mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-05 04:04:01 +08:00
4608 lines
127 KiB
C
4608 lines
127 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_da_format.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_dir2.h"
|
|
|
|
#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
|
|
|
|
STATIC int
|
|
xlog_find_zeroed(
|
|
struct xlog *,
|
|
xfs_daddr_t *);
|
|
STATIC int
|
|
xlog_clear_stale_blocks(
|
|
struct xlog *,
|
|
xfs_lsn_t);
|
|
#if defined(DEBUG)
|
|
STATIC void
|
|
xlog_recover_check_summary(
|
|
struct xlog *);
|
|
#else
|
|
#define xlog_recover_check_summary(log)
|
|
#endif
|
|
|
|
/*
|
|
* This structure is used during recovery to record the buf log items which
|
|
* have been canceled and should not be replayed.
|
|
*/
|
|
struct xfs_buf_cancel {
|
|
xfs_daddr_t bc_blkno;
|
|
uint bc_len;
|
|
int bc_refcount;
|
|
struct list_head bc_list;
|
|
};
|
|
|
|
/*
|
|
* Sector aligned buffer routines for buffer create/read/write/access
|
|
*/
|
|
|
|
/*
|
|
* Verify the given count of basic blocks is valid number of blocks
|
|
* to specify for an operation involving the given XFS log buffer.
|
|
* Returns nonzero if the count is valid, 0 otherwise.
|
|
*/
|
|
|
|
static inline int
|
|
xlog_buf_bbcount_valid(
|
|
struct xlog *log,
|
|
int bbcount)
|
|
{
|
|
return bbcount > 0 && bbcount <= log->l_logBBsize;
|
|
}
|
|
|
|
/*
|
|
* Allocate a buffer to hold log data. The buffer needs to be able
|
|
* to map to a range of nbblks basic blocks at any valid (basic
|
|
* block) offset within the log.
|
|
*/
|
|
STATIC xfs_buf_t *
|
|
xlog_get_bp(
|
|
struct xlog *log,
|
|
int nbblks)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
if (!xlog_buf_bbcount_valid(log, nbblks)) {
|
|
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
|
|
nbblks);
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We do log I/O in units of log sectors (a power-of-2
|
|
* multiple of the basic block size), so we round up the
|
|
* requested size to accommodate the basic blocks required
|
|
* for complete log sectors.
|
|
*
|
|
* In addition, the buffer may be used for a non-sector-
|
|
* aligned block offset, in which case an I/O of the
|
|
* requested size could extend beyond the end of the
|
|
* buffer. If the requested size is only 1 basic block it
|
|
* will never straddle a sector boundary, so this won't be
|
|
* an issue. Nor will this be a problem if the log I/O is
|
|
* done in basic blocks (sector size 1). But otherwise we
|
|
* extend the buffer by one extra log sector to ensure
|
|
* there's space to accommodate this possibility.
|
|
*/
|
|
if (nbblks > 1 && log->l_sectBBsize > 1)
|
|
nbblks += log->l_sectBBsize;
|
|
nbblks = round_up(nbblks, log->l_sectBBsize);
|
|
|
|
bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
|
|
if (bp)
|
|
xfs_buf_unlock(bp);
|
|
return bp;
|
|
}
|
|
|
|
STATIC void
|
|
xlog_put_bp(
|
|
xfs_buf_t *bp)
|
|
{
|
|
xfs_buf_free(bp);
|
|
}
|
|
|
|
/*
|
|
* Return the address of the start of the given block number's data
|
|
* in a log buffer. The buffer covers a log sector-aligned region.
|
|
*/
|
|
STATIC xfs_caddr_t
|
|
xlog_align(
|
|
struct xlog *log,
|
|
xfs_daddr_t blk_no,
|
|
int nbblks,
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
|
|
|
|
ASSERT(offset + nbblks <= bp->b_length);
|
|
return bp->b_addr + BBTOB(offset);
|
|
}
|
|
|
|
|
|
/*
|
|
* nbblks should be uint, but oh well. Just want to catch that 32-bit length.
|
|
*/
|
|
STATIC int
|
|
xlog_bread_noalign(
|
|
struct xlog *log,
|
|
xfs_daddr_t blk_no,
|
|
int nbblks,
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
if (!xlog_buf_bbcount_valid(log, nbblks)) {
|
|
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
|
|
nbblks);
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
|
|
return EFSCORRUPTED;
|
|
}
|
|
|
|
blk_no = round_down(blk_no, log->l_sectBBsize);
|
|
nbblks = round_up(nbblks, log->l_sectBBsize);
|
|
|
|
ASSERT(nbblks > 0);
|
|
ASSERT(nbblks <= bp->b_length);
|
|
|
|
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
|
|
XFS_BUF_READ(bp);
|
|
bp->b_io_length = nbblks;
|
|
bp->b_error = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(log->l_mp))
|
|
return XFS_ERROR(EIO);
|
|
|
|
xfs_buf_iorequest(bp);
|
|
error = xfs_buf_iowait(bp);
|
|
if (error)
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
return error;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_bread(
|
|
struct xlog *log,
|
|
xfs_daddr_t blk_no,
|
|
int nbblks,
|
|
struct xfs_buf *bp,
|
|
xfs_caddr_t *offset)
|
|
{
|
|
int error;
|
|
|
|
error = xlog_bread_noalign(log, blk_no, nbblks, bp);
|
|
if (error)
|
|
return error;
|
|
|
|
*offset = xlog_align(log, blk_no, nbblks, bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read at an offset into the buffer. Returns with the buffer in it's original
|
|
* state regardless of the result of the read.
|
|
*/
|
|
STATIC int
|
|
xlog_bread_offset(
|
|
struct xlog *log,
|
|
xfs_daddr_t blk_no, /* block to read from */
|
|
int nbblks, /* blocks to read */
|
|
struct xfs_buf *bp,
|
|
xfs_caddr_t offset)
|
|
{
|
|
xfs_caddr_t orig_offset = bp->b_addr;
|
|
int orig_len = BBTOB(bp->b_length);
|
|
int error, error2;
|
|
|
|
error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
|
|
if (error)
|
|
return error;
|
|
|
|
error = xlog_bread_noalign(log, blk_no, nbblks, bp);
|
|
|
|
/* must reset buffer pointer even on error */
|
|
error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
|
|
if (error)
|
|
return error;
|
|
return error2;
|
|
}
|
|
|
|
/*
|
|
* Write out the buffer at the given block for the given number of blocks.
|
|
* The buffer is kept locked across the write and is returned locked.
|
|
* This can only be used for synchronous log writes.
|
|
*/
|
|
STATIC int
|
|
xlog_bwrite(
|
|
struct xlog *log,
|
|
xfs_daddr_t blk_no,
|
|
int nbblks,
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
if (!xlog_buf_bbcount_valid(log, nbblks)) {
|
|
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
|
|
nbblks);
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
|
|
return EFSCORRUPTED;
|
|
}
|
|
|
|
blk_no = round_down(blk_no, log->l_sectBBsize);
|
|
nbblks = round_up(nbblks, log->l_sectBBsize);
|
|
|
|
ASSERT(nbblks > 0);
|
|
ASSERT(nbblks <= bp->b_length);
|
|
|
|
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
|
|
XFS_BUF_ZEROFLAGS(bp);
|
|
xfs_buf_hold(bp);
|
|
xfs_buf_lock(bp);
|
|
bp->b_io_length = nbblks;
|
|
bp->b_error = 0;
|
|
|
|
error = xfs_bwrite(bp);
|
|
if (error)
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* dump debug superblock and log record information
|
|
*/
|
|
STATIC void
|
|
xlog_header_check_dump(
|
|
xfs_mount_t *mp,
|
|
xlog_rec_header_t *head)
|
|
{
|
|
xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
|
|
__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
|
|
xfs_debug(mp, " log : uuid = %pU, fmt = %d",
|
|
&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
|
|
}
|
|
#else
|
|
#define xlog_header_check_dump(mp, head)
|
|
#endif
|
|
|
|
/*
|
|
* check log record header for recovery
|
|
*/
|
|
STATIC int
|
|
xlog_header_check_recover(
|
|
xfs_mount_t *mp,
|
|
xlog_rec_header_t *head)
|
|
{
|
|
ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
|
|
|
|
/*
|
|
* IRIX doesn't write the h_fmt field and leaves it zeroed
|
|
* (XLOG_FMT_UNKNOWN). This stops us from trying to recover
|
|
* a dirty log created in IRIX.
|
|
*/
|
|
if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
|
|
xfs_warn(mp,
|
|
"dirty log written in incompatible format - can't recover");
|
|
xlog_header_check_dump(mp, head);
|
|
XFS_ERROR_REPORT("xlog_header_check_recover(1)",
|
|
XFS_ERRLEVEL_HIGH, mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
|
|
xfs_warn(mp,
|
|
"dirty log entry has mismatched uuid - can't recover");
|
|
xlog_header_check_dump(mp, head);
|
|
XFS_ERROR_REPORT("xlog_header_check_recover(2)",
|
|
XFS_ERRLEVEL_HIGH, mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* read the head block of the log and check the header
|
|
*/
|
|
STATIC int
|
|
xlog_header_check_mount(
|
|
xfs_mount_t *mp,
|
|
xlog_rec_header_t *head)
|
|
{
|
|
ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
|
|
|
|
if (uuid_is_nil(&head->h_fs_uuid)) {
|
|
/*
|
|
* IRIX doesn't write the h_fs_uuid or h_fmt fields. If
|
|
* h_fs_uuid is nil, we assume this log was last mounted
|
|
* by IRIX and continue.
|
|
*/
|
|
xfs_warn(mp, "nil uuid in log - IRIX style log");
|
|
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
|
|
xfs_warn(mp, "log has mismatched uuid - can't recover");
|
|
xlog_header_check_dump(mp, head);
|
|
XFS_ERROR_REPORT("xlog_header_check_mount",
|
|
XFS_ERRLEVEL_HIGH, mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_iodone(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (bp->b_error) {
|
|
/*
|
|
* We're not going to bother about retrying
|
|
* this during recovery. One strike!
|
|
*/
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
bp->b_iodone = NULL;
|
|
xfs_buf_ioend(bp, 0);
|
|
}
|
|
|
|
/*
|
|
* This routine finds (to an approximation) the first block in the physical
|
|
* log which contains the given cycle. It uses a binary search algorithm.
|
|
* Note that the algorithm can not be perfect because the disk will not
|
|
* necessarily be perfect.
|
|
*/
|
|
STATIC int
|
|
xlog_find_cycle_start(
|
|
struct xlog *log,
|
|
struct xfs_buf *bp,
|
|
xfs_daddr_t first_blk,
|
|
xfs_daddr_t *last_blk,
|
|
uint cycle)
|
|
{
|
|
xfs_caddr_t offset;
|
|
xfs_daddr_t mid_blk;
|
|
xfs_daddr_t end_blk;
|
|
uint mid_cycle;
|
|
int error;
|
|
|
|
end_blk = *last_blk;
|
|
mid_blk = BLK_AVG(first_blk, end_blk);
|
|
while (mid_blk != first_blk && mid_blk != end_blk) {
|
|
error = xlog_bread(log, mid_blk, 1, bp, &offset);
|
|
if (error)
|
|
return error;
|
|
mid_cycle = xlog_get_cycle(offset);
|
|
if (mid_cycle == cycle)
|
|
end_blk = mid_blk; /* last_half_cycle == mid_cycle */
|
|
else
|
|
first_blk = mid_blk; /* first_half_cycle == mid_cycle */
|
|
mid_blk = BLK_AVG(first_blk, end_blk);
|
|
}
|
|
ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
|
|
(mid_blk == end_blk && mid_blk-1 == first_blk));
|
|
|
|
*last_blk = end_blk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that a range of blocks does not contain stop_on_cycle_no.
|
|
* Fill in *new_blk with the block offset where such a block is
|
|
* found, or with -1 (an invalid block number) if there is no such
|
|
* block in the range. The scan needs to occur from front to back
|
|
* and the pointer into the region must be updated since a later
|
|
* routine will need to perform another test.
|
|
*/
|
|
STATIC int
|
|
xlog_find_verify_cycle(
|
|
struct xlog *log,
|
|
xfs_daddr_t start_blk,
|
|
int nbblks,
|
|
uint stop_on_cycle_no,
|
|
xfs_daddr_t *new_blk)
|
|
{
|
|
xfs_daddr_t i, j;
|
|
uint cycle;
|
|
xfs_buf_t *bp;
|
|
xfs_daddr_t bufblks;
|
|
xfs_caddr_t buf = NULL;
|
|
int error = 0;
|
|
|
|
/*
|
|
* Greedily allocate a buffer big enough to handle the full
|
|
* range of basic blocks we'll be examining. If that fails,
|
|
* try a smaller size. We need to be able to read at least
|
|
* a log sector, or we're out of luck.
|
|
*/
|
|
bufblks = 1 << ffs(nbblks);
|
|
while (bufblks > log->l_logBBsize)
|
|
bufblks >>= 1;
|
|
while (!(bp = xlog_get_bp(log, bufblks))) {
|
|
bufblks >>= 1;
|
|
if (bufblks < log->l_sectBBsize)
|
|
return ENOMEM;
|
|
}
|
|
|
|
for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
|
|
int bcount;
|
|
|
|
bcount = min(bufblks, (start_blk + nbblks - i));
|
|
|
|
error = xlog_bread(log, i, bcount, bp, &buf);
|
|
if (error)
|
|
goto out;
|
|
|
|
for (j = 0; j < bcount; j++) {
|
|
cycle = xlog_get_cycle(buf);
|
|
if (cycle == stop_on_cycle_no) {
|
|
*new_blk = i+j;
|
|
goto out;
|
|
}
|
|
|
|
buf += BBSIZE;
|
|
}
|
|
}
|
|
|
|
*new_blk = -1;
|
|
|
|
out:
|
|
xlog_put_bp(bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Potentially backup over partial log record write.
|
|
*
|
|
* In the typical case, last_blk is the number of the block directly after
|
|
* a good log record. Therefore, we subtract one to get the block number
|
|
* of the last block in the given buffer. extra_bblks contains the number
|
|
* of blocks we would have read on a previous read. This happens when the
|
|
* last log record is split over the end of the physical log.
|
|
*
|
|
* extra_bblks is the number of blocks potentially verified on a previous
|
|
* call to this routine.
|
|
*/
|
|
STATIC int
|
|
xlog_find_verify_log_record(
|
|
struct xlog *log,
|
|
xfs_daddr_t start_blk,
|
|
xfs_daddr_t *last_blk,
|
|
int extra_bblks)
|
|
{
|
|
xfs_daddr_t i;
|
|
xfs_buf_t *bp;
|
|
xfs_caddr_t offset = NULL;
|
|
xlog_rec_header_t *head = NULL;
|
|
int error = 0;
|
|
int smallmem = 0;
|
|
int num_blks = *last_blk - start_blk;
|
|
int xhdrs;
|
|
|
|
ASSERT(start_blk != 0 || *last_blk != start_blk);
|
|
|
|
if (!(bp = xlog_get_bp(log, num_blks))) {
|
|
if (!(bp = xlog_get_bp(log, 1)))
|
|
return ENOMEM;
|
|
smallmem = 1;
|
|
} else {
|
|
error = xlog_bread(log, start_blk, num_blks, bp, &offset);
|
|
if (error)
|
|
goto out;
|
|
offset += ((num_blks - 1) << BBSHIFT);
|
|
}
|
|
|
|
for (i = (*last_blk) - 1; i >= 0; i--) {
|
|
if (i < start_blk) {
|
|
/* valid log record not found */
|
|
xfs_warn(log->l_mp,
|
|
"Log inconsistent (didn't find previous header)");
|
|
ASSERT(0);
|
|
error = XFS_ERROR(EIO);
|
|
goto out;
|
|
}
|
|
|
|
if (smallmem) {
|
|
error = xlog_bread(log, i, 1, bp, &offset);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
head = (xlog_rec_header_t *)offset;
|
|
|
|
if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
|
|
break;
|
|
|
|
if (!smallmem)
|
|
offset -= BBSIZE;
|
|
}
|
|
|
|
/*
|
|
* We hit the beginning of the physical log & still no header. Return
|
|
* to caller. If caller can handle a return of -1, then this routine
|
|
* will be called again for the end of the physical log.
|
|
*/
|
|
if (i == -1) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We have the final block of the good log (the first block
|
|
* of the log record _before_ the head. So we check the uuid.
|
|
*/
|
|
if ((error = xlog_header_check_mount(log->l_mp, head)))
|
|
goto out;
|
|
|
|
/*
|
|
* We may have found a log record header before we expected one.
|
|
* last_blk will be the 1st block # with a given cycle #. We may end
|
|
* up reading an entire log record. In this case, we don't want to
|
|
* reset last_blk. Only when last_blk points in the middle of a log
|
|
* record do we update last_blk.
|
|
*/
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
|
|
uint h_size = be32_to_cpu(head->h_size);
|
|
|
|
xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
|
|
if (h_size % XLOG_HEADER_CYCLE_SIZE)
|
|
xhdrs++;
|
|
} else {
|
|
xhdrs = 1;
|
|
}
|
|
|
|
if (*last_blk - i + extra_bblks !=
|
|
BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
|
|
*last_blk = i;
|
|
|
|
out:
|
|
xlog_put_bp(bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Head is defined to be the point of the log where the next log write
|
|
* could go. This means that incomplete LR writes at the end are
|
|
* eliminated when calculating the head. We aren't guaranteed that previous
|
|
* LR have complete transactions. We only know that a cycle number of
|
|
* current cycle number -1 won't be present in the log if we start writing
|
|
* from our current block number.
|
|
*
|
|
* last_blk contains the block number of the first block with a given
|
|
* cycle number.
|
|
*
|
|
* Return: zero if normal, non-zero if error.
