2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/kernel/compat.c
Christoph Hellwig 3a0f69d59b [PATCH] common compat_sys_timer_create
The comment in compat.c is wrong, every architecture provides a
get_compat_sigevent() for the IPC compat code already.

This basically moves the x86_64 version to common code and removes all the
others.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 08:01:32 -08:00

874 lines
22 KiB
C

/*
* linux/kernel/compat.c
*
* Kernel compatibililty routines for e.g. 32 bit syscall support
* on 64 bit kernels.
*
* Copyright (C) 2002-2003 Stephen Rothwell, IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <linux/compat.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/signal.h>
#include <linux/sched.h> /* for MAX_SCHEDULE_TIMEOUT */
#include <linux/futex.h> /* for FUTEX_WAIT */
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/security.h>
#include <asm/uaccess.h>
#include <asm/bug.h>
int get_compat_timespec(struct timespec *ts, const struct compat_timespec __user *cts)
{
return (!access_ok(VERIFY_READ, cts, sizeof(*cts)) ||
__get_user(ts->tv_sec, &cts->tv_sec) ||
__get_user(ts->tv_nsec, &cts->tv_nsec)) ? -EFAULT : 0;
}
int put_compat_timespec(const struct timespec *ts, struct compat_timespec __user *cts)
{
return (!access_ok(VERIFY_WRITE, cts, sizeof(*cts)) ||
__put_user(ts->tv_sec, &cts->tv_sec) ||
__put_user(ts->tv_nsec, &cts->tv_nsec)) ? -EFAULT : 0;
}
static long compat_nanosleep_restart(struct restart_block *restart)
{
unsigned long expire = restart->arg0, now = jiffies;
struct compat_timespec __user *rmtp;
/* Did it expire while we handled signals? */
if (!time_after(expire, now))
return 0;
expire = schedule_timeout_interruptible(expire - now);
if (expire == 0)
return 0;
rmtp = (struct compat_timespec __user *)restart->arg1;
if (rmtp) {
struct compat_timespec ct;
struct timespec t;
jiffies_to_timespec(expire, &t);
ct.tv_sec = t.tv_sec;
ct.tv_nsec = t.tv_nsec;
if (copy_to_user(rmtp, &ct, sizeof(ct)))
return -EFAULT;
}
/* The 'restart' block is already filled in */
return -ERESTART_RESTARTBLOCK;
}
asmlinkage long compat_sys_nanosleep(struct compat_timespec __user *rqtp,
struct compat_timespec __user *rmtp)
{
struct timespec t;
struct restart_block *restart;
unsigned long expire;
if (get_compat_timespec(&t, rqtp))
return -EFAULT;
if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
return -EINVAL;
expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
expire = schedule_timeout_interruptible(expire);
if (expire == 0)
return 0;
if (rmtp) {
jiffies_to_timespec(expire, &t);
if (put_compat_timespec(&t, rmtp))
return -EFAULT;
}
restart = &current_thread_info()->restart_block;
restart->fn = compat_nanosleep_restart;
restart->arg0 = jiffies + expire;
restart->arg1 = (unsigned long) rmtp;
return -ERESTART_RESTARTBLOCK;
}
static inline long get_compat_itimerval(struct itimerval *o,
struct compat_itimerval __user *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) |
__get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) |
__get_user(o->it_value.tv_sec, &i->it_value.tv_sec) |
__get_user(o->it_value.tv_usec, &i->it_value.tv_usec)));
}
static inline long put_compat_itimerval(struct compat_itimerval __user *o,
struct itimerval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) |
__put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) |
__put_user(i->it_value.tv_sec, &o->it_value.tv_sec) |
__put_user(i->it_value.tv_usec, &o->it_value.tv_usec)));
}
asmlinkage long compat_sys_getitimer(int which,
struct compat_itimerval __user *it)
{
struct itimerval kit;
int error;
error = do_getitimer(which, &kit);
if (!error && put_compat_itimerval(it, &kit))
error = -EFAULT;
return error;
}
asmlinkage long compat_sys_setitimer(int which,
struct compat_itimerval __user *in,
struct compat_itimerval __user *out)
{
struct itimerval kin, kout;
int error;
if (in) {
if (get_compat_itimerval(&kin, in))
return -EFAULT;
} else
memset(&kin, 0, sizeof(kin));
error = do_setitimer(which, &kin, out ? &kout : NULL);
if (error || !out)
return error;
if (put_compat_itimerval(out, &kout))
return -EFAULT;
return 0;
}
asmlinkage long compat_sys_times(struct compat_tms __user *tbuf)
{
/*
* In the SMP world we might just be unlucky and have one of
* the times increment as we use it. Since the value is an
* atomically safe type this is just fine. Conceptually its
* as if the syscall took an instant longer to occur.
