu %lu %lu\n",
pool->sp_id,
pool->sp_stats.packets,
pool->sp_stats.sockets_queued,
pool->sp_stats.threads_woken,
pool->sp_stats.threads_timedout);
return 0;
}
static const struct seq_operations svc_pool_stats_seq_ops = {
.start = svc_pool_stats_start,
.next = svc_pool_stats_next,
.stop = svc_pool_stats_stop,
.show = svc_pool_stats_show,
};
int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
{
int err;
err = seq_open(file, &svc_pool_stats_seq_ops);
if (!err)
((struct seq_file *) file->private_data)->private = serv;
return err;
}
EXPORT_SYMBOL(svc_pool_stats_open);
/*----------------------------------------------------------------------------*/