|
|
*/
|
|
STATIC int
|
|
xlog_find_head(
|
|
struct xlog *log,
|
|
xfs_daddr_t *return_head_blk)
|
|
{
|
|
xfs_buf_t *bp;
|
|
xfs_caddr_t offset;
|
|
xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
|
|
int num_scan_bblks;
|
|
uint first_half_cycle, last_half_cycle;
|
|
uint stop_on_cycle;
|
|
int error, log_bbnum = log->l_logBBsize;
|
|
|
|
/* Is the end of the log device zeroed? */
|
|
if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
|
|
*return_head_blk = first_blk;
|
|
|
|
/* Is the whole lot zeroed? */
|
|
if (!first_blk) {
|
|
/* Linux XFS shouldn't generate totally zeroed logs -
|
|
* mkfs etc write a dummy unmount record to a fresh
|
|
* log so we can store the uuid in there
|
|
*/
|
|
xfs_warn(log->l_mp, "totally zeroed log");
|
|
}
|
|
|
|
return 0;
|
|
} else if (error) {
|
|
xfs_warn(log->l_mp, "empty log check failed");
|
|
return error;
|
|
}
|
|
|
|
first_blk = 0; /* get cycle # of 1st block */
|
|
bp = xlog_get_bp(log, 1);
|
|
if (!bp)
|
|
return ENOMEM;
|
|
|
|
error = xlog_bread(log, 0, 1, bp, &offset);
|
|
if (error)
|
|
goto bp_err;
|
|
|
|
first_half_cycle = xlog_get_cycle(offset);
|
|
|
|
last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
|
|
error = xlog_bread(log, last_blk, 1, bp, &offset);
|
|
if (error)
|
|
goto bp_err;
|
|
|
|
last_half_cycle = xlog_get_cycle(offset);
|
|
ASSERT(last_half_cycle != 0);
|
|
|
|
/*
|
|
* If the 1st half cycle number is equal to the last half cycle number,
|
|
* then the entire log is stamped with the same cycle number. In this
|
|
* case, head_blk can't be set to zero (which makes sense). The below
|
|
* math doesn't work out properly with head_blk equal to zero. Instead,
|
|
* we set it to log_bbnum which is an invalid block number, but this
|
|
* value makes the math correct. If head_blk doesn't changed through
|
|
* all the tests below, *head_blk is set to zero at the very end rather
|
|
* than log_bbnum. In a sense, log_bbnum and zero are the same block
|
|
* in a circular file.
|
|
*/
|
|
if (first_half_cycle == last_half_cycle) {
|
|
/*
|
|
* In this case we believe that the entire log should have
|
|
* cycle number last_half_cycle. We need to scan backwards
|
|
* from the end verifying that there are no holes still
|
|
* containing last_half_cycle - 1. If we find such a hole,
|
|
* then the start of that hole will be the new head. The
|
|
* simple case looks like
|
|
* x | x ... | x - 1 | x
|
|
* Another case that fits this picture would be
|
|
* x | x + 1 | x ... | x
|
|
* In this case the head really is somewhere at the end of the
|
|
* log, as one of the latest writes at the beginning was
|
|
* incomplete.
|
|
* One more case is
|
|
* x | x + 1 | x ... | x - 1 | x
|
|
* This is really the combination of the above two cases, and
|
|
* the head has to end up at the start of the x-1 hole at the
|
|
* end of the log.
|
|
*
|
|
* In the 256k log case, we will read from the beginning to the
|
|
* end of the log and search for cycle numbers equal to x-1.
|
|
* We don't worry about the x+1 blocks that we encounter,
|
|
* because we know that they cannot be the head since the log
|
|
* started with x.
|
|
*/
|
|
head_blk = log_bbnum;
|
|
stop_on_cycle = last_half_cycle - 1;
|
|
} else {
|
|
/*
|
|
* In this case we want to find the first block with cycle
|
|
* number matching last_half_cycle. We expect the log to be
|
|
* some variation on
|
|
* x + 1 ... | x ... | x
|
|
* The first block with cycle number x (last_half_cycle) will
|
|
* be where the new head belongs. First we do a binary search
|
|
* for the first occurrence of last_half_cycle. The binary
|
|
* search may not be totally accurate, so then we scan back
|
|
* from there looking for occurrences of last_half_cycle before
|
|
* us. If that backwards scan wraps around the beginning of
|
|
* the log, then we look for occurrences of last_half_cycle - 1
|
|
* at the end of the log. The cases we're looking for look
|
|
* like
|
|
* v binary search stopped here
|
|
* x + 1 ... | x | x + 1 | x ... | x
|
|
* ^ but we want to locate this spot
|
|
* or
|
|
* <---------> less than scan distance
|
|
* x + 1 ... | x ... | x - 1 | x
|
|
* ^ we want to locate this spot
|
|
*/
|
|
stop_on_cycle = last_half_cycle;
|
|
if ((error = xlog_find_cycle_start(log, bp, first_blk,
|
|
&head_blk, last_half_cycle)))
|
|
goto bp_err;
|
|
}
|
|
|
|
/*
|
|
* Now validate the answer. Scan back some number of maximum possible
|
|
* blocks and make sure each one has the expected cycle number. The
|
|
* maximum is determined by the total possible amount of buffering
|
|
* in the in-core log. The following number can be made tighter if
|
|
* we actually look at the block size of the filesystem.
|
|
*/
|
|
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
|
|
if (head_blk >= num_scan_bblks) {
|
|
/*
|
|
* We are guaranteed that the entire check can be performed
|
|
* in one buffer.
|
|
*/
|
|
start_blk = head_blk - num_scan_bblks;
|
|
if ((error = xlog_find_verify_cycle(log,
|
|
start_blk, num_scan_bblks,
|
|
stop_on_cycle, &new_blk)))
|
|
goto bp_err;
|
|
if (new_blk != -1)
|
|
head_blk = new_blk;
|
|
} else { /* need to read 2 parts of log */
|
|
/*
|
|
* We are going to scan backwards in the log in two parts.
|
|
* First we scan the physical end of the log. In this part
|
|
* of the log, we are looking for blocks with cycle number
|
|
* last_half_cycle - 1.
|
|
* If we find one, then we know that the log starts there, as
|
|
* we've found a hole that didn't get written in going around
|
|
* the end of the physical log. The simple case for this is
|
|
* x + 1 ... | x ... | x - 1 | x
|
|
* <---------> less than scan distance
|
|
* If all of the blocks at the end of the log have cycle number
|
|
* last_half_cycle, then we check the blocks at the start of
|
|
* the log looking for occurrences of last_half_cycle. If we
|
|
* find one, then our current estimate for the location of the
|
|
* first occurrence of last_half_cycle is wrong and we move
|
|
* back to the hole we've found. This case looks like
|
|
* x + 1 ... | x | x + 1 | x ...
|
|
* ^ binary search stopped here
|
|
* Another case we need to handle that only occurs in 256k
|
|
* logs is
|
|
* x + 1 ... | x ... | x+1 | x ...
|
|
* ^ binary search stops here
|
|
* In a 256k log, the scan at the end of the log will see the
|
|
* x + 1 blocks. We need to skip past those since that is
|
|
* certainly not the head of the log. By searching for
|
|
* last_half_cycle-1 we accomplish that.
|
|
*/
|
|
ASSERT(head_blk <= INT_MAX &&
|
|
(xfs_daddr_t) num_scan_bblks >= head_blk);
|
|
start_blk = log_bbnum - (num_scan_bblks - head_blk);
|
|
if ((error = xlog_find_verify_cycle(log, start_blk,
|
|
num_scan_bblks - (int)head_blk,
|
|
(stop_on_cycle - 1), &new_blk)))
|
|
goto bp_err;
|
|
if (new_blk != -1) {
|
|
head_blk = new_blk;
|
|
goto validate_head;
|
|
}
|
|
|
|
/*
|
|
* Scan beginning of log now. The last part of the physical
|
|
* log is good. This scan needs to verify that it doesn't find
|
|
* the last_half_cycle.
|
|
*/
|
|
start_blk = 0;
|
|
ASSERT(head_blk <= INT_MAX);
|
|
if ((error = xlog_find_verify_cycle(log,
|
|
start_blk, (int)head_blk,
|
|
stop_on_cycle, &new_blk)))
|
|
goto bp_err;
|
|
if (new_blk != -1)
|
|
head_blk = new_blk;
|
|
}
|
|
|
|
validate_head:
|
|
/*
|
|
* Now we need to make sure head_blk is not pointing to a block in
|
|
* the middle of a log record.
|
|
*/
|
|
num_scan_bblks = XLOG_REC_SHIFT(log);
|
|
if (head_blk >= num_scan_bblks) {
|
|
start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
|
|
|
|
/* start ptr at last block ptr before head_blk */
|
|
if ((error = xlog_find_verify_log_record(log, start_blk,
|
|
&head_blk, 0)) == -1) {
|
|
error = XFS_ERROR(EIO);
|
|
goto bp_err;
|
|
} else if (error)
|
|
goto bp_err;
|
|
} else {
|
|
start_blk = 0;
|
|
ASSERT(head_blk <= INT_MAX);
|
|
if ((error = xlog_find_verify_log_record(log, start_blk,
|
|
&head_blk, 0)) == -1) {
|
|
/* We hit the beginning of the log during our search */
|
|
start_blk = log_bbnum - (num_scan_bblks - head_blk);
|
|
new_blk = log_bbnum;
|
|
ASSERT(start_blk <= INT_MAX &&
|
|
(xfs_daddr_t) log_bbnum-start_blk >= 0);
|
|
ASSERT(head_blk <= INT_MAX);
|
|
if ((error = xlog_find_verify_log_record(log,
|
|
start_blk, &new_blk,
|
|
(int)head_blk)) == -1) {
|
|
error = XFS_ERROR(EIO);
|
|
goto bp_err;
|
|
} else if (error)
|
|
goto bp_err;
|
|
if (new_blk != log_bbnum)
|
|
head_blk = new_blk;
|
|
} else if (error)
|
|
goto bp_err;
|
|
}
|
|
|
|
xlog_put_bp(bp);
|
|
if (head_blk == log_bbnum)
|
|
*return_head_blk = 0;
|
|
else
|
|
*return_head_blk = head_blk;
|
|
/*
|
|
* When returning here, we have a good block number. Bad block
|
|
* means that during a previous crash, we didn't have a clean break
|
|
* from cycle number N to cycle number N-1. In this case, we need
|
|
* to find the first block with cycle number N-1.
|
|
*/
|
|
return 0;
|
|
|
|
bp_err:
|
|
xlog_put_bp(bp);
|
|
|
|
if (error)
|
|
xfs_warn(log->l_mp, "failed to find log head");
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Find the sync block number or the tail of the log.
|
|
*
|
|
* This will be the block number of the last record to have its
|
|
* associated buffers synced to disk. Every log record header has
|
|
* a sync lsn embedded in it. LSNs hold block numbers, so it is easy
|
|
* to get a sync block number. The only concern is to figure out which
|
|
* log record header to believe.
|
|
*
|
|
* The following algorithm uses the log record header with the largest
|
|
* lsn. The entire log record does not need to be valid. We only care
|
|
* that the header is valid.
|
|
*
|
|
* We could speed up search by using current head_blk buffer, but it is not
|
|
* available.
|
|
*/
|
|
STATIC int
|
|
xlog_find_tail(
|
|
struct xlog *log,
|
|
xfs_daddr_t *head_blk,
|
|
xfs_daddr_t *tail_blk)
|
|
{
|
|
xlog_rec_header_t *rhead;
|
|
xlog_op_header_t *op_head;
|
|
xfs_caddr_t offset = NULL;
|
|
xfs_buf_t *bp;
|
|
int error, i, found;
|
|
xfs_daddr_t umount_data_blk;
|
|
xfs_daddr_t after_umount_blk;
|
|
xfs_lsn_t tail_lsn;
|
|
int hblks;
|
|
|
|
found = 0;
|
|
|
|
/*
|
|
* Find previous log record
|
|
*/
|
|
if ((error = xlog_find_head(log, head_blk)))
|
|
return error;
|
|
|
|
bp = xlog_get_bp(log, 1);
|
|
if (!bp)
|
|
return ENOMEM;
|
|
if (*head_blk == 0) { /* special case */
|
|
error = xlog_bread(log, 0, 1, bp, &offset);
|
|
if (error)
|
|
goto done;
|
|
|
|
if (xlog_get_cycle(offset) == 0) {
|
|
*tail_blk = 0;
|
|
/* leave all other log inited values alone */
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search backwards looking for log record header block
|
|
*/
|
|
ASSERT(*head_blk < INT_MAX);
|
|
for (i = (int)(*head_blk) - 1; i >= 0; i--) {
|
|
error = xlog_bread(log, i, 1, bp, &offset);
|
|
if (error)
|
|
goto done;
|
|
|
|
if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If we haven't found the log record header block, start looking
|
|
* again from the end of the physical log. XXXmiken: There should be
|
|
* a check here to make sure we didn't search more than N blocks in
|
|
* the previous code.
|
|
*/
|
|
if (!found) {
|
|
for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
|
|
error = xlog_bread(log, i, 1, bp, &offset);
|
|
if (error)
|
|
goto done;
|
|
|
|
if (*(__be32 *)offset ==
|
|
cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
|
|
found = 2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found) {
|
|
xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
|
|
xlog_put_bp(bp);
|
|
ASSERT(0);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* find blk_no of tail of log */
|
|
rhead = (xlog_rec_header_t *)offset;
|
|
*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
|
|
|
|
/*
|
|
* Reset log values according to the state of the log when we
|
|
* crashed. In the case where head_blk == 0, we bump curr_cycle
|
|
* one because the next write starts a new cycle rather than
|
|
* continuing the cycle of the last good log record. At this
|
|
* point we have guaranteed that all partial log records have been
|
|
* accounted for. Therefore, we know that the last good log record
|
|
* written was complete and ended exactly on the end boundary
|
|
* of the physical log.
|
|
*/
|
|
log->l_prev_block = i;
|
|
log->l_curr_block = (int)*head_blk;
|
|
log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
|
|
if (found == 2)
|
|
log->l_curr_cycle++;
|
|
atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
|
|
atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
|
|
xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
|
|
BBTOB(log->l_curr_block));
|
|
xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
|
|
BBTOB(log->l_curr_block));
|
|
|
|
/*
|
|
* Look for unmount record. If we find it, then we know there
|
|
* was a clean unmount. Since 'i' could be the last block in
|
|
* the physical log, we convert to a log block before comparing
|
|
* to the head_blk.
|
|
*
|
|
* Save the current tail lsn to use to pass to
|
|
* xlog_clear_stale_blocks() below. We won't want to clear the
|
|
* unmount record if there is one, so we pass the lsn of the
|
|
* unmount record rather than the block after it.
|
|
*/
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
|
|
int h_size = be32_to_cpu(rhead->h_size);
|
|
int h_version = be32_to_cpu(rhead->h_version);
|
|
|
|
if ((h_version & XLOG_VERSION_2) &&
|
|
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
|
|
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
|
|
if (h_size % XLOG_HEADER_CYCLE_SIZE)
|
|
hblks++;
|
|
} else {
|
|
hblks = 1;
|
|
}
|
|
} else {
|
|
hblks = 1;
|
|
}
|
|
after_umount_blk = (i + hblks + (int)
|
|
BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
|
|
tail_lsn = atomic64_read(&log->l_tail_lsn);
|
|
if (*head_blk == after_umount_blk &&
|
|
be32_to_cpu(rhead->h_num_logops) == 1) {
|
|
umount_data_blk = (i + hblks) % log->l_logBBsize;
|
|
error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
|
|
if (error)
|
|
goto done;
|
|
|
|
op_head = (xlog_op_header_t *)offset;
|
|
if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
|
|
/*
|
|
* Set tail and last sync so that newly written
|
|
* log records will point recovery to after the
|
|
* current unmount record.
|
|
*/
|
|
xlog_assign_atomic_lsn(&log->l_tail_lsn,
|
|
log->l_curr_cycle, after_umount_blk);
|
|
xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
|
|
log->l_curr_cycle, after_umount_blk);
|
|
*tail_blk = after_umount_blk;
|
|
|
|
/*
|
|
* Note that the unmount was clean. If the unmount
|
|
* was not clean, we need to know this to rebuild the
|
|
* superblock counters from the perag headers if we
|
|
* have a filesystem using non-persistent counters.
|
|
*/
|
|
log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that there are no blocks in front of the head
|
|
* with the same cycle number as the head. This can happen
|
|
* because we allow multiple outstanding log writes concurrently,
|
|
* and the later writes might make it out before earlier ones.
|
|
*
|
|
* We use the lsn from before modifying it so that we'll never
|
|
* overwrite the unmount record after a clean unmount.
|
|
*
|
|
* Do this only if we are going to recover the filesystem
|
|
*
|
|
* NOTE: This used to say "if (!readonly)"
|
|
* However on Linux, we can & do recover a read-only filesystem.
|
|
* We only skip recovery if NORECOVERY is specified on mount,
|
|
* in which case we would not be here.
|
|
*
|
|
* But... if the -device- itself is readonly, just skip this.
|
|
* We can't recover this device anyway, so it won't matter.
|
|
*/
|
|
if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
|
|
error = xlog_clear_stale_blocks(log, tail_lsn);
|
|
|
|
done:
|
|
xlog_put_bp(bp);
|
|
|
|
if (error)
|
|
xfs_warn(log->l_mp, "failed to locate log tail");
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Is the log zeroed at all?
|
|
*
|
|
* The last binary search should be changed to perform an X block read
|
|
* once X becomes small enough. You can then search linearly through
|
|
* the X blocks. This will cut down on the number of reads we need to do.
|
|
*
|
|
* If the log is partially zeroed, this routine will pass back the blkno
|
|
* of the first block with cycle number 0. It won't have a complete LR
|
|
* preceding it.