*/
if (tbuf) {
struct compat_tms tmp;
struct task_struct *tsk = current;
struct task_struct *t;
cputime_t utime, stime, cutime, cstime;
read_lock(&tasklist_lock);
utime = tsk->signal->utime;
stime = tsk->signal->stime;
t = tsk;
do {
utime = cputime_add(utime, t->utime);
stime = cputime_add(stime, t->stime);
t = next_thread(t);
} while (t != tsk);
/*
* While we have tasklist_lock read-locked, no dying thread
* can be updating current->signal->[us]time. Instead,
* we got their counts included in the live thread loop.
* However, another thread can come in right now and
* do a wait call that updates current->signal->c[us]time.
* To make sure we always see that pair updated atomically,
* we take the siglock around fetching them.
*/
spin_lock_irq(&tsk->sighand->siglock);
cutime = tsk->signal->cutime;
cstime = tsk->signal->cstime;
spin_unlock_irq(&tsk->sighand->siglock);
read_unlock(&tasklist_lock);
tmp.tms_utime = compat_jiffies_to_clock_t(cputime_to_jiffies(utime));
tmp.tms_stime = compat_jiffies_to_clock_t(cputime_to_jiffies(stime));
tmp.tms_cutime = compat_jiffies_to_clock_t(cputime_to_jiffies(cutime));
tmp.tms_cstime = compat_jiffies_to_clock_t(cputime_to_jiffies(cstime));
if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
return -EFAULT;
}
return compat_jiffies_to_clock_t(jiffies);
}
/*
* Assumption: old_sigset_t and compat_old_sigset_t are both
* types that can be passed to put_user()/get_user().
*/
asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set)
{
old_sigset_t s;
long ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_sigpending((old_sigset_t __user *) &s);
set_fs(old_fs);
if (ret == 0)
ret = put_user(s, set);
return ret;
}
asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *set,
compat_old_sigset_t __user *oset)
{
old_sigset_t s;
long ret;
mm_segment_t old_fs;
if (set && get_user(s, set))
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_sigprocmask(how,
set ? (old_sigset_t __user *) &s : NULL,
oset ? (old_sigset_t __user *) &s : NULL);
set_fs(old_fs);
if (ret == 0)
if (oset)
ret = put_user(s, oset);
return ret;
}
#ifdef CONFIG_FUTEX
asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, int val,
struct compat_timespec __user *utime, u32 __user *uaddr2,
int val3)
{
struct timespec t;
unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
int val2 = 0;
if ((op == FUTEX_WAIT) && utime) {
if (get_compat_timespec(&t, utime))
return -EFAULT;
timeout = timespec_to_jiffies(&t) + 1;
}
if (op >= FUTEX_REQUEUE)
val2 = (int) (unsigned long) utime;
return do_futex((unsigned long)uaddr, op, val, timeout,
(unsigned long)uaddr2, val2, val3);
}
#endif
asmlinkage long compat_sys_setrlimit(unsigned int resource,
struct compat_rlimit __user *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs ();
if (resource >= RLIM_NLIMITS)
return -EINVAL;
if (!access_ok(VERIFY_READ, rlim, sizeof(*rlim)) ||
__get_user(r.rlim_cur, &rlim->rlim_cur) ||
__get_user(r.rlim_max, &rlim->rlim_max))
return -EFAULT;
if (r.rlim_cur == COMPAT_RLIM_INFINITY)
r.rlim_cur = RLIM_INFINITY;
if (r.rlim_max == COMPAT_RLIM_INFINITY)
r.rlim_max = RLIM_INFINITY;
set_fs(KERNEL_DS);
ret = sys_setrlimit(resource, (struct rlimit __user *) &r);
set_fs(old_fs);
return ret;
}
#ifdef COMPAT_RLIM_OLD_INFINITY
asmlinkage long compat_sys_old_getrlimit(unsigned int resource,
struct compat_rlimit __user *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_old_getrlimit(resource, &r);
set_fs(old_fs);
if (!ret) {
if (r.rlim_cur > COMPAT_RLIM_OLD_INFINITY)