|
|
*
|
|
* Return:
|
|
* 0 => the log is completely written to
|
|
* -1 => use *blk_no as the first block of the log
|
|
* >0 => error has occurred
|
|
*/
|
|
STATIC int
|
|
xlog_find_zeroed(
|
|
struct xlog *log,
|
|
xfs_daddr_t *blk_no)
|
|
{
|
|
xfs_buf_t *bp;
|
|
xfs_caddr_t offset;
|
|
uint first_cycle, last_cycle;
|
|
xfs_daddr_t new_blk, last_blk, start_blk;
|
|
xfs_daddr_t num_scan_bblks;
|
|
int error, log_bbnum = log->l_logBBsize;
|
|
|
|
*blk_no = 0;
|
|
|
|
/* check totally zeroed log */
|
|
bp = xlog_get_bp(log, 1);
|
|
if (!bp)
|
|
return ENOMEM;
|
|
error = xlog_bread(log, 0, 1, bp, &offset);
|
|
if (error)
|
|
goto bp_err;
|
|
|
|
first_cycle = xlog_get_cycle(offset);
|
|
if (first_cycle == 0) { /* completely zeroed log */
|
|
*blk_no = 0;
|
|
xlog_put_bp(bp);
|
|
return -1;
|
|
}
|
|
|
|
/* check partially zeroed log */
|
|
error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
|
|
if (error)
|
|
goto bp_err;
|
|
|
|
last_cycle = xlog_get_cycle(offset);
|
|
if (last_cycle != 0) { /* log completely written to */
|
|
xlog_put_bp(bp);
|
|
return 0;
|
|
} else if (first_cycle != 1) {
|
|
/*
|
|
* If the cycle of the last block is zero, the cycle of
|
|
* the first block must be 1. If it's not, maybe we're
|
|
* not looking at a log... Bail out.
|
|
*/
|
|
xfs_warn(log->l_mp,
|
|
"Log inconsistent or not a log (last==0, first!=1)");
|
|
error = XFS_ERROR(EINVAL);
|
|
goto bp_err;
|
|
}
|
|
|
|
/* we have a partially zeroed log */
|
|
last_blk = log_bbnum-1;
|
|
if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
|
|
goto bp_err;
|
|
|
|
/*
|
|
* Validate the answer. Because there is no way to guarantee that
|
|
* the entire log is made up of log records which are the same size,
|
|
* we scan over the defined maximum blocks. At this point, the maximum
|
|
* is not chosen to mean anything special. XXXmiken
|
|
*/
|
|
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
|
|
ASSERT(num_scan_bblks <= INT_MAX);
|
|
|
|
if (last_blk < num_scan_bblks)
|
|
num_scan_bblks = last_blk;
|
|
start_blk = last_blk - num_scan_bblks;
|
|
|
|
/*
|
|
* We search for any instances of cycle number 0 that occur before
|
|
* our current estimate of the head. What we're trying to detect is
|
|
* 1 ... | 0 | 1 | 0...
|
|
* ^ binary search ends here
|
|
*/
|
|
if ((error = xlog_find_verify_cycle(log, start_blk,
|
|
(int)num_scan_bblks, 0, &new_blk)))
|
|
goto bp_err;
|
|
if (new_blk != -1)
|
|
last_blk = new_blk;
|
|
|
|
/*
|
|
* Potentially backup over partial log record write. We don't need
|
|
* to search the end of the log because we know it is zero.
|
|
*/
|
|
if ((error = xlog_find_verify_log_record(log, start_blk,
|
|
&last_blk, 0)) == -1) {
|
|
error = XFS_ERROR(EIO);
|
|
goto bp_err;
|
|
} else if (error)
|
|
goto bp_err;
|
|
|
|
*blk_no = last_blk;
|
|
bp_err:
|
|
xlog_put_bp(bp);
|
|
if (error)
|
|
return error;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* These are simple subroutines used by xlog_clear_stale_blocks() below
|
|
* to initialize a buffer full of empty log record headers and write
|
|
* them into the log.
|
|
*/
|
|
STATIC void
|
|
xlog_add_record(
|
|
struct xlog *log,
|
|
xfs_caddr_t buf,
|
|
int cycle,
|
|
int block,
|
|
int tail_cycle,
|
|
int tail_block)
|
|
{
|
|
xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
|
|
|
|
memset(buf, 0, BBSIZE);
|
|
recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
|
|
recp->h_cycle = cpu_to_be32(cycle);
|
|
recp->h_version = cpu_to_be32(
|
|
xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
|
|
recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
|
|
recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
|
|
recp->h_fmt = cpu_to_be32(XLOG_FMT);
|
|
memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
|
|
}
|
|
|
|
STATIC int
|
|
xlog_write_log_records(
|
|
struct xlog *log,
|
|
int cycle,
|
|
int start_block,
|
|
int blocks,
|
|
int tail_cycle,
|
|
int tail_block)
|
|
{
|
|
xfs_caddr_t offset;
|
|
xfs_buf_t *bp;
|
|
int balign, ealign;
|
|
int sectbb = log->l_sectBBsize;
|
|
int end_block = start_block + blocks;
|
|
int bufblks;
|
|
int error = 0;
|
|
int i, j = 0;
|
|
|
|
/*
|
|
* Greedily allocate a buffer big enough to handle the full
|
|
* range of basic blocks to be written. If that fails, try
|
|
* a smaller size. We need to be able to write at least a
|
|
* log sector, or we're out of luck.
|
|
*/
|
|
bufblks = 1 << ffs(blocks);
|
|
while (bufblks > log->l_logBBsize)
|
|
bufblks >>= 1;
|
|
while (!(bp = xlog_get_bp(log, bufblks))) {
|
|
bufblks >>= 1;
|
|
if (bufblks < sectbb)
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* We may need to do a read at the start to fill in part of
|
|
* the buffer in the starting sector not covered by the first
|
|
* write below.
|
|
*/
|
|
balign = round_down(start_block, sectbb);
|
|
if (balign != start_block) {
|
|
error = xlog_bread_noalign(log, start_block, 1, bp);
|
|
if (error)
|
|
goto out_put_bp;
|
|
|
|
j = start_block - balign;
|
|
}
|
|
|
|
for (i = start_block; i < end_block; i += bufblks) {
|
|
int bcount, endcount;
|
|
|
|
bcount = min(bufblks, end_block - start_block);
|
|
endcount = bcount - j;
|
|
|
|
/* We may need to do a read at the end to fill in part of
|
|
* the buffer in the final sector not covered by the write.
|
|
* If this is the same sector as the above read, skip it.
|
|
*/
|
|
ealign = round_down(end_block, sectbb);
|
|
if (j == 0 && (start_block + endcount > ealign)) {
|
|
offset = bp->b_addr + BBTOB(ealign - start_block);
|
|
error = xlog_bread_offset(log, ealign, sectbb,
|
|
bp, offset);
|
|
if (error)
|
|
break;
|
|
|
|
}
|
|
|
|
offset = xlog_align(log, start_block, endcount, bp);
|
|
for (; j < endcount; j++) {
|
|
xlog_add_record(log, offset, cycle, i+j,
|
|
tail_cycle, tail_block);
|
|
offset += BBSIZE;
|
|
}
|
|
error = xlog_bwrite(log, start_block, endcount, bp);
|
|
if (error)
|
|
break;
|
|
start_block += endcount;
|
|
j = 0;
|
|
}
|
|
|
|
out_put_bp:
|
|
xlog_put_bp(bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to blow away any incomplete log writes out
|
|
* in front of the log head. We do this so that we won't become confused
|
|
* if we come up, write only a little bit more, and then crash again.
|
|
* If we leave the partial log records out there, this situation could
|
|
* cause us to think those partial writes are valid blocks since they
|
|
* have the current cycle number. We get rid of them by overwriting them
|
|
* with empty log records with the old cycle number rather than the
|
|
* current one.
|
|
*
|
|
* The tail lsn is passed in rather than taken from
|
|
* the log so that we will not write over the unmount record after a
|
|
* clean unmount in a 512 block log. Doing so would leave the log without
|
|
* any valid log records in it until a new one was written. If we crashed
|
|
* during that time we would not be able to recover.
|
|
*/
|
|
STATIC int
|
|
xlog_clear_stale_blocks(
|
|
struct xlog *log,
|
|
xfs_lsn_t tail_lsn)
|
|
{
|
|
int tail_cycle, head_cycle;
|
|
int tail_block, head_block;
|
|
int tail_distance, max_distance;
|
|
int distance;
|
|
int error;
|
|
|
|
tail_cycle = CYCLE_LSN(tail_lsn);
|
|
tail_block = BLOCK_LSN(tail_lsn);
|
|
head_cycle = log->l_curr_cycle;
|
|
head_block = log->l_curr_block;
|
|
|
|
/*
|
|
* Figure out the distance between the new head of the log
|
|
* and the tail. We want to write over any blocks beyond the
|
|
* head that we may have written just before the crash, but
|
|
* we don't want to overwrite the tail of the log.
|
|
*/
|
|
if (head_cycle == tail_cycle) {
|
|
/*
|
|
* The tail is behind the head in the physical log,
|
|
* so the distance from the head to the tail is the
|
|
* distance from the head to the end of the log plus
|
|
* the distance from the beginning of the log to the
|
|
* tail.
|
|
*/
|
|
if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
|
|
XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
|
|
XFS_ERRLEVEL_LOW, log->l_mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
tail_distance = tail_block + (log->l_logBBsize - head_block);
|
|
} else {
|
|
/*
|
|
* The head is behind the tail in the physical log,
|
|
* so the distance from the head to the tail is just
|
|
* the tail block minus the head block.
|
|
*/
|
|
if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
|
|
XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
|
|
XFS_ERRLEVEL_LOW, log->l_mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
tail_distance = tail_block - head_block;
|
|
}
|
|
|
|
/*
|
|
* If the head is right up against the tail, we can't clear
|
|
* anything.
|
|
*/
|
|
if (tail_distance <= 0) {
|
|
ASSERT(tail_distance == 0);
|
|
return 0;
|
|
}
|
|
|
|
max_distance = XLOG_TOTAL_REC_SHIFT(log);
|
|
/*
|
|
* Take the smaller of the maximum amount of outstanding I/O
|
|
* we could have and the distance to the tail to clear out.
|
|
* We take the smaller so that we don't overwrite the tail and
|
|
* we don't waste all day writing from the head to the tail
|
|
* for no reason.
|
|
*/
|
|
max_distance = MIN(max_distance, tail_distance);
|
|
|
|
if ((head_block + max_distance) <= log->l_logBBsize) {
|
|
/*
|
|
* We can stomp all the blocks we need to without
|
|
* wrapping around the end of the log. Just do it
|
|
* in a single write. Use the cycle number of the
|
|
* current cycle minus one so that the log will look like:
|
|
* n ... | n - 1 ...
|
|
*/
|
|
error = xlog_write_log_records(log, (head_cycle - 1),
|
|
head_block, max_distance, tail_cycle,
|
|
tail_block);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
/*
|
|
* We need to wrap around the end of the physical log in
|
|
* order to clear all the blocks. Do it in two separate
|
|
* I/Os. The first write should be from the head to the
|
|
* end of the physical log, and it should use the current
|
|
* cycle number minus one just like above.
|
|
*/
|
|
distance = log->l_logBBsize - head_block;
|
|
error = xlog_write_log_records(log, (head_cycle - 1),
|
|
head_block, distance, tail_cycle,
|
|
tail_block);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Now write the blocks at the start of the physical log.
|
|
* This writes the remainder of the blocks we want to clear.
|
|
* It uses the current cycle number since we're now on the
|
|
* same cycle as the head so that we get:
|
|
* n ... n ... | n - 1 ...
|
|
* ^^^^^ blocks we're writing
|
|
*/
|
|
distance = max_distance - (log->l_logBBsize - head_block);
|
|
error = xlog_write_log_records(log, head_cycle, 0, distance,
|
|
tail_cycle, tail_block);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* Log recover routines
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
STATIC xlog_recover_t *
|
|
xlog_recover_find_tid(
|
|
struct hlist_head *head,
|
|
xlog_tid_t tid)
|
|
{
|
|
xlog_recover_t *trans;
|
|
|
|
hlist_for_each_entry(trans, head, r_list) {
|
|
if (trans->r_log_tid == tid)
|
|
return trans;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_new_tid(
|
|
struct hlist_head *head,
|
|
xlog_tid_t tid,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
xlog_recover_t *trans;
|
|
|
|
trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
|
|
trans->r_log_tid = tid;
|
|
trans->r_lsn = lsn;
|
|
INIT_LIST_HEAD(&trans->r_itemq);
|
|
|
|
INIT_HLIST_NODE(&trans->r_list);
|
|
hlist_add_head(&trans->r_list, head);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_add_item(
|
|
struct list_head *head)
|
|
{
|
|
xlog_recover_item_t *item;
|
|
|
|
item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
|
|
INIT_LIST_HEAD(&item->ri_list);
|
|
list_add_tail(&item->ri_list, head);
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_add_to_cont_trans(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
xfs_caddr_t dp,
|
|
int len)
|
|
{
|
|
xlog_recover_item_t *item;
|
|
xfs_caddr_t ptr, old_ptr;
|
|
int old_len;
|
|
|
|
if (list_empty(&trans->r_itemq)) {
|
|
/* finish copying rest of trans header */
|
|
xlog_recover_add_item(&trans->r_itemq);
|
|
ptr = (xfs_caddr_t) &trans->r_theader +
|
|
sizeof(xfs_trans_header_t) - len;
|
|
memcpy(ptr, dp, len); /* d, s, l */
|
|
return 0;
|
|
}
|
|
/* take the tail entry */
|
|
item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
|
|
|
|
old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
|
|
old_len = item->ri_buf[item->ri_cnt-1].i_len;
|
|
|
|
ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
|
|
memcpy(&ptr[old_len], dp, len); /* d, s, l */
|
|
item->ri_buf[item->ri_cnt-1].i_len += len;
|
|
item->ri_buf[item->ri_cnt-1].i_addr = ptr;
|
|
trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The next region to add is the start of a new region. It could be
|
|
* a whole region or it could be the first part of a new region. Because
|
|
* of this, the assumption here is that the type and size fields of all
|
|
* format structures fit into the first 32 bits of the structure.
|
|
*
|
|
* This works because all regions must be 32 bit aligned. Therefore, we
|
|
* either have both fields or we have neither field. In the case we have
|
|
* neither field, the data part of the region is zero length. We only have
|
|
* a log_op_header and can throw away the header since a new one will appear
|
|
* later. If we have at least 4 bytes, then we can determine how many regions
|
|
* will appear in the current log item.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_add_to_trans(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
xfs_caddr_t dp,
|
|
int len)
|
|
{
|
|
xfs_inode_log_format_t *in_f; /* any will do */
|
|
xlog_recover_item_t *item;
|
|
xfs_caddr_t ptr;
|
|
|
|
if (!len)
|
|
return 0;
|
|
if (list_empty(&trans->r_itemq)) {
|
|
/* we need to catch log corruptions here */
|
|
if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
|
|
xfs_warn(log->l_mp, "%s: bad header magic number",
|
|
__func__);
|
|
ASSERT(0);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
if (len == sizeof(xfs_trans_header_t))
|
|
xlog_recover_add_item(&trans->r_itemq);
|
|
memcpy(&trans->r_theader, dp, len); /* d, s, l */
|
|
return 0;
|
|
}
|
|
|
|
ptr = kmem_alloc(len, KM_SLEEP);
|
|
memcpy(ptr, dp, len);
|
|
in_f = (xfs_inode_log_format_t *)ptr;
|
|
|
|
/* take the tail entry */
|
|
item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
|
|
if (item->ri_total != 0 &&
|
|
item->ri_total == item->ri_cnt) {
|
|
/* tail item is in use, get a new one */
|
|
xlog_recover_add_item(&trans->r_itemq);
|
|
item = list_entry(trans->r_itemq.prev,
|
|
xlog_recover_item_t, ri_list);
|
|
}
|
|
|
|
if (item->ri_total == 0) { /* first region to be added */
|
|
if (in_f->ilf_size == 0 ||
|
|
in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
|
|
xfs_warn(log->l_mp,
|
|
"bad number of regions (%d) in inode log format",
|
|
in_f->ilf_size);
|
|
ASSERT(0);
|
|
kmem_free(ptr);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
item->ri_total = in_f->ilf_size;
|
|
item->ri_buf =
|
|
kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
|
|
KM_SLEEP);
|
|
}
|
|
ASSERT(item->ri_total > item->ri_cnt);
|
|
/* Description region is ri_buf[0] */
|
|
item->ri_buf[item->ri_cnt].i_addr = ptr;
|
|
item->ri_buf[item->ri_cnt].i_len = len;
|
|
item->ri_cnt++;
|
|
trace_xfs_log_recover_item_add(log, trans, item, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sort the log items in the transaction.
|
|
*
|
|
* The ordering constraints are defined by the inode allocation and unlink
|
|
* behaviour. The rules are:
|
|
*
|
|
* 1. Every item is only logged once in a given transaction. Hence it
|
|
* represents the last logged state of the item. Hence ordering is
|
|
* dependent on the order in which operations need to be performed so
|
|
* required initial conditions are always met.
|
|
*
|
|
* 2. Cancelled buffers are recorded in pass 1 in a separate table and
|
|
* there's nothing to replay from them so we can simply cull them
|
|
* from the transaction. However, we can't do that until after we've
|
|
* replayed all the other items because they may be dependent on the
|
|
* cancelled buffer and replaying the cancelled buffer can remove it
|
|
* form the cancelled buffer table. Hence they have tobe done last.
|
|
*
|
|
* 3. Inode allocation buffers must be replayed before inode items that
|
|
* read the buffer and replay changes into it. For filesystems using the
|
|
* ICREATE transactions, this means XFS_LI_ICREATE objects need to get
|
|
* treated the same as inode allocation buffers as they create and
|
|
* initialise the buffers directly.
|
|
*
|
|
* 4. Inode unlink buffers must be replayed after inode items are replayed.
|
|
* This ensures that inodes are completely flushed to the inode buffer
|
|
* in a "free" state before we remove the unlinked inode list pointer.
|
|
*
|
|
* Hence the ordering needs to be inode allocation buffers first, inode items
|
|
* second, inode unlink buffers third and cancelled buffers last.
|
|
*
|
|
* But there's a problem with that - we can't tell an inode allocation buffer
|
|
* apart from a regular buffer, so we can't separate them. We can, however,
|
|
* tell an inode unlink buffer from the others, and so we can separate them out
|
|
* from all the other buffers and move them to last.