r.rlim_cur = COMPAT_RLIM_INFINITY;
if (r.rlim_max > COMPAT_RLIM_OLD_INFINITY)
r.rlim_max = COMPAT_RLIM_INFINITY;
if (!access_ok(VERIFY_WRITE, rlim, sizeof(*rlim)) ||
__put_user(r.rlim_cur, &rlim->rlim_cur) ||
__put_user(r.rlim_max, &rlim->rlim_max))
return -EFAULT;
}
return ret;
}
#endif
asmlinkage long compat_sys_getrlimit (unsigned int resource,
struct compat_rlimit __user *rlim)
{
struct rlimit r;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getrlimit(resource, (struct rlimit __user *) &r);
set_fs(old_fs);
if (!ret) {
if (r.rlim_cur > COMPAT_RLIM_INFINITY)
r.rlim_cur = COMPAT_RLIM_INFINITY;
if (r.rlim_max > COMPAT_RLIM_INFINITY)
r.rlim_max = COMPAT_RLIM_INFINITY;
if (!access_ok(VERIFY_WRITE, rlim, sizeof(*rlim)) ||
__put_user(r.rlim_cur, &rlim->rlim_cur) ||
__put_user(r.rlim_max, &rlim->rlim_max))
return -EFAULT;
}
return ret;
}
int put_compat_rusage(const struct rusage *r, struct compat_rusage __user *ru)
{
if (!access_ok(VERIFY_WRITE, ru, sizeof(*ru)) ||
__put_user(r->ru_utime.tv_sec, &ru->ru_utime.tv_sec) ||
__put_user(r->ru_utime.tv_usec, &ru->ru_utime.tv_usec) ||
__put_user(r->ru_stime.tv_sec, &ru->ru_stime.tv_sec) ||
__put_user(r->ru_stime.tv_usec, &ru->ru_stime.tv_usec) ||
__put_user(r->ru_maxrss, &ru->ru_maxrss) ||
__put_user(r->ru_ixrss, &ru->ru_ixrss) ||
__put_user(r->ru_idrss, &ru->ru_idrss) ||
__put_user(r->ru_isrss, &ru->ru_isrss) ||
__put_user(r->ru_minflt, &ru->ru_minflt) ||
__put_user(r->ru_majflt, &ru->ru_majflt) ||
__put_user(r->ru_nswap, &ru->ru_nswap) ||
__put_user(r->ru_inblock, &ru->ru_inblock) ||
__put_user(r->ru_oublock, &ru->ru_oublock) ||
__put_user(r->ru_msgsnd, &ru->ru_msgsnd) ||
__put_user(r->ru_msgrcv, &ru->ru_msgrcv) ||
__put_user(r->ru_nsignals, &ru->ru_nsignals) ||
__put_user(r->ru_nvcsw, &ru->ru_nvcsw) ||
__put_user(r->ru_nivcsw, &ru->ru_nivcsw))
return -EFAULT;
return 0;
}
asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru)
{
struct rusage r;
int ret;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
ret = sys_getrusage(who, (struct rusage __user *) &r);
set_fs(old_fs);
if (ret)
return ret;
if (put_compat_rusage(&r, ru))
return -EFAULT;
return 0;
}
asmlinkage long
compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options,
struct compat_rusage __user *ru)
{
if (!ru) {
return sys_wait4(pid, stat_addr, options, NULL);
} else {
struct rusage r;
int ret;
unsigned int status;
mm_segment_t old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_wait4(pid,
(stat_addr ?
(unsigned int __user *) &status : NULL),
options, (struct rusage __user *) &r);
set_fs (old_fs);
if (ret > 0) {
if (put_compat_rusage(&r, ru))
return -EFAULT;
if (stat_addr && put_user(status, stat_addr))
return -EFAULT;
}
return ret;
}
}
asmlinkage long compat_sys_waitid(int which, compat_pid_t pid,
struct compat_siginfo __user *uinfo, int options,
struct compat_rusage __user *uru)
{
siginfo_t info;
struct rusage ru;
long ret;
mm_segment_t old_fs = get_fs();
memset(&info, 0, sizeof(info));
set_fs(KERNEL_DS);
ret = sys_waitid(which, pid, (siginfo_t __user *)&info, options,
uru ? (struct rusage __user *)&ru : NULL);
set_fs(old_fs);
if ((ret < 0) || (info.si_signo == 0))
return ret;
if (uru) {
ret = put_compat_rusage(&ru, uru);
if (ret)
return ret;
}
BUG_ON(info.si_code & __SI_MASK);
info.si_code |= __SI_CHLD;
return copy_siginfo_to_user32(uinfo, &info);
}
static int compat_get_user_cpu_mask(compat_ulong_t __user *user_mask_ptr,
unsigned len, cpumask_t *new_mask)
{
unsigned long *k;
if (len < sizeof(cpumask_t))
memset(new_mask, 0