|
|
*
|
|
* Hence, 4 lists, in order from head to tail:
|
|
* - buffer_list for all buffers except cancelled/inode unlink buffers
|
|
* - item_list for all non-buffer items
|
|
* - inode_buffer_list for inode unlink buffers
|
|
* - cancel_list for the cancelled buffers
|
|
*
|
|
* Note that we add objects to the tail of the lists so that first-to-last
|
|
* ordering is preserved within the lists. Adding objects to the head of the
|
|
* list means when we traverse from the head we walk them in last-to-first
|
|
* order. For cancelled buffers and inode unlink buffers this doesn't matter,
|
|
* but for all other items there may be specific ordering that we need to
|
|
* preserve.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_reorder_trans(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
int pass)
|
|
{
|
|
xlog_recover_item_t *item, *n;
|
|
int error = 0;
|
|
LIST_HEAD(sort_list);
|
|
LIST_HEAD(cancel_list);
|
|
LIST_HEAD(buffer_list);
|
|
LIST_HEAD(inode_buffer_list);
|
|
LIST_HEAD(inode_list);
|
|
|
|
list_splice_init(&trans->r_itemq, &sort_list);
|
|
list_for_each_entry_safe(item, n, &sort_list, ri_list) {
|
|
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
|
|
|
|
switch (ITEM_TYPE(item)) {
|
|
case XFS_LI_ICREATE:
|
|
list_move_tail(&item->ri_list, &buffer_list);
|
|
break;
|
|
case XFS_LI_BUF:
|
|
if (buf_f->blf_flags & XFS_BLF_CANCEL) {
|
|
trace_xfs_log_recover_item_reorder_head(log,
|
|
trans, item, pass);
|
|
list_move(&item->ri_list, &cancel_list);
|
|
break;
|
|
}
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
|
|
list_move(&item->ri_list, &inode_buffer_list);
|
|
break;
|
|
}
|
|
list_move_tail(&item->ri_list, &buffer_list);
|
|
break;
|
|
case XFS_LI_INODE:
|
|
case XFS_LI_DQUOT:
|
|
case XFS_LI_QUOTAOFF:
|
|
case XFS_LI_EFD:
|
|
case XFS_LI_EFI:
|
|
trace_xfs_log_recover_item_reorder_tail(log,
|
|
trans, item, pass);
|
|
list_move_tail(&item->ri_list, &inode_list);
|
|
break;
|
|
default:
|
|
xfs_warn(log->l_mp,
|
|
"%s: unrecognized type of log operation",
|
|
__func__);
|
|
ASSERT(0);
|
|
/*
|
|
* return the remaining items back to the transaction
|
|
* item list so they can be freed in caller.
|
|
*/
|
|
if (!list_empty(&sort_list))
|
|
list_splice_init(&sort_list, &trans->r_itemq);
|
|
error = XFS_ERROR(EIO);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
ASSERT(list_empty(&sort_list));
|
|
if (!list_empty(&buffer_list))
|
|
list_splice(&buffer_list, &trans->r_itemq);
|
|
if (!list_empty(&inode_list))
|
|
list_splice_tail(&inode_list, &trans->r_itemq);
|
|
if (!list_empty(&inode_buffer_list))
|
|
list_splice_tail(&inode_buffer_list, &trans->r_itemq);
|
|
if (!list_empty(&cancel_list))
|
|
list_splice_tail(&cancel_list, &trans->r_itemq);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Build up the table of buf cancel records so that we don't replay
|
|
* cancelled data in the second pass. For buffer records that are
|
|
* not cancel records, there is nothing to do here so we just return.
|
|
*
|
|
* If we get a cancel record which is already in the table, this indicates
|
|
* that the buffer was cancelled multiple times. In order to ensure
|
|
* that during pass 2 we keep the record in the table until we reach its
|
|
* last occurrence in the log, we keep a reference count in the cancel
|
|
* record in the table to tell us how many times we expect to see this
|
|
* record during the second pass.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_buffer_pass1(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
|
|
struct list_head *bucket;
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
/*
|
|
* If this isn't a cancel buffer item, then just return.
|
|
*/
|
|
if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
|
|
trace_xfs_log_recover_buf_not_cancel(log, buf_f);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Insert an xfs_buf_cancel record into the hash table of them.
|
|
* If there is already an identical record, bump its reference count.
|
|
*/
|
|
bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
|
|
list_for_each_entry(bcp, bucket, bc_list) {
|
|
if (bcp->bc_blkno == buf_f->blf_blkno &&
|
|
bcp->bc_len == buf_f->blf_len) {
|
|
bcp->bc_refcount++;
|
|
trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
|
|
bcp->bc_blkno = buf_f->blf_blkno;
|
|
bcp->bc_len = buf_f->blf_len;
|
|
bcp->bc_refcount = 1;
|
|
list_add_tail(&bcp->bc_list, bucket);
|
|
|
|
trace_xfs_log_recover_buf_cancel_add(log, buf_f);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check to see whether the buffer being recovered has a corresponding
|
|
* entry in the buffer cancel record table. If it is, return the cancel
|
|
* buffer structure to the caller.
|
|
*/
|
|
STATIC struct xfs_buf_cancel *
|
|
xlog_peek_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len,
|
|
ushort flags)
|
|
{
|
|
struct list_head *bucket;
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
if (!log->l_buf_cancel_table) {
|
|
/* empty table means no cancelled buffers in the log */
|
|
ASSERT(!(flags & XFS_BLF_CANCEL));
|
|
return NULL;
|
|
}
|
|
|
|
bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
|
|
list_for_each_entry(bcp, bucket, bc_list) {
|
|
if (bcp->bc_blkno == blkno && bcp->bc_len == len)
|
|
return bcp;
|
|
}
|
|
|
|
/*
|
|
* We didn't find a corresponding entry in the table, so return 0 so
|
|
* that the buffer is NOT cancelled.
|
|
*/
|
|
ASSERT(!(flags & XFS_BLF_CANCEL));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If the buffer is being cancelled then return 1 so that it will be cancelled,
|
|
* otherwise return 0. If the buffer is actually a buffer cancel item
|
|
* (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
|
|
* table and remove it from the table if this is the last reference.
|
|
*
|
|
* We remove the cancel record from the table when we encounter its last
|
|
* occurrence in the log so that if the same buffer is re-used again after its
|
|
* last cancellation we actually replay the changes made at that point.
|
|
*/
|
|
STATIC int
|
|
xlog_check_buffer_cancelled(
|
|
struct xlog *log,
|
|
xfs_daddr_t blkno,
|
|
uint len,
|
|
ushort flags)
|
|
{
|
|
struct xfs_buf_cancel *bcp;
|
|
|
|
bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
|
|
if (!bcp)
|
|
return 0;
|
|
|
|
/*
|
|
* We've go a match, so return 1 so that the recovery of this buffer
|
|
* is cancelled. If this buffer is actually a buffer cancel log
|
|
* item, then decrement the refcount on the one in the table and
|
|
* remove it if this is the last reference.
|
|
*/
|
|
if (flags & XFS_BLF_CANCEL) {
|
|
if (--bcp->bc_refcount == 0) {
|
|
list_del(&bcp->bc_list);
|
|
kmem_free(bcp);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Perform recovery for a buffer full of inodes. In these buffers, the only
|
|
* data which should be recovered is that which corresponds to the
|
|
* di_next_unlinked pointers in the on disk inode structures. The rest of the
|
|
* data for the inodes is always logged through the inodes themselves rather
|
|
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
|
|
*
|
|
* The only time when buffers full of inodes are fully recovered is when the
|
|
* buffer is full of newly allocated inodes. In this case the buffer will
|
|
* not be marked as an inode buffer and so will be sent to
|
|
* xlog_recover_do_reg_buffer() below during recovery.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_do_inode_buffer(
|
|
struct xfs_mount *mp,
|
|
xlog_recover_item_t *item,
|
|
struct xfs_buf *bp,
|
|
xfs_buf_log_format_t *buf_f)
|
|
{
|
|
int i;
|
|
int item_index = 0;
|
|
int bit = 0;
|
|
int nbits = 0;
|
|
int reg_buf_offset = 0;
|
|
int reg_buf_bytes = 0;
|
|
int next_unlinked_offset;
|
|
int inodes_per_buf;
|
|
xfs_agino_t *logged_nextp;
|
|
xfs_agino_t *buffer_nextp;
|
|
|
|
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
|
|
|
|
/*
|
|
* Post recovery validation only works properly on CRC enabled
|
|
* filesystems.
|
|
*/
|
|
if (xfs_sb_version_hascrc(&mp->m_sb))
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
|
|
inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
|
|
for (i = 0; i < inodes_per_buf; i++) {
|
|
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
|
|
offsetof(xfs_dinode_t, di_next_unlinked);
|
|
|
|
while (next_unlinked_offset >=
|
|
(reg_buf_offset + reg_buf_bytes)) {
|
|
/*
|
|
* The next di_next_unlinked field is beyond
|
|
* the current logged region. Find the next
|
|
* logged region that contains or is beyond
|
|
* the current di_next_unlinked field.
|
|
*/
|
|
bit += nbits;
|
|
bit = xfs_next_bit(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
|
|
/*
|
|
* If there are no more logged regions in the
|
|
* buffer, then we're done.
|
|
*/
|
|
if (bit == -1)
|
|
return 0;
|
|
|
|
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
ASSERT(nbits > 0);
|
|
reg_buf_offset = bit << XFS_BLF_SHIFT;
|
|
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
|
|
item_index++;
|
|
}
|
|
|
|
/*
|
|
* If the current logged region starts after the current
|
|
* di_next_unlinked field, then move on to the next
|
|
* di_next_unlinked field.
|
|
*/
|
|
if (next_unlinked_offset < reg_buf_offset)
|
|
continue;
|
|
|
|
ASSERT(item->ri_buf[item_index].i_addr != NULL);
|
|
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
|
|
ASSERT((reg_buf_offset + reg_buf_bytes) <=
|
|
BBTOB(bp->b_io_length));
|
|
|
|
/*
|
|
* The current logged region contains a copy of the
|
|
* current di_next_unlinked field. Extract its value
|
|
* and copy it to the buffer copy.
|
|
*/
|
|
logged_nextp = item->ri_buf[item_index].i_addr +
|
|
next_unlinked_offset - reg_buf_offset;
|
|
if (unlikely(*logged_nextp == 0)) {
|
|
xfs_alert(mp,
|
|
"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
|
|
"Trying to replay bad (0) inode di_next_unlinked field.",
|
|
item, bp);
|
|
XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
|
|
XFS_ERRLEVEL_LOW, mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
|
|
buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
|
|
next_unlinked_offset);
|
|
*buffer_nextp = *logged_nextp;
|
|
|
|
/*
|
|
* If necessary, recalculate the CRC in the on-disk inode. We
|
|
* have to leave the inode in a consistent state for whoever
|
|
* reads it next....
|
|
*/
|
|
xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
|
|
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* V5 filesystems know the age of the buffer on disk being recovered. We can
|
|
* have newer objects on disk than we are replaying, and so for these cases we
|
|
* don't want to replay the current change as that will make the buffer contents
|
|
* temporarily invalid on disk.
|
|
*
|
|
* The magic number might not match the buffer type we are going to recover
|
|
* (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
|
|
* extract the LSN of the existing object in the buffer based on it's current
|
|
* magic number. If we don't recognise the magic number in the buffer, then
|
|
* return a LSN of -1 so that the caller knows it was an unrecognised block and
|
|
* so can recover the buffer.
|
|
*
|
|
* Note: we cannot rely solely on magic number matches to determine that the
|
|
* buffer has a valid LSN - we also need to verify that it belongs to this
|
|
* filesystem, so we need to extract the object's LSN and compare it to that
|
|
* which we read from the superblock. If the UUIDs don't match, then we've got a
|
|
* stale metadata block from an old filesystem instance that we need to recover
|
|
* over the top of.
|
|
*/
|
|
static xfs_lsn_t
|
|
xlog_recover_get_buf_lsn(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
__uint32_t magic32;
|
|
__uint16_t magic16;
|
|
__uint16_t magicda;
|
|
void *blk = bp->b_addr;
|
|
uuid_t *uuid;
|
|
xfs_lsn_t lsn = -1;
|
|
|
|
/* v4 filesystems always recover immediately */
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
goto recover_immediately;
|
|
|
|
magic32 = be32_to_cpu(*(__be32 *)blk);
|
|
switch (magic32) {
|
|
case XFS_ABTB_CRC_MAGIC:
|
|
case XFS_ABTC_CRC_MAGIC:
|
|
case XFS_ABTB_MAGIC:
|
|
case XFS_ABTC_MAGIC:
|
|
case XFS_IBT_CRC_MAGIC:
|
|
case XFS_IBT_MAGIC: {
|
|
struct xfs_btree_block *btb = blk;
|
|
|
|
lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
|
|
uuid = &btb->bb_u.s.bb_uuid;
|
|
break;
|
|
}
|
|
case XFS_BMAP_CRC_MAGIC:
|
|
case XFS_BMAP_MAGIC: {
|
|
struct xfs_btree_block *btb = blk;
|
|
|
|
lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
|
|
uuid = &btb->bb_u.l.bb_uuid;
|
|
break;
|
|
}
|
|
case XFS_AGF_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
|
|
uuid = &((struct xfs_agf *)blk)->agf_uuid;
|
|
break;
|
|
case XFS_AGFL_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
|
|
uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
|
|
break;
|
|
case XFS_AGI_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
|
|
uuid = &((struct xfs_agi *)blk)->agi_uuid;
|
|
break;
|
|
case XFS_SYMLINK_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
|
|
uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
|
|
break;
|
|
case XFS_DIR3_BLOCK_MAGIC:
|
|
case XFS_DIR3_DATA_MAGIC:
|
|
case XFS_DIR3_FREE_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
|
|
uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
|
|
break;
|
|
case XFS_ATTR3_RMT_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
|
|
uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
|
|
break;
|
|
case XFS_SB_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
|
|
uuid = &((struct xfs_dsb *)blk)->sb_uuid;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (lsn != (xfs_lsn_t)-1) {
|
|
if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
|
|
goto recover_immediately;
|
|
return lsn;
|
|
}
|
|
|
|
magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
|
|
switch (magicda) {
|
|
case XFS_DIR3_LEAF1_MAGIC:
|
|
case XFS_DIR3_LEAFN_MAGIC:
|
|
case XFS_DA3_NODE_MAGIC:
|
|
lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
|
|
uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (lsn != (xfs_lsn_t)-1) {
|
|
if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
|
|
goto recover_immediately;
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* We do individual object checks on dquot and inode buffers as they
|
|
* have their own individual LSN records. Also, we could have a stale
|
|
* buffer here, so we have to at least recognise these buffer types.
|
|
*
|
|
* A notd complexity here is inode unlinked list processing - it logs
|
|
* the inode directly in the buffer, but we don't know which inodes have
|
|
* been modified, and there is no global buffer LSN. Hence we need to
|
|
* recover all inode buffer types immediately. This problem will be
|
|
* fixed by logical logging of the unlinked list modifications.
|
|
*/
|
|
magic16 = be16_to_cpu(*(__be16 *)blk);
|
|
switch (magic16) {
|
|
case XFS_DQUOT_MAGIC:
|
|
case XFS_DINODE_MAGIC:
|
|
goto recover_immediately;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* unknown buffer contents, recover immediately */
|
|
|
|
recover_immediately:
|
|
return (xfs_lsn_t)-1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Validate the recovered buffer is of the correct type and attach the
|
|
* appropriate buffer operations to them for writeback. Magic numbers are in a
|
|
* few places:
|
|
* the first 16 bits of the buffer (inode buffer, dquot buffer),
|
|
* the first 32 bits of the buffer (most blocks),
|
|
* inside a struct xfs_da_blkinfo at the start of the buffer.
|
|
*/
|
|
static void
|
|
xlog_recover_validate_buf_type(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
xfs_buf_log_format_t *buf_f)
|
|
{
|
|
struct xfs_da_blkinfo *info = bp->b_addr;
|
|
__uint32_t magic32;
|
|
__uint16_t magic16;
|
|
__uint16_t magicda;
|
|
|
|
magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
|
|
magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
|
|
magicda = be16_to_cpu(info->magic);
|
|
switch (xfs_blft_from_flags(buf_f)) {
|
|
case XFS_BLFT_BTREE_BUF:
|
|
switch (magic32) {
|
|
case XFS_ABTB_CRC_MAGIC:
|
|
case XFS_ABTC_CRC_MAGIC:
|
|
case XFS_ABTB_MAGIC:
|
|
case XFS_ABTC_MAGIC:
|
|
bp->b_ops = &xfs_allocbt_buf_ops;
|
|
break;
|
|
case XFS_IBT_CRC_MAGIC:
|
|
case XFS_IBT_MAGIC:
|
|
bp->b_ops = &xfs_inobt_buf_ops;
|
|
break;
|
|
case XFS_BMAP_CRC_MAGIC:
|
|
case XFS_BMAP_MAGIC:
|
|
bp->b_ops = &xfs_bmbt_buf_ops;
|
|
break;
|
|
default:
|
|
xfs_warn(mp, "Bad btree block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
break;
|
|
case XFS_BLFT_AGF_BUF:
|
|
if (magic32 != XFS_AGF_MAGIC) {
|
|
xfs_warn(mp, "Bad AGF block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agf_buf_ops;
|
|
break;
|
|
case XFS_BLFT_AGFL_BUF:
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
break;
|
|
if (magic32 != XFS_AGFL_MAGIC) {
|
|
xfs_warn(mp, "Bad AGFL block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agfl_buf_ops;
|
|
break;
|
|
case XFS_BLFT_AGI_BUF:
|
|
if (magic32 != XFS_AGI_MAGIC) {
|
|
xfs_warn(mp, "Bad AGI block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_agi_buf_ops;
|
|
break;
|
|
case XFS_BLFT_UDQUOT_BUF:
|
|
case XFS_BLFT_PDQUOT_BUF:
|
|
case XFS_BLFT_GDQUOT_BUF:
|
|
#ifdef CONFIG_XFS_QUOTA
|
|
if (magic16 != XFS_DQUOT_MAGIC) {
|
|
xfs_warn(mp, "Bad DQUOT block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dquot_buf_ops;
|
|
#else
|
|
xfs_alert(mp,
|
|
"Trying to recover dquots without QUOTA support built in!");
|
|
ASSERT(0);
|
|
#endif
|
|
break;
|
|
case XFS_BLFT_DINO_BUF:
|
|
/*
|
|
* we get here with inode allocation buffers, not buffers that
|
|
* track unlinked list changes.
|
|
*/
|
|
if (magic16 != XFS_DINODE_MAGIC) {
|
|
xfs_warn(mp, "Bad INODE block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
break;
|
|
case XFS_BLFT_SYMLINK_BUF:
|
|
if (magic32 != XFS_SYMLINK_MAGIC) {
|
|
xfs_warn(mp, "Bad symlink block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_symlink_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_BLOCK_BUF:
|
|
if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
|
|
magic32 != XFS_DIR3_BLOCK_MAGIC) {
|
|
xfs_warn(mp, "Bad dir block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_block_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_DATA_BUF:
|
|
if (magic32 != XFS_DIR2_DATA_MAGIC &&
|
|
magic32 != XFS_DIR3_DATA_MAGIC) {
|
|
xfs_warn(mp, "Bad dir data magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_data_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_FREE_BUF:
|
|
if (magic32 != XFS_DIR2_FREE_MAGIC &&
|
|
magic32 != XFS_DIR3_FREE_MAGIC) {
|
|
xfs_warn(mp, "Bad dir3 free magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_free_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_LEAF1_BUF:
|
|
if (magicda != XFS_DIR2_LEAF1_MAGIC &&
|
|
magicda != XFS_DIR3_LEAF1_MAGIC) {
|
|
xfs_warn(mp, "Bad dir leaf1 magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_leaf1_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DIR_LEAFN_BUF:
|
|
if (magicda != XFS_DIR2_LEAFN_MAGIC &&
|
|
magicda != XFS_DIR3_LEAFN_MAGIC) {
|
|
xfs_warn(mp, "Bad dir leafn magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_dir3_leafn_buf_ops;
|
|
break;
|
|
case XFS_BLFT_DA_NODE_BUF:
|
|
if (magicda != XFS_DA_NODE_MAGIC &&
|
|
magicda != XFS_DA3_NODE_MAGIC) {
|
|
xfs_warn(mp, "Bad da node magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_da3_node_buf_ops;
|
|
break;
|
|
case XFS_BLFT_ATTR_LEAF_BUF:
|
|
if (magicda != XFS_ATTR_LEAF_MAGIC &&
|
|
magicda != XFS_ATTR3_LEAF_MAGIC) {
|
|
xfs_warn(mp, "Bad attr leaf magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_attr3_leaf_buf_ops;
|
|
break;
|
|
case XFS_BLFT_ATTR_RMT_BUF:
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
break;
|
|
if (magic32 != XFS_ATTR3_RMT_MAGIC) {
|
|
xfs_warn(mp, "Bad attr remote magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_attr3_rmt_buf_ops;
|
|
break;
|
|
case XFS_BLFT_SB_BUF:
|
|
if (magic32 != XFS_SB_MAGIC) {
|
|
xfs_warn(mp, "Bad SB block magic!");
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
bp->b_ops = &xfs_sb_buf_ops;
|
|
break;
|
|
default:
|
|
xfs_warn(mp, "Unknown buffer type %d!",
|
|
xfs_blft_from_flags(buf_f));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform a 'normal' buffer recovery. Each logged region of the
|
|
* buffer should be copied over the corresponding region in the
|
|
* given buffer. The bitmap in the buf log format structure indicates
|
|
* where to place the logged data.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_do_reg_buffer(
|
|
struct xfs_mount *mp,
|
|
xlog_recover_item_t *item,
|
|
struct xfs_buf *bp,
|
|
xfs_buf_log_format_t *buf_f)
|
|
{
|
|
int i;
|
|
int bit;
|
|
int nbits;
|
|
int error;
|
|
|
|
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
|
|
|
|
bit = 0;
|
|
i = 1; /* 0 is the buf format structure */
|
|
while (1) {
|
|
bit = xfs_next_bit(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
if (bit == -1)
|
|
break;
|
|
nbits = xfs_contig_bits(buf_f->blf_data_map,
|
|
buf_f->blf_map_size, bit);
|
|
ASSERT(nbits > 0);
|
|
ASSERT(item->ri_buf[i].i_addr != NULL);
|
|
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
|
|
ASSERT(BBTOB(bp->b_io_length) >=
|
|
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
|
|
|
|
/*
|
|
* The dirty regions logged in the buffer, even though
|
|
* contiguous, may span multiple chunks. This is because the
|
|
* dirty region may span a physical page boundary in a buffer
|
|
* and hence be split into two separate vectors for writing into
|
|
* the log. Hence we need to trim nbits back to the length of
|
|
* the current region being copied out of the log.
|
|
*/
|
|
if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
|
|
nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
|
|
|
|
/*
|
|
* Do a sanity check if this is a dquot buffer. Just checking
|
|
* the first dquot in the buffer should do. XXXThis is
|
|
* probably a good thing to do for other buf types also.
|
|
*/
|
|
error = 0;
|
|
if (buf_f->blf_flags &
|
|
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
|
if (item->ri_buf[i].i_addr == NULL) {
|
|
xfs_alert(mp,
|
|
"XFS: NULL dquot in %s.", __func__);
|
|
goto next;
|
|
}
|
|
if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
|
|
xfs_alert(mp,
|
|
"XFS: dquot too small (%d) in %s.",
|
|
item->ri_buf[i].i_len, __func__);
|
|
goto next;
|
|
}
|
|
error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
|
|
-1, 0, XFS_QMOPT_DOWARN,
|
|
"dquot_buf_recover");
|
|
if (error)
|
|
goto next;
|
|
}
|
|
|
|
memcpy(xfs_buf_offset(bp,
|
|
(uint)bit << XFS_BLF_SHIFT), /* dest */
|
|
item->ri_buf[i].i_addr, /* source */
|
|
nbits<<XFS_BLF_SHIFT); /* length */
|
|
next:
|
|
i++;
|
|
bit += nbits;
|
|
}
|
|
|
|
/* Shouldn't be any more regions */
|
|
ASSERT(i == item->ri_total);
|
|
|
|
/*
|
|
* We can only do post recovery validation on items on CRC enabled
|
|
* fielsystems as we need to know when the buffer was written to be able
|
|
* to determine if we should have replayed the item. If we replay old
|
|
* metadata over a newer buffer, then it will enter a temporarily
|
|
* inconsistent state resulting in verification failures. Hence for now
|
|
* just avoid the verification stage for non-crc filesystems
|
|
*/
|
|
if (xfs_sb_version_hascrc(&mp->m_sb))
|
|
xlog_recover_validate_buf_type(mp, bp, buf_f);
|
|
}
|
|
|
|
/*
|
|
* Perform a dquot buffer recovery.
|
|
* Simple algorithm: if we have found a QUOTAOFF log item of the same type
|
|
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
|
|
* Else, treat it as a regular buffer and do recovery.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_do_dquot_buffer(
|
|
struct xfs_mount *mp,
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item,
|
|
struct xfs_buf *bp,
|
|
struct xfs_buf_log_format *buf_f)
|
|
{
|
|
uint type;
|
|
|
|
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
|
|
|
|
/*
|
|
* Filesystems are required to send in quota flags at mount time.
|
|
*/
|
|
if (mp->m_qflags == 0) {
|
|
return;
|
|
}
|
|
|
|
type = 0;
|
|
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
|
|
type |= XFS_DQ_USER;
|
|
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
|
|
type |= XFS_DQ_PROJ;
|
|
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
|
|
type |= XFS_DQ_GROUP;
|
|
/*
|
|
* This type of quotas was turned off, so ignore this buffer
|
|
*/
|
|
if (log->l_quotaoffs_flag & type)
|
|
return;
|
|
|
|
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
|
|
}
|
|
|
|
/*
|
|
* This routine replays a modification made to a buffer at runtime.
|
|
* There are actually two types of buffer, regular and inode, which
|
|
* are handled differently. Inode buffers are handled differently
|
|
* in that we only recover a specific set of data from them, namely
|
|
* the inode di_next_unlinked fields. This is because all other inode
|
|
* data is actually logged via inode records and any data we replay
|
|
* here which overlaps that may be stale.
|
|
*
|
|
* When meta-data buffers are freed at run time we log a buffer item
|
|
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
|
|
* of the buffer in the log should not be replayed at recovery time.
|
|
* This is so that if the blocks covered by the buffer are reused for
|
|
* file data before we crash we don't end up replaying old, freed
|
|
* meta-data into a user's file.
|
|
*
|
|
* To handle the cancellation of buffer log items, we make two passes
|
|
* over the log during recovery. During the first we build a table of
|
|
* those buffers which have been cancelled, and during the second we
|
|
* only replay those buffers which do not have corresponding cancel
|
|
* records in the table. See xlog_recover_buffer_pass[1,2] above
|
|
* for more details on the implementation of the table of cancel records.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_buffer_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
|
|
xfs_mount_t *mp = log->l_mp;
|
|
xfs_buf_t *bp;
|
|
int error;
|
|
uint buf_flags;
|
|
xfs_lsn_t lsn;
|
|
|
|
/*
|
|
* In this pass we only want to recover all the buffers which have
|
|
* not been cancelled and are not cancellation buffers themselves.
|
|
*/
|
|
if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
|
|
buf_f->blf_len, buf_f->blf_flags)) {
|
|
trace_xfs_log_recover_buf_cancel(log, buf_f);
|
|
return 0;
|
|
}
|
|
|
|
trace_xfs_log_recover_buf_recover(log, buf_f);
|
|
|
|
buf_flags = 0;
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
|
|
buf_flags |= XBF_UNMAPPED;
|
|
|
|
bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
|
|
buf_flags, NULL);
|
|
if (!bp)
|
|
return XFS_ERROR(ENOMEM);
|
|
error = bp->b_error;
|
|
if (error) {
|
|
xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
|
|
goto out_release;
|
|
}
|
|
|
|
/*
|
|
* recover the buffer only if we get an LSN from it and it's less than
|
|
* the lsn of the transaction we are replaying.
|
|
*/
|
|
lsn = xlog_recover_get_buf_lsn(mp, bp);
|
|
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
|
|
goto out_release;
|
|
|
|
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
|
|
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
|
|
} else if (buf_f->blf_flags &
|
|
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
|
|
xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
|
|
} else {
|
|
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
|
|
}
|
|
if (error)
|
|
goto out_release;
|
|
|
|
/*
|
|
* Perform delayed write on the buffer. Asynchronous writes will be
|
|
* slower when taking into account all the buffers to be flushed.
|
|
*
|
|
* Also make sure that only inode buffers with good sizes stay in
|
|
* the buffer cache. The kernel moves inodes in buffers of 1 block
|
|
* or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
|
|
* buffers in the log can be a different size if the log was generated
|
|
* by an older kernel using unclustered inode buffers or a newer kernel
|
|
* running with a different inode cluster size. Regardless, if the
|
|
* the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
|
|
* for *our* value of mp->m_inode_cluster_size, then we need to keep
|
|
* the buffer out of the buffer cache so that the buffer won't
|
|
* overlap with future reads of those inodes.
|
|
*/
|
|
if (XFS_DINODE_MAGIC ==
|
|
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
|
|
(BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
|
|
(__uint32_t)log->l_mp->m_inode_cluster_size))) {
|
|
xfs_buf_stale(bp);
|
|
error = xfs_bwrite(bp);
|
|
} else {
|
|
ASSERT(bp->b_target->bt_mount == mp);
|
|
bp->b_iodone = xlog_recover_iodone;
|
|
xfs_buf_delwri_queue(bp, buffer_list);
|
|
}
|
|
|
|
out_release:
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Inode fork owner changes
|
|
*
|
|
* If we have been told that we have to reparent the inode fork, it's because an
|
|
* extent swap operation on a CRC enabled filesystem has been done and we are
|
|
* replaying it. We need to walk the BMBT of the appropriate fork and change the
|
|
* owners of it.
|
|
*
|
|
* The complexity here is that we don't have an inode context to work with, so
|
|
* after we've replayed the inode we need to instantiate one. This is where the
|
|
* fun begins.
|
|
*
|
|
* We are in the middle of log recovery, so we can't run transactions. That
|
|
* means we cannot use cache coherent inode instantiation via xfs_iget(), as
|
|
* that will result in the corresponding iput() running the inode through
|
|
* xfs_inactive(). If we've just replayed an inode core that changes the link
|
|
* count to zero (i.e. it's been unlinked), then xfs_inactive() will run
|
|
* transactions (bad!).
|
|
*
|
|
* So, to avoid this, we instantiate an inode directly from the inode core we've
|
|
* just recovered. We have the buffer still locked, and all we really need to
|
|
* instantiate is the inode core and the forks being modified. We can do this
|
|
* manually, then run the inode btree owner change, and then tear down the
|
|
* xfs_inode without having to run any transactions at all.
|
|
*
|
|
* Also, because we don't have a transaction context available here but need to
|
|
* gather all the buffers we modify for writeback so we pass the buffer_list
|
|
* instead for the operation to use.
|
|
*/
|
|
|
|
STATIC int
|
|
xfs_recover_inode_owner_change(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dinode *dip,
|
|
struct xfs_inode_log_format *in_f,
|
|
struct list_head *buffer_list)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
|
|
|
|
ip = xfs_inode_alloc(mp, in_f->ilf_ino);
|
|
if (!ip)
|
|
return ENOMEM;
|
|
|
|
/* instantiate the inode */
|
|
xfs_dinode_from_disk(&ip->i_d, dip);
|
|
ASSERT(ip->i_d.di_version >= 3);
|
|
|
|
error = xfs_iformat_fork(ip, dip);
|
|
if (error)
|
|
goto out_free_ip;
|
|
|
|
|
|
if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
|
|
ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
|
|
error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
|
|
ip->i_ino, buffer_list);
|
|
if (error)
|
|
goto out_free_ip;
|
|
}
|
|
|
|
if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
|
|
ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
|
|
error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
|
|
ip->i_ino, buffer_list);
|
|
if (error)
|
|
goto out_free_ip;
|
|
}
|
|
|
|
out_free_ip:
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_inode_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
xfs_inode_log_format_t *in_f;
|
|
xfs_mount_t *mp = log->l_mp;
|
|
xfs_buf_t *bp;
|
|
xfs_dinode_t *dip;
|
|
int len;
|
|
xfs_caddr_t src;
|
|
xfs_caddr_t dest;
|
|
int error;
|
|
int attr_index;
|
|
uint fields;
|
|
xfs_icdinode_t *dicp;
|
|
uint isize;
|
|
int need_free = 0;
|
|
|
|
if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
|
|
in_f = item->ri_buf[0].i_addr;
|
|
} else {
|
|
in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
|
|
need_free = 1;
|
|
error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
|
|
if (error)
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Inode buffers can be freed, look out for it,
|
|
* and do not replay the inode.
|
|
*/
|
|
if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
|
|
in_f->ilf_len, 0)) {
|
|
error = 0;
|
|
trace_xfs_log_recover_inode_cancel(log, in_f);
|
|
goto error;
|
|
}
|
|
trace_xfs_log_recover_inode_recover(log, in_f);
|
|
|
|
bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
|
|
&xfs_inode_buf_ops);
|
|
if (!bp) {
|
|
error = ENOMEM;
|
|
goto error;
|
|
}
|
|
error = bp->b_error;
|
|
if (error) {
|
|
xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
|
|
goto out_release;
|
|
}
|
|
ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
|
|
dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
|
|
|
|
/*
|
|
* Make sure the place we're flushing out to really looks
|
|
* like an inode!
|
|
*/
|
|
if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
|
|
xfs_alert(mp,
|
|
"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
|
|
__func__, dip, bp, in_f->ilf_ino);
|
|
XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
|
|
XFS_ERRLEVEL_LOW, mp);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
dicp = item->ri_buf[1].i_addr;
|
|
if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
|
|
xfs_alert(mp,
|
|
"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
|
|
__func__, item, in_f->ilf_ino);
|
|
XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
|
|
XFS_ERRLEVEL_LOW, mp);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
|
|
/*
|
|
* If the inode has an LSN in it, recover the inode only if it's less
|
|
* than the lsn of the transaction we are replaying. Note: we still
|
|
* need to replay an owner change even though the inode is more recent
|
|
* than the transaction as there is no guarantee that all the btree
|
|
* blocks are more recent than this transaction, too.
|
|
*/
|
|
if (dip->di_version >= 3) {
|
|
xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
|
|
|
|
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
|
|
trace_xfs_log_recover_inode_skip(log, in_f);
|
|
error = 0;
|
|
goto out_owner_change;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
|
|
* are transactional and if ordering is necessary we can determine that
|
|
* more accurately by the LSN field in the V3 inode core. Don't trust
|
|
* the inode versions we might be changing them here - use the
|
|
* superblock flag to determine whether we need to look at di_flushiter
|
|
* to skip replay when the on disk inode is newer than the log one
|
|
*/
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb) &&
|
|
dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
|
|
/*
|
|
* Deal with the wrap case, DI_MAX_FLUSH is less
|
|
* than smaller numbers
|
|
*/
|
|
if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
|
|
dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
|
|
/* do nothing */
|
|
} else {
|
|
trace_xfs_log_recover_inode_skip(log, in_f);
|
|
error = 0;
|
|
goto out_release;
|
|
}
|
|
}
|
|
|
|
/* Take the opportunity to reset the flush iteration count */
|
|
dicp->di_flushiter = 0;
|
|
|
|
if (unlikely(S_ISREG(dicp->di_mode))) {
|
|
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
(dicp->di_format != XFS_DINODE_FMT_BTREE)) {
|
|
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
|
|
XFS_ERRLEVEL_LOW, mp, dicp);
|
|
xfs_alert(mp,
|
|
"%s: Bad regular inode log record, rec ptr 0x%p, "
|
|
"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
|
|
__func__, item, dip, bp, in_f->ilf_ino);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
} else if (unlikely(S_ISDIR(dicp->di_mode))) {
|
|
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
(dicp->di_format != XFS_DINODE_FMT_BTREE) &&
|
|
(dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
|
|
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
|
|
XFS_ERRLEVEL_LOW, mp, dicp);
|
|
xfs_alert(mp,
|
|
"%s: Bad dir inode log record, rec ptr 0x%p, "
|
|
"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
|
|
__func__, item, dip, bp, in_f->ilf_ino);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
}
|
|
if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
|
|
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
|
|
XFS_ERRLEVEL_LOW, mp, dicp);
|
|
xfs_alert(mp,
|
|
"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
|
|
"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
|
|
__func__, item, dip, bp, in_f->ilf_ino,
|
|
dicp->di_nextents + dicp->di_anextents,
|
|
dicp->di_nblocks);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
|
|
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
|
|
XFS_ERRLEVEL_LOW, mp, dicp);
|
|
xfs_alert(mp,
|
|
"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
|
|
"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
|
|
item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
isize = xfs_icdinode_size(dicp->di_version);
|
|
if (unlikely(item->ri_buf[1].i_len > isize)) {
|
|
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
|
|
XFS_ERRLEVEL_LOW, mp, dicp);
|
|
xfs_alert(mp,
|
|
"%s: Bad inode log record length %d, rec ptr 0x%p",
|
|
__func__, item->ri_buf[1].i_len, item);
|
|
error = EFSCORRUPTED;
|
|
goto out_release;
|
|
}
|
|
|
|
/* The core is in in-core format */
|
|
xfs_dinode_to_disk(dip, dicp);
|
|
|
|
/* the rest is in on-disk format */
|
|
if (item->ri_buf[1].i_len > isize) {
|
|
memcpy((char *)dip + isize,
|
|
item->ri_buf[1].i_addr + isize,
|
|
item->ri_buf[1].i_len - isize);
|
|
}
|
|
|
|
fields = in_f->ilf_fields;
|
|
switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
|
|
case XFS_ILOG_DEV:
|
|
xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
|
|
break;
|
|
case XFS_ILOG_UUID:
|
|
memcpy(XFS_DFORK_DPTR(dip),
|
|
&in_f->ilf_u.ilfu_uuid,
|
|
sizeof(uuid_t));
|
|
break;
|
|
}
|
|
|
|
if (in_f->ilf_size == 2)
|
|
goto out_owner_change;
|
|
len = item->ri_buf[2].i_len;
|
|
src = item->ri_buf[2].i_addr;
|
|
ASSERT(in_f->ilf_size <= 4);
|
|
ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
|
|
ASSERT(!(fields & XFS_ILOG_DFORK) ||
|
|
(len == in_f->ilf_dsize));
|
|
|
|
switch (fields & XFS_ILOG_DFORK) {
|
|
case XFS_ILOG_DDATA:
|
|
case XFS_ILOG_DEXT:
|
|
memcpy(XFS_DFORK_DPTR(dip), src, len);
|
|
break;
|
|
|
|
case XFS_ILOG_DBROOT:
|
|
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
|
|
(xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
|
|
XFS_DFORK_DSIZE(dip, mp));
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* There are no data fork flags set.
|
|
*/
|
|
ASSERT((fields & XFS_ILOG_DFORK) == 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we logged any attribute data, recover it. There may or
|
|
* may not have been any other non-core data logged in this
|
|
* transaction.
|
|
*/
|
|
if (in_f->ilf_fields & XFS_ILOG_AFORK) {
|
|
if (in_f->ilf_fields & XFS_ILOG_DFORK) {
|
|
attr_index = 3;
|
|
} else {
|
|
attr_index = 2;
|
|
}
|
|
len = item->ri_buf[attr_index].i_len;
|
|
src = item->ri_buf[attr_index].i_addr;
|
|
ASSERT(len == in_f->ilf_asize);
|
|
|
|
switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
|
|
case XFS_ILOG_ADATA:
|
|
case XFS_ILOG_AEXT:
|
|
dest = XFS_DFORK_APTR(dip);
|
|
ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
|
|
memcpy(dest, src, len);
|
|
break;
|
|
|
|
case XFS_ILOG_ABROOT:
|
|
dest = XFS_DFORK_APTR(dip);
|
|
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
|
|
len, (xfs_bmdr_block_t*)dest,
|
|
XFS_DFORK_ASIZE(dip, mp));
|
|
break;
|
|
|
|
default:
|
|
xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
|
|
ASSERT(0);
|
|
error = EIO;
|
|
goto out_release;
|
|
}
|
|
}
|
|
|
|
out_owner_change:
|
|
if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
|
|
error = xfs_recover_inode_owner_change(mp, dip, in_f,
|
|
buffer_list);
|
|
/* re-generate the checksum. */
|
|
xfs_dinode_calc_crc(log->l_mp, dip);
|
|
|
|
ASSERT(bp->b_target->bt_mount == mp);
|
|
bp->b_iodone = xlog_recover_iodone;
|
|
xfs_buf_delwri_queue(bp, buffer_list);
|
|
|
|
out_release:
|
|
xfs_buf_relse(bp);
|
|
error:
|
|
if (need_free)
|
|
kmem_free(in_f);
|
|
return XFS_ERROR(error);
|
|
}
|
|
|
|
/*
|
|
* Recover QUOTAOFF records. We simply make a note of it in the xlog
|
|
* structure, so that we know not to do any dquot item or dquot buffer recovery,
|
|
* of that type.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_quotaoff_pass1(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
|
|
ASSERT(qoff_f);
|
|
|
|
/*
|
|
* The logitem format's flag tells us if this was user quotaoff,
|
|
* group/project quotaoff or both.
|
|
*/
|
|
if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
|
|
log->l_quotaoffs_flag |= XFS_DQ_USER;
|
|
if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
|
|
log->l_quotaoffs_flag |= XFS_DQ_PROJ;
|
|
if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
|
|
log->l_quotaoffs_flag |= XFS_DQ_GROUP;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Recover a dquot record
|
|
*/
|
|
STATIC int
|
|
xlog_recover_dquot_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t current_lsn)
|
|
{
|
|
xfs_mount_t *mp = log->l_mp;
|
|
xfs_buf_t *bp;
|
|
struct xfs_disk_dquot *ddq, *recddq;
|
|
int error;
|
|
xfs_dq_logformat_t *dq_f;
|
|
uint type;
|
|
|
|
|
|
/*
|
|
* Filesystems are required to send in quota flags at mount time.
|
|
*/
|
|
if (mp->m_qflags == 0)
|
|
return (0);
|
|
|
|
recddq = item->ri_buf[1].i_addr;
|
|
if (recddq == NULL) {
|
|
xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
|
|
xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
|
|
item->ri_buf[1].i_len, __func__);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/*
|
|
* This type of quotas was turned off, so ignore this record.
|
|
*/
|
|
type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
|
|
ASSERT(type);
|
|
if (log->l_quotaoffs_flag & type)
|
|
return (0);
|
|
|
|
/*
|
|
* At this point we know that quota was _not_ turned off.
|
|
* Since the mount flags are not indicating to us otherwise, this
|
|
* must mean that quota is on, and the dquot needs to be replayed.
|
|
* Remember that we may not have fully recovered the superblock yet,
|
|
* so we can't do the usual trick of looking at the SB quota bits.
|
|
*
|
|
* The other possibility, of course, is that the quota subsystem was
|
|
* removed since the last mount - ENOSYS.
|
|
*/
|
|
dq_f = item->ri_buf[0].i_addr;
|
|
ASSERT(dq_f);
|
|
error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
|
|
"xlog_recover_dquot_pass2 (log copy)");
|
|
if (error)
|
|
return XFS_ERROR(EIO);
|
|
ASSERT(dq_f->qlf_len == 1);
|
|
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
|
|
XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
|
|
NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(bp);
|
|
ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
|
|
|
|
/*
|
|
* At least the magic num portion should be on disk because this
|
|
* was among a chunk of dquots created earlier, and we did some
|
|
* minimal initialization then.
|
|
*/
|
|
error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
|
|
"xlog_recover_dquot_pass2");
|
|
if (error) {
|
|
xfs_buf_relse(bp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/*
|
|
* If the dquot has an LSN in it, recover the dquot only if it's less
|
|
* than the lsn of the transaction we are replaying.
|
|
*/
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
|
|
xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
|
|
|
|
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
|
|
goto out_release;
|
|
}
|
|
}
|
|
|
|
memcpy(ddq, recddq, item->ri_buf[1].i_len);
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
|
|
ASSERT(dq_f->qlf_size == 2);
|
|
ASSERT(bp->b_target->bt_mount == mp);
|
|
bp->b_iodone = xlog_recover_iodone;
|
|
xfs_buf_delwri_queue(bp, buffer_list);
|
|
|
|
out_release:
|
|
xfs_buf_relse(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to create an in-core extent free intent
|
|
* item from the efi format structure which was logged on disk.
|
|
* It allocates an in-core efi, copies the extents from the format
|
|
* structure into it, and adds the efi to the AIL with the given
|
|
* LSN.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efi_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
int error;
|
|
xfs_mount_t *mp = log->l_mp;
|
|
xfs_efi_log_item_t *efip;
|
|
xfs_efi_log_format_t *efi_formatp;
|
|
|
|
efi_formatp = item->ri_buf[0].i_addr;
|
|
|
|
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
|
|
if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
|
|
&(efip->efi_format)))) {
|
|
xfs_efi_item_free(efip);
|
|
return error;
|
|
}
|
|
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
|
|
|
|
spin_lock(&log->l_ailp->xa_lock);
|
|
/*
|
|
* xfs_trans_ail_update() drops the AIL lock.
|
|
*/
|
|
xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is called when an efd format structure is found in
|
|
* a committed transaction in the log. It's purpose is to cancel
|
|
* the corresponding efi if it was still in the log. To do this
|
|
* it searches the AIL for the efi with an id equal to that in the
|
|
* efd format structure. If we find it, we remove the efi from the
|
|
* AIL and free it.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efd_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
xfs_efd_log_format_t *efd_formatp;
|
|
xfs_efi_log_item_t *efip = NULL;
|
|
xfs_log_item_t *lip;
|
|
__uint64_t efi_id;
|
|
struct xfs_ail_cursor cur;
|
|
struct xfs_ail *ailp = log->l_ailp;
|
|
|
|
efd_formatp = item->ri_buf[0].i_addr;
|
|
ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
|
|
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
|
|
(item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
|
|
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
|
|
efi_id = efd_formatp->efd_efi_id;
|
|
|
|
/*
|
|
* Search for the efi with the id in the efd format structure
|
|
* in the AIL.
|
|
*/
|
|
spin_lock(&ailp->xa_lock);
|
|
lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
|
|
while (lip != NULL) {
|
|
if (lip->li_type == XFS_LI_EFI) {
|
|
efip = (xfs_efi_log_item_t *)lip;
|
|
if (efip->efi_format.efi_id == efi_id) {
|
|
/*
|
|
* xfs_trans_ail_delete() drops the
|
|
* AIL lock.
|
|
*/
|
|
xfs_trans_ail_delete(ailp, lip,
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
xfs_efi_item_free(efip);
|
|
spin_lock(&ailp->xa_lock);
|
|
break;
|
|
}
|
|
}
|
|
lip = xfs_trans_ail_cursor_next(ailp, &cur);
|
|
}
|
|
xfs_trans_ail_cursor_done(ailp, &cur);
|
|
spin_unlock(&ailp->xa_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine is called when an inode create format structure is found in a
|
|
* committed transaction in the log. It's purpose is to initialise the inodes
|
|
* being allocated on disk. This requires us to get inode cluster buffers that
|
|
* match the range to be intialised, stamped with inode templates and written
|
|
* by delayed write so that subsequent modifications will hit the cached buffer
|
|
* and only need writing out at the end of recovery.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_do_icreate_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
xlog_recover_item_t *item)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_icreate_log *icl;
|
|
xfs_agnumber_t agno;
|
|
xfs_agblock_t agbno;
|
|
unsigned int count;
|
|
unsigned int isize;
|
|
xfs_agblock_t length;
|
|
|
|
icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
|
|
if (icl->icl_type != XFS_LI_ICREATE) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
|
|
return EINVAL;
|
|
}
|
|
|
|
if (icl->icl_size != 1) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
|
|
return EINVAL;
|
|
}
|
|
|
|
agno = be32_to_cpu(icl->icl_ag);
|
|
if (agno >= mp->m_sb.sb_agcount) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
|
|
return EINVAL;
|
|
}
|
|
agbno = be32_to_cpu(icl->icl_agbno);
|
|
if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
|
|
return EINVAL;
|
|
}
|
|
isize = be32_to_cpu(icl->icl_isize);
|
|
if (isize != mp->m_sb.sb_inodesize) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
|
|
return EINVAL;
|
|
}
|
|
count = be32_to_cpu(icl->icl_count);
|
|
if (!count) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
|
|
return EINVAL;
|
|
}
|
|
length = be32_to_cpu(icl->icl_length);
|
|
if (!length || length >= mp->m_sb.sb_agblocks) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
|
|
return EINVAL;
|
|
}
|
|
|
|
/* existing allocation is fixed value */
|
|
ASSERT(count == mp->m_ialloc_inos);
|
|
ASSERT(length == mp->m_ialloc_blks);
|
|
if (count != mp->m_ialloc_inos ||
|
|
length != mp->m_ialloc_blks) {
|
|
xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Inode buffers can be freed. Do not replay the inode initialisation as
|
|
* we could be overwriting something written after this inode buffer was
|
|
* cancelled.
|
|
*
|
|
* XXX: we need to iterate all buffers and only init those that are not
|
|
* cancelled. I think that a more fine grained factoring of
|
|
* xfs_ialloc_inode_init may be appropriate here to enable this to be
|
|
* done easily.
|
|
*/
|
|
if (xlog_check_buffer_cancelled(log,
|
|
XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
|
|
return 0;
|
|
|
|
xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
|
|
be32_to_cpu(icl->icl_gen));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free up any resources allocated by the transaction
|
|
*
|
|
* Remember that EFIs, EFDs, and IUNLINKs are handled later.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_free_trans(
|
|
struct xlog_recover *trans)
|
|
{
|
|
xlog_recover_item_t *item, *n;
|
|
int i;
|
|
|
|
list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
|
|
/* Free the regions in the item. */
|
|
list_del(&item->ri_list);
|
|
for (i = 0; i < item->ri_cnt; i++)
|
|
kmem_free(item->ri_buf[i].i_addr);
|
|
/* Free the item itself */
|
|
kmem_free(item->ri_buf);
|
|
kmem_free(item);
|
|
}
|
|
/* Free the transaction recover structure */
|
|
kmem_free(trans);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_buffer_ra_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
|
|
struct xfs_mount *mp = log->l_mp;
|
|
|
|
if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
|
|
buf_f->blf_len, buf_f->blf_flags)) {
|
|
return;
|
|
}
|
|
|
|
xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
|
|
buf_f->blf_len, NULL);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_inode_ra_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_inode_log_format ilf_buf;
|
|
struct xfs_inode_log_format *ilfp;
|
|
struct xfs_mount *mp = log->l_mp;
|
|
int error;
|
|
|
|
if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
|
|
ilfp = item->ri_buf[0].i_addr;
|
|
} else {
|
|
ilfp = &ilf_buf;
|
|
memset(ilfp, 0, sizeof(*ilfp));
|
|
error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
|
|
if (error)
|
|
return;
|
|
}
|
|
|
|
if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
|
|
return;
|
|
|
|
xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
|
|
ilfp->ilf_len, &xfs_inode_buf_ra_ops);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_dquot_ra_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_disk_dquot *recddq;
|
|
struct xfs_dq_logformat *dq_f;
|
|
uint type;
|
|
|
|
|
|
if (mp->m_qflags == 0)
|
|
return;
|
|
|
|
recddq = item->ri_buf[1].i_addr;
|
|
if (recddq == NULL)
|
|
return;
|
|
if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
|
|
return;
|
|
|
|
type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
|
|
ASSERT(type);
|
|
if (log->l_quotaoffs_flag & type)
|
|
return;
|
|
|
|
dq_f = item->ri_buf[0].i_addr;
|
|
ASSERT(dq_f);
|
|
ASSERT(dq_f->qlf_len == 1);
|
|
|
|
xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
|
|
XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_recover_ra_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
switch (ITEM_TYPE(item)) {
|
|
case XFS_LI_BUF:
|
|
xlog_recover_buffer_ra_pass2(log, item);
|
|
break;
|
|
case XFS_LI_INODE:
|
|
xlog_recover_inode_ra_pass2(log, item);
|
|
break;
|
|
case XFS_LI_DQUOT:
|
|
xlog_recover_dquot_ra_pass2(log, item);
|
|
break;
|
|
case XFS_LI_EFI:
|
|
case XFS_LI_EFD:
|
|
case XFS_LI_QUOTAOFF:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_commit_pass1(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
|
|
|
|
switch (ITEM_TYPE(item)) {
|
|
case XFS_LI_BUF:
|
|
return xlog_recover_buffer_pass1(log, item);
|
|
case XFS_LI_QUOTAOFF:
|
|
return xlog_recover_quotaoff_pass1(log, item);
|
|
case XFS_LI_INODE:
|
|
case XFS_LI_EFI:
|
|
case XFS_LI_EFD:
|
|
case XFS_LI_DQUOT:
|
|
case XFS_LI_ICREATE:
|
|
/* nothing to do in pass 1 */
|
|
return 0;
|
|
default:
|
|
xfs_warn(log->l_mp, "%s: invalid item type (%d)",
|
|
__func__, ITEM_TYPE(item));
|
|
ASSERT(0);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_commit_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item)
|
|
{
|
|
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
|
|
|
|
switch (ITEM_TYPE(item)) {
|
|
case XFS_LI_BUF:
|
|
return xlog_recover_buffer_pass2(log, buffer_list, item,
|
|
trans->r_lsn);
|
|
case XFS_LI_INODE:
|
|
return xlog_recover_inode_pass2(log, buffer_list, item,
|
|
trans->r_lsn);
|
|
case XFS_LI_EFI:
|
|
return xlog_recover_efi_pass2(log, item, trans->r_lsn);
|
|
case XFS_LI_EFD:
|
|
return xlog_recover_efd_pass2(log, item);
|
|
case XFS_LI_DQUOT:
|
|
return xlog_recover_dquot_pass2(log, buffer_list, item,
|
|
trans->r_lsn);
|
|
case XFS_LI_ICREATE:
|
|
return xlog_recover_do_icreate_pass2(log, buffer_list, item);
|
|
case XFS_LI_QUOTAOFF:
|
|
/* nothing to do in pass2 */
|
|
return 0;
|
|
default:
|
|
xfs_warn(log->l_mp, "%s: invalid item type (%d)",
|
|
__func__, ITEM_TYPE(item));
|
|
ASSERT(0);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_items_pass2(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
struct list_head *buffer_list,
|
|
struct list_head *item_list)
|
|
{
|
|
struct xlog_recover_item *item;
|
|
int error = 0;
|
|
|
|
list_for_each_entry(item, item_list, ri_list) {
|
|
error = xlog_recover_commit_pass2(log, trans,
|
|
buffer_list, item);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Perform the transaction.
|
|
*
|
|
* If the transaction modifies a buffer or inode, do it now. Otherwise,
|
|
* EFIs and EFDs get queued up by adding entries into the AIL for them.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_commit_trans(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans,
|
|
int pass)
|
|
{
|
|
int error = 0;
|
|
int error2;
|
|
int items_queued = 0;
|
|
struct xlog_recover_item *item;
|
|
struct xlog_recover_item *next;
|
|
LIST_HEAD (buffer_list);
|
|
LIST_HEAD (ra_list);
|
|
LIST_HEAD (done_list);
|
|
|
|
#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
|
|
|
|
hlist_del(&trans->r_list);
|
|
|
|
error = xlog_recover_reorder_trans(log, trans, pass);
|
|
if (error)
|
|
return error;
|
|
|
|
list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
|
|
switch (pass) {
|
|
case XLOG_RECOVER_PASS1:
|
|
error = xlog_recover_commit_pass1(log, trans, item);
|
|
break;
|
|
case XLOG_RECOVER_PASS2:
|
|
xlog_recover_ra_pass2(log, item);
|
|
list_move_tail(&item->ri_list, &ra_list);
|
|
items_queued++;
|
|
if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
|
|
error = xlog_recover_items_pass2(log, trans,
|
|
&buffer_list, &ra_list);
|
|
list_splice_tail_init(&ra_list, &done_list);
|
|
items_queued = 0;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (!list_empty(&ra_list)) {
|
|
if (!error)
|
|
error = xlog_recover_items_pass2(log, trans,
|
|
&buffer_list, &ra_list);
|
|
list_splice_tail_init(&ra_list, &done_list);
|
|
}
|
|
|
|
if (!list_empty(&done_list))
|
|
list_splice_init(&done_list, &trans->r_itemq);
|
|
|
|
xlog_recover_free_trans(trans);
|
|
|
|
error2 = xfs_buf_delwri_submit(&buffer_list);
|
|
return error ? error : error2;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_recover_unmount_trans(
|
|
struct xlog *log,
|
|
struct xlog_recover *trans)
|
|
{
|
|
/* Do nothing now */
|
|
xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* There are two valid states of the r_state field. 0 indicates that the
|
|
* transaction structure is in a normal state. We have either seen the
|
|
* start of the transaction or the last operation we added was not a partial
|
|
* operation. If the last operation we added to the transaction was a
|
|
* partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
|
|
*
|
|
* NOTE: skip LRs with 0 data length.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_process_data(
|
|
struct xlog *log,
|
|
struct hlist_head rhash[],
|
|
struct xlog_rec_header *rhead,
|
|
xfs_caddr_t dp,
|
|
int pass)
|
|
{
|
|
xfs_caddr_t lp;
|
|
int num_logops;
|
|
xlog_op_header_t *ohead;
|
|
xlog_recover_t *trans;
|
|
xlog_tid_t tid;
|
|
int error;
|
|
unsigned long hash;
|
|
uint flags;
|
|
|
|
lp = dp + be32_to_cpu(rhead->h_len);
|
|
num_logops = be32_to_cpu(rhead->h_num_logops);
|
|
|
|
/* check the log format matches our own - else we can't recover */
|
|
if (xlog_header_check_recover(log->l_mp, rhead))
|
|
return (XFS_ERROR(EIO));
|
|
|
|
while ((dp < lp) && num_logops) {
|
|
ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
|
|
ohead = (xlog_op_header_t *)dp;
|
|
dp += sizeof(xlog_op_header_t);
|
|
if (ohead->oh_clientid != XFS_TRANSACTION &&
|
|
ohead->oh_clientid != XFS_LOG) {
|
|
xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
|
|
__func__, ohead->oh_clientid);
|
|
ASSERT(0);
|
|
return (XFS_ERROR(EIO));
|
|
}
|
|
tid = be32_to_cpu(ohead->oh_tid);
|
|
hash = XLOG_RHASH(tid);
|
|
trans = xlog_recover_find_tid(&rhash[hash], tid);
|
|
if (trans == NULL) { /* not found; add new tid */
|
|
if (ohead->oh_flags & XLOG_START_TRANS)
|
|
xlog_recover_new_tid(&rhash[hash], tid,
|
|
be64_to_cpu(rhead->h_lsn));
|
|
} else {
|
|
if (dp + be32_to_cpu(ohead->oh_len) > lp) {
|
|
xfs_warn(log->l_mp, "%s: bad length 0x%x",
|
|
__func__, be32_to_cpu(ohead->oh_len));
|
|
WARN_ON(1);
|
|
return (XFS_ERROR(EIO));
|
|
}
|
|
flags = ohead->oh_flags & ~XLOG_END_TRANS;
|
|
if (flags & XLOG_WAS_CONT_TRANS)
|
|
flags &= ~XLOG_CONTINUE_TRANS;
|
|
switch (flags) {
|
|
case XLOG_COMMIT_TRANS:
|
|
error = xlog_recover_commit_trans(log,
|
|
trans, pass);
|
|
break;
|
|
case XLOG_UNMOUNT_TRANS:
|
|
error = xlog_recover_unmount_trans(log, trans);
|
|
break;
|
|
case XLOG_WAS_CONT_TRANS:
|
|
error = xlog_recover_add_to_cont_trans(log,
|
|
trans, dp,
|
|
be32_to_cpu(ohead->oh_len));
|
|
break;
|
|
case XLOG_START_TRANS:
|
|
xfs_warn(log->l_mp, "%s: bad transaction",
|
|
__func__);
|
|
ASSERT(0);
|
|
error = XFS_ERROR(EIO);
|
|
break;
|
|
case 0:
|
|
case XLOG_CONTINUE_TRANS:
|
|
error = xlog_recover_add_to_trans(log, trans,
|
|
dp, be32_to_cpu(ohead->oh_len));
|
|
break;
|
|
default:
|
|
xfs_warn(log->l_mp, "%s: bad flag 0x%x",
|
|
__func__, flags);
|
|
ASSERT(0);
|
|
error = XFS_ERROR(EIO);
|
|
break;
|
|
}
|
|
if (error) {
|
|
xlog_recover_free_trans(trans);
|
|
return error;
|
|
}
|
|
}
|
|
dp += be32_to_cpu(ohead->oh_len);
|
|
num_logops--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process an extent free intent item that was recovered from
|
|
* the log. We need to free the extents that it describes.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_process_efi(
|
|
xfs_mount_t *mp,
|
|
xfs_efi_log_item_t *efip)
|
|
{
|
|
xfs_efd_log_item_t *efdp;
|
|
xfs_trans_t *tp;
|
|
int i;
|
|
int error = 0;
|
|
xfs_extent_t *extp;
|
|
xfs_fsblock_t startblock_fsb;
|
|
|
|
ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
|
|
|
|
/*
|
|
* First check the validity of the extents described by the
|
|
* EFI. If any are bad, then assume that all are bad and
|
|
* just toss the EFI.
|
|
*/
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
extp = &(efip->efi_format.efi_extents[i]);
|
|
startblock_fsb = XFS_BB_TO_FSB(mp,
|
|
XFS_FSB_TO_DADDR(mp, extp->ext_start));
|
|
if ((startblock_fsb == 0) ||
|
|
(extp->ext_len == 0) ||
|
|
(startblock_fsb >= mp->m_sb.sb_dblocks) ||
|
|
(extp->ext_len >= mp->m_sb.sb_agblocks)) {
|
|
/*
|
|
* This will pull the EFI from the AIL and
|
|
* free the memory associated with it.
|
|
*/
|
|
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
|
|
xfs_efi_release(efip, efip->efi_format.efi_nextents);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
}
|
|
|
|
tp = xfs_trans_alloc(mp, 0);
|
|
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
|
|
if (error)
|
|
goto abort_error;
|
|
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
|
|
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
extp = &(efip->efi_format.efi_extents[i]);
|
|
error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
|
|
if (error)
|
|
goto abort_error;
|
|
xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
|
|
extp->ext_len);
|
|
}
|
|
|
|
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
|
|
error = xfs_trans_commit(tp, 0);
|
|
return error;
|
|
|
|
abort_error:
|
|
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* When this is called, all of the EFIs which did not have
|
|
* corresponding EFDs should be in the AIL. What we do now
|
|
* is free the extents associated with each one.
|
|
*
|
|
* Since we process the EFIs in normal transactions, they
|
|
* will be removed at some point after the commit. This prevents
|
|
* us from just walking down the list processing each one.
|
|
* We'll use a flag in the EFI to skip those that we've already
|
|
* processed and use the AIL iteration mechanism's generation
|
|
* count to try to speed this up at least a bit.
|
|
*
|
|
* When we start, we know that the EFIs are the only things in
|
|
* the AIL. As we process them, however, other items are added
|
|
* to the AIL. Since everything added to the AIL must come after
|
|
* everything already in the AIL, we stop processing as soon as
|
|
* we see something other than an EFI in the AIL.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_process_efis(
|
|
struct xlog *log)
|
|
{
|
|
xfs_log_item_t *lip;
|
|
xfs_efi_log_item_t *efip;
|
|
int error = 0;
|
|
struct xfs_ail_cursor cur;
|
|
struct xfs_ail *ailp;
|
|
|
|
ailp = log->l_ailp;
|
|
spin_lock(&ailp->xa_lock);
|
|
lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
|
|
while (lip != NULL) {
|
|
/*
|
|
* We're done when we see something other than an EFI.
|
|
* There should be no EFIs left in the AIL now.
|
|
*/
|
|
if (lip->li_type != XFS_LI_EFI) {
|
|
#ifdef DEBUG
|
|
for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
|
|
ASSERT(lip->li_type != XFS_LI_EFI);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Skip EFIs that we've already processed.
|
|
*/
|
|
efip = (xfs_efi_log_item_t *)lip;
|
|
if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
|
|
lip = xfs_trans_ail_cursor_next(ailp, &cur);
|
|
continue;
|
|
}
|
|
|
|
spin_unlock(&ailp->xa_lock);
|
|
error = xlog_recover_process_efi(log->l_mp, efip);
|
|
spin_lock(&ailp->xa_lock);
|
|
if (error)
|
|
goto out;
|
|
lip = xfs_trans_ail_cursor_next(ailp, &cur);
|
|
}
|
|
out:
|
|
xfs_trans_ail_cursor_done(ailp, &cur);
|
|
spin_unlock(&ailp->xa_lock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This routine performs a transaction to null out a bad inode pointer
|
|
* in an agi unlinked inode hash bucket.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_clear_agi_bucket(
|
|
xfs_mount_t *mp,
|
|
xfs_agnumber_t agno,
|
|
int bucket)
|
|
{
|
|
xfs_trans_t *tp;
|
|
xfs_agi_t *agi;
|
|
xfs_buf_t *agibp;
|
|
int offset;
|
|
int error;
|
|
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
|
|
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
|
|
if (error)
|
|
goto out_abort;
|
|
|
|
error = xfs_read_agi(mp, tp, agno, &agibp);
|
|
if (error)
|
|
goto out_abort;
|
|
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
|
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
|
|
offset = offsetof(xfs_agi_t, agi_unlinked) +
|
|
(sizeof(xfs_agino_t) * bucket);
|
|
xfs_trans_log_buf(tp, agibp, offset,
|
|
(offset + sizeof(xfs_agino_t) - 1));
|
|
|
|
error = xfs_trans_commit(tp, 0);
|
|
if (error)
|
|
goto out_error;
|
|
return;
|
|
|
|
out_abort:
|
|
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
|
|
out_error:
|
|
xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
|
|
return;
|
|
}
|
|
|
|
STATIC xfs_agino_t
|
|
xlog_recover_process_one_iunlink(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t agino,
|
|
int bucket)
|
|
{
|
|
struct xfs_buf *ibp;
|
|
struct xfs_dinode *dip;
|
|
struct xfs_inode *ip;
|
|
xfs_ino_t ino;
|
|
int error;
|
|
|
|
ino = XFS_AGINO_TO_INO(mp, agno, agino);
|
|
error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/*
|
|
* Get the on disk inode to find the next inode in the bucket.
|
|
*/
|
|
error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
|
|
if (error)
|
|
goto fail_iput;
|
|
|
|
ASSERT(ip->i_d.di_nlink == 0);
|
|
ASSERT(ip->i_d.di_mode != 0);
|
|
|
|
/* setup for the next pass */
|
|
agino = be32_to_cpu(dip->di_next_unlinked);
|
|
xfs_buf_relse(ibp);
|
|
|
|
/*
|
|
* Prevent any DMAPI event from being sent when the reference on
|
|
* the inode is dropped.
|
|
*/
|
|
ip->i_d.di_dmevmask = 0;
|
|
|
|
IRELE(ip);
|
|
return agino;
|
|
|
|
fail_iput:
|
|
IRELE(ip);
|
|
fail:
|
|
/*
|
|
* We can't read in the inode this bucket points to, or this inode
|
|
* is messed up. Just ditch this bucket of inodes. We will lose
|
|
* some inodes and space, but at least we won't hang.
|
|
*
|
|
* Call xlog_recover_clear_agi_bucket() to perform a transaction to
|
|
* clear the inode pointer in the bucket.
|
|
*/
|
|
xlog_recover_clear_agi_bucket(mp, agno, bucket);
|
|
return NULLAGINO;
|
|
}
|
|
|
|
/*
|
|
* xlog_iunlink_recover
|
|
*
|
|
* This is called during recovery to process any inodes which
|
|
* we unlinked but not freed when the system crashed. These
|
|
* inodes will be on the lists in the AGI blocks. What we do
|
|
* here is scan all the AGIs and fully truncate and free any
|
|
* inodes found on the lists. Each inode is removed from the
|
|
* lists when it has been fully truncated and is freed. The
|
|
* freeing of the inode and its removal from the list must be
|
|
* atomic.
|
|
*/
|
|
STATIC void
|
|
xlog_recover_process_iunlinks(
|
|
struct xlog *log)
|
|
{
|
|
xfs_mount_t *mp;
|
|
xfs_agnumber_t agno;
|
|
xfs_agi_t *agi;
|
|
xfs_buf_t *agibp;
|
|
xfs_agino_t agino;
|
|
int bucket;
|
|
int error;
|
|
uint mp_dmevmask;
|
|
|
|
mp = log->l_mp;
|
|
|
|
/*
|
|
* Prevent any DMAPI event from being sent while in this function.
|
|
*/
|
|
mp_dmevmask = mp->m_dmevmask;
|
|
mp->m_dmevmask = 0;
|
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
/*
|
|
* Find the agi for this ag.
|
|
*/
|
|
error = xfs_read_agi(mp, NULL, agno, &agibp);
|
|
if (error) {
|
|
/*
|
|
* AGI is b0rked. Don't process it.
|
|
*
|
|
* We should probably mark the filesystem as corrupt
|
|
* after we've recovered all the ag's we can....
|
|
*/
|
|
continue;
|
|
}
|
|
/*
|
|
* Unlock the buffer so that it can be acquired in the normal
|
|
* course of the transaction to truncate and free each inode.
|
|
* Because we are not racing with anyone else here for the AGI
|
|
* buffer, we don't even need to hold it locked to read the
|
|
* initial unlinked bucket entries out of the buffer. We keep
|
|
* buffer reference though, so that it stays pinned in memory
|
|
* while we need the buffer.
|
|
*/
|
|
agi = XFS_BUF_TO_AGI(agibp);
|
|
xfs_buf_unlock(agibp);
|
|
|
|
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
|
|
agino = be32_to_cpu(agi->agi_unlinked[bucket]);
|
|
while (agino != NULLAGINO) {
|
|
agino = xlog_recover_process_one_iunlink(mp,
|
|
agno, agino, bucket);
|
|
}
|
|
}
|
|
xfs_buf_rele(agibp);
|
|
}
|
|
|
|
mp->m_dmevmask = mp_dmevmask;
|
|
}
|
|
|
|
/*
|
|
* Upack the log buffer data and crc check it. If the check fails, issue a
|
|
* warning if and only if the CRC in the header is non-zero. This makes the
|
|
* check an advisory warning, and the zero CRC check will prevent failure
|
|
* warnings from being emitted when upgrading the kernel from one that does not
|
|
* add CRCs by default.
|
|
*
|
|
* When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
|
|
* corruption failure
|
|
*/
|
|
STATIC int
|
|
xlog_unpack_data_crc(
|
|
struct xlog_rec_header *rhead,
|
|
xfs_caddr_t dp,
|
|
struct xlog *log)
|
|
{
|
|
__le32 crc;
|
|
|
|
crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
|
|
if (crc != rhead->h_crc) {
|
|
if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
|
|
xfs_alert(log->l_mp,
|
|
"log record CRC mismatch: found 0x%x, expected 0x%x.",
|
|
le32_to_cpu(rhead->h_crc),
|
|
le32_to_cpu(crc));
|
|
xfs_hex_dump(dp, 32);
|
|
}
|
|
|
|
/*
|
|
* If we've detected a log record corruption, then we can't
|
|
* recover past this point. Abort recovery if we are enforcing
|
|
* CRC protection by punting an error back up the stack.
|
|
*/
|
|
if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
|
|
return EFSCORRUPTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_unpack_data(
|
|
struct xlog_rec_header *rhead,
|
|
xfs_caddr_t dp,
|
|
struct xlog *log)
|
|
{
|
|
int i, j, k;
|
|
int error;
|
|
|
|
error = xlog_unpack_data_crc(rhead, dp, log);
|
|
if (error)
|
|
return error;
|
|
|
|
for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
|
|
i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
|
|
*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
|
|
dp += BBSIZE;
|
|
}
|
|
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
|
|
xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
|
|
for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
|
|
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
|
|
dp += BBSIZE;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_valid_rec_header(
|
|
struct xlog *log,
|
|
struct xlog_rec_header *rhead,
|
|
xfs_daddr_t blkno)
|
|
{
|
|
int hlen;
|
|
|
|
if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
|
|
XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
|
|
XFS_ERRLEVEL_LOW, log->l_mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
if (unlikely(
|
|
(!rhead->h_version ||
|
|
(be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
|
|
xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
|
|
__func__, be32_to_cpu(rhead->h_version));
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* LR body must have data or it wouldn't have been written */
|
|
hlen = be32_to_cpu(rhead->h_len);
|
|
if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
|
|
XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
|
|
XFS_ERRLEVEL_LOW, log->l_mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
|
|
XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
|
|
XFS_ERRLEVEL_LOW, log->l_mp);
|
|
return XFS_ERROR(EFSCORRUPTED);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the log from tail to head and process the log records found.
|
|
* Handle the two cases where the tail and head are in the same cycle
|
|
* and where the active portion of the log wraps around the end of
|
|
* the physical log separately. The pass parameter is passed through
|
|
* to the routines called to process the data and is not looked at
|
|
* here.
|
|
*/
|
|
STATIC int
|
|
xlog_do_recovery_pass(
|
|
struct xlog *log,
|
|
xfs_daddr_t head_blk,
|
|
xfs_daddr_t tail_blk,
|
|
int pass)
|
|
{
|
|
xlog_rec_header_t *rhead;
|
|
xfs_daddr_t blk_no;
|
|
xfs_caddr_t offset;
|
|
xfs_buf_t *hbp, *dbp;
|
|
int error = 0, h_size;
|
|
int bblks, split_bblks;
|
|
int hblks, split_hblks, wrapped_hblks;
|
|
struct hlist_head rhash[XLOG_RHASH_SIZE];
|
|
|
|
ASSERT(head_blk != tail_blk);
|
|
|
|
/*
|
|
* Read the header of the tail block and get the iclog buffer size from
|
|
* h_size. Use this to tell how many sectors make up the log header.
|
|
*/
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
|
|
/*
|
|
* When using variable length iclogs, read first sector of
|
|
* iclog header and extract the header size from it. Get a
|
|
* new hbp that is the correct size.
|
|
*/
|
|
hbp = xlog_get_bp(log, 1);
|
|
if (!hbp)
|
|
return ENOMEM;
|
|
|
|
error = xlog_bread(log, tail_blk, 1, hbp, &offset);
|
|
if (error)
|
|
goto bread_err1;
|
|
|
|
rhead = (xlog_rec_header_t *)offset;
|
|
error = xlog_valid_rec_header(log, rhead, tail_blk);
|
|
if (error)
|
|
goto bread_err1;
|
|
h_size = be32_to_cpu(rhead->h_size);
|
|
if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
|
|
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
|
|
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
|
|
if (h_size % XLOG_HEADER_CYCLE_SIZE)
|
|
hblks++;
|
|
xlog_put_bp(hbp);
|
|
hbp = xlog_get_bp(log, hblks);
|
|
} else {
|
|
hblks = 1;
|
|
}
|
|
} else {
|
|
ASSERT(log->l_sectBBsize == 1);
|
|
hblks = 1;
|
|
hbp = xlog_get_bp(log, 1);
|
|
h_size = XLOG_BIG_RECORD_BSIZE;
|
|
}
|
|
|
|
if (!hbp)
|
|
return ENOMEM;
|
|
dbp = xlog_get_bp(log, BTOBB(h_size));
|
|
if (!dbp) {
|
|
xlog_put_bp(hbp);
|
|
return ENOMEM;
|
|
}
|
|
|
|
memset(rhash, 0, sizeof(rhash));
|
|
if (tail_blk <= head_blk) {
|
|
for (blk_no = tail_blk; blk_no < head_blk; ) {
|
|
error = xlog_bread(log, blk_no, hblks, hbp, &offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
rhead = (xlog_rec_header_t *)offset;
|
|
error = xlog_valid_rec_header(log, rhead, blk_no);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
/* blocks in data section */
|
|
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
|
|
error = xlog_bread(log, blk_no + hblks, bblks, dbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
error = xlog_unpack_data(rhead, offset, log);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
error = xlog_recover_process_data(log,
|
|
rhash, rhead, offset, pass);
|
|
if (error)
|
|
goto bread_err2;
|
|
blk_no += bblks + hblks;
|
|
}
|
|
} else {
|
|
/*
|
|
* Perform recovery around the end of the physical log.
|
|
* When the head is not on the same cycle number as the tail,
|
|
* we can't do a sequential recovery as above.
|
|
*/
|
|
blk_no = tail_blk;
|
|
while (blk_no < log->l_logBBsize) {
|
|
/*
|
|
* Check for header wrapping around physical end-of-log
|
|
*/
|
|
offset = hbp->b_addr;
|
|
split_hblks = 0;
|
|
wrapped_hblks = 0;
|
|
if (blk_no + hblks <= log->l_logBBsize) {
|
|
/* Read header in one read */
|
|
error = xlog_bread(log, blk_no, hblks, hbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
} else {
|
|
/* This LR is split across physical log end */
|
|
if (blk_no != log->l_logBBsize) {
|
|
/* some data before physical log end */
|
|
ASSERT(blk_no <= INT_MAX);
|
|
split_hblks = log->l_logBBsize - (int)blk_no;
|
|
ASSERT(split_hblks > 0);
|
|
error = xlog_bread(log, blk_no,
|
|
split_hblks, hbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
}
|
|
|
|
/*
|
|
* Note: this black magic still works with
|
|
* large sector sizes (non-512) only because:
|
|
* - we increased the buffer size originally
|
|
* by 1 sector giving us enough extra space
|
|
* for the second read;
|
|
* - the log start is guaranteed to be sector
|
|
* aligned;
|
|
* - we read the log end (LR header start)
|
|
* _first_, then the log start (LR header end)
|
|
* - order is important.
|
|
*/
|
|
wrapped_hblks = hblks - split_hblks;
|
|
error = xlog_bread_offset(log, 0,
|
|
wrapped_hblks, hbp,
|
|
offset + BBTOB(split_hblks));
|
|
if (error)
|
|
goto bread_err2;
|
|
}
|
|
rhead = (xlog_rec_header_t *)offset;
|
|
error = xlog_valid_rec_header(log, rhead,
|
|
split_hblks ? blk_no : 0);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
|
|
blk_no += hblks;
|
|
|
|
/* Read in data for log record */
|
|
if (blk_no + bblks <= log->l_logBBsize) {
|
|
error = xlog_bread(log, blk_no, bblks, dbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
} else {
|
|
/* This log record is split across the
|
|
* physical end of log */
|
|
offset = dbp->b_addr;
|
|
split_bblks = 0;
|
|
if (blk_no != log->l_logBBsize) {
|
|
/* some data is before the physical
|
|
* end of log */
|
|
ASSERT(!wrapped_hblks);
|
|
ASSERT(blk_no <= INT_MAX);
|
|
split_bblks =
|
|
log->l_logBBsize - (int)blk_no;
|
|
ASSERT(split_bblks > 0);
|
|
error = xlog_bread(log, blk_no,
|
|
split_bblks, dbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
}
|
|
|
|
/*
|
|
* Note: this black magic still works with
|
|
* large sector sizes (non-512) only because:
|
|
* - we increased the buffer size originally
|
|
* by 1 sector giving us enough extra space
|
|
* for the second read;
|
|
* - the log start is guaranteed to be sector
|
|
* aligned;
|
|
* - we read the log end (LR header start)
|
|
* _first_, then the log start (LR header end)
|
|
* - order is important.
|
|
*/
|
|
error = xlog_bread_offset(log, 0,
|
|
bblks - split_bblks, dbp,
|
|
offset + BBTOB(split_bblks));
|
|
if (error)
|
|
goto bread_err2;
|
|
}
|
|
|
|
error = xlog_unpack_data(rhead, offset, log);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
error = xlog_recover_process_data(log, rhash,
|
|
rhead, offset, pass);
|
|
if (error)
|
|
goto bread_err2;
|
|
blk_no += bblks;
|
|
}
|
|
|
|
ASSERT(blk_no >= log->l_logBBsize);
|
|
blk_no -= log->l_logBBsize;
|
|
|
|
/* read first part of physical log */
|
|
while (blk_no < head_blk) {
|
|
error = xlog_bread(log, blk_no, hblks, hbp, &offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
rhead = (xlog_rec_header_t *)offset;
|
|
error = xlog_valid_rec_header(log, rhead, blk_no);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
|
|
error = xlog_bread(log, blk_no+hblks, bblks, dbp,
|
|
&offset);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
error = xlog_unpack_data(rhead, offset, log);
|
|
if (error)
|
|
goto bread_err2;
|
|
|
|
error = xlog_recover_process_data(log, rhash,
|
|
rhead, offset, pass);
|
|
if (error)
|
|
goto bread_err2;
|
|
blk_no += bblks + hblks;
|
|
}
|
|
}
|
|
|
|
bread_err2:
|
|
xlog_put_bp(dbp);
|
|
bread_err1:
|
|
xlog_put_bp(hbp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Do the recovery of the log. We actually do this in two phases.
|
|
* The two passes are necessary in order to implement the function
|
|
* of cancelling a record written into the log. The first pass
|
|
* determines those things which have been cancelled, and the
|
|
* second pass replays log items normally except for those which
|
|
* have been cancelled. The handling of the replay and cancellations
|
|
* takes place in the log item type specific routines.
|
|
*
|
|
* The table of items which have cancel records in the log is allocated
|
|
* and freed at this level, since only here do we know when all of
|
|
* the log recovery has been completed.
|
|
*/
|
|
STATIC int
|
|
xlog_do_log_recovery(
|
|
struct xlog *log,
|
|
xfs_daddr_t head_blk,
|
|
xfs_daddr_t tail_blk)
|
|
{
|
|
int error, i;
|
|
|
|
ASSERT(head_blk != tail_blk);
|
|
|
|
/*
|
|
* First do a pass to find all of the cancelled buf log items.
|
|
* Store them in the buf_cancel_table for use in the second pass.
|
|
*/
|
|
log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
|
|
sizeof(struct list_head),
|
|
KM_SLEEP);
|
|
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
|
|
INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
|
|
|
|
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
|
|
XLOG_RECOVER_PASS1);
|
|
if (error != 0) {
|
|
kmem_free(log->l_buf_cancel_table);
|
|
log->l_buf_cancel_table = NULL;
|
|
return error;
|
|
}
|
|
/*
|
|
* Then do a second pass to actually recover the items in the log.
|
|
* When it is complete free the table of buf cancel items.
|
|
*/
|
|
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
|
|
XLOG_RECOVER_PASS2);
|
|
#ifdef DEBUG
|
|
if (!error) {
|
|
int i;
|
|
|
|
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
|
|
ASSERT(list_empty(&log->l_buf_cancel_table[i]));
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
kmem_free(log->l_buf_cancel_table);
|
|
log->l_buf_cancel_table = NULL;
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Do the actual recovery
|
|
*/
|
|
STATIC int
|
|
xlog_do_recover(
|
|
struct xlog *log,
|
|
xfs_daddr_t head_blk,
|
|
xfs_daddr_t tail_blk)
|
|
{
|
|
int error;
|
|
xfs_buf_t *bp;
|
|
xfs_sb_t *sbp;
|
|
|
|
/*
|
|
* First replay the images in the log.
|
|
*/
|
|
error = xlog_do_log_recovery(log, head_blk, tail_blk);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* If IO errors happened during recovery, bail out.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* We now update the tail_lsn since much of the recovery has completed
|
|
* and there may be space available to use. If there were no extent
|
|
* or iunlinks, we can free up the entire log and set the tail_lsn to
|
|
* be the last_sync_lsn. This was set in xlog_find_tail to be the
|
|
* lsn of the last known good LR on disk. If there are extent frees
|
|
* or iunlinks they will have some entries in the AIL; so we look at
|
|
* the AIL to determine how to set the tail_lsn.
|
|
*/
|
|
xlog_assign_tail_lsn(log->l_mp);
|
|
|
|
/*
|
|
* Now that we've finished replaying all buffer and inode
|
|
* updates, re-read in the superblock and reverify it.
|
|
*/
|
|
bp = xfs_getsb(log->l_mp, 0);
|
|
XFS_BUF_UNDONE(bp);
|
|
ASSERT(!(XFS_BUF_ISWRITE(bp)));
|
|
XFS_BUF_READ(bp);
|
|
XFS_BUF_UNASYNC(bp);
|
|
bp->b_ops = &xfs_sb_buf_ops;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
|
|
xfs_buf_relse(bp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
ASSERT(0);
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
}
|
|
|
|
/* Convert superblock from on-disk format */
|
|
sbp = &log->l_mp->m_sb;
|
|
xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
|
|
ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
|
|
ASSERT(xfs_sb_good_version(sbp));
|
|
xfs_buf_relse(bp);
|
|
|
|
/* We've re-read the superblock so re-initialize per-cpu counters */
|
|
xfs_icsb_reinit_counters(log->l_mp);
|
|
|
|
xlog_recover_check_summary(log);
|
|
|
|
/* Normal transactions can now occur */
|
|
log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Perform recovery and re-initialize some log variables in xlog_find_tail.
|
|
*
|
|
* Return error or zero.
|
|
*/
|
|
int
|
|
xlog_recover(
|
|
struct xlog *log)
|
|
{
|
|
xfs_daddr_t head_blk, tail_blk;
|
|
int error;
|
|
|
|
/* find the tail of the log */
|
|
if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
|
|
return error;
|
|
|
|
if (tail_blk != head_blk) {
|
|
/* There used to be a comment here:
|
|
*
|
|
* disallow recovery on read-only mounts. note -- mount
|
|
* checks for ENOSPC and turns it into an intelligent
|
|
* error message.
|
|
* ...but this is no longer true. Now, unless you specify
|
|
* NORECOVERY (in which case this function would never be
|
|
* called), we just go ahead and recover. We do this all
|
|
* under the vfs layer, so we can get away with it unless
|
|
* the device itself is read-only, in which case we fail.
|
|
*/
|
|
if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Version 5 superblock log feature mask validation. We know the
|
|
* log is dirty so check if there are any unknown log features
|
|
* in what we need to recover. If there are unknown features
|
|
* (e.g. unsupported transactions, then simply reject the
|
|
* attempt at recovery before touching anything.
|
|
*/
|
|
if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
|
|
xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
|
|
XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
|
|
xfs_warn(log->l_mp,
|
|
"Superblock has unknown incompatible log features (0x%x) enabled.\n"
|
|
"The log can not be fully and/or safely recovered by this kernel.\n"
|
|
"Please recover the log on a kernel that supports the unknown features.",
|
|
(log->l_mp->m_sb.sb_features_log_incompat &
|
|
XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
|
|
return EINVAL;
|
|
}
|
|
|
|
xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
|
|
log->l_mp->m_logname ? log->l_mp->m_logname
|
|
: "internal");
|
|
|
|
error = xlog_do_recover(log, head_blk, tail_blk);
|
|
log->l_flags |= XLOG_RECOVERY_NEEDED;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* In the first part of recovery we replay inodes and buffers and build
|
|
* up the list of extent free items which need to be processed. Here
|
|
* we process the extent free items and clean up the on disk unlinked
|
|
* inode lists. This is separated from the first part of recovery so
|
|
* that the root and real-time bitmap inodes can be read in from disk in
|
|
* between the two stages. This is necessary so that we can free space
|
|
* in the real-time portion of the file system.
|
|
*/
|
|
int
|
|
xlog_recover_finish(
|
|
struct xlog *log)
|
|
{
|
|
/*
|
|
* Now we're ready to do the transactions needed for the
|
|
* rest of recovery. Start with completing all the extent
|
|
* free intent records and then process the unlinked inode
|
|
* lists. At this point, we essentially run in normal mode
|
|
* except that we're still performing recovery actions
|
|
* rather than accepting new requests.
|
|
*/
|
|
if (log->l_flags & XLOG_RECOVERY_NEEDED) {
|
|
int error;
|
|
error = xlog_recover_process_efis(log);
|
|
if (error) {
|
|
xfs_alert(log->l_mp, "Failed to recover EFIs");
|
|
return error;
|
|
}
|
|
/*
|
|
* Sync the log to get all the EFIs out of the AIL.
|
|
* This isn't absolutely necessary, but it helps in
|
|
* case the unlink transactions would have problems
|
|
* pushing the EFIs out of the way.
|
|
*/
|
|
xfs_log_force(log->l_mp, XFS_LOG_SYNC);
|
|
|
|
xlog_recover_process_iunlinks(log);
|
|
|
|
xlog_recover_check_summary(log);
|
|
|
|
xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
|
|
log->l_mp->m_logname ? log->l_mp->m_logname
|
|
: "internal");
|
|
log->l_flags &= ~XLOG_RECOVERY_NEEDED;
|
|
} else {
|
|
xfs_info(log->l_mp, "Ending clean mount");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if defined(DEBUG)
|
|
/*
|
|
* Read all of the agf and agi counters and check that they
|
|
* are consistent with the superblock counters.
|
|
*/
|
|
void
|
|
xlog_recover_check_summary(
|
|
struct xlog *log)
|
|
{
|
|
xfs_mount_t *mp;
|
|
xfs_agf_t *agfp;
|
|
xfs_buf_t *agfbp;
|
|
xfs_buf_t *agibp;
|
|
xfs_agnumber_t agno;
|
|
__uint64_t freeblks;
|
|
__uint64_t itotal;
|
|
__uint64_t ifree;
|
|
int error;
|
|
|
|
mp = log->l_mp;
|
|
|
|
freeblks = 0LL;
|
|
itotal = 0LL;
|
|
ifree = 0LL;
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
|
|
if (error) {
|
|
xfs_alert(mp, "%s agf read failed agno %d error %d",
|
|
__func__, agno, error);
|
|
} else {
|
|
agfp = XFS_BUF_TO_AGF(agfbp);
|
|
freeblks += be32_to_cpu(agfp->agf_freeblks) +
|
|
be32_to_cpu(agfp->agf_flcount);
|
|
xfs_buf_relse(agfbp);
|
|
}
|
|
|
|
error = xfs_read_agi(mp, NULL, agno, &agibp);
|
|
if (error) {
|
|
xfs_alert(mp, "%s agi read failed agno %d error %d",
|
|
__func__, agno, error);
|
|
} else {
|
|
struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
|
|
|
|
itotal += be32_to_cpu(agi->agi_count);
|
|
ifree += be32_to_cpu(agi->agi_freecount);
|
|
xfs_buf_relse(agibp);
|
|
}
|
|
}
|
|
}
|
|
#endif /* DEBUG */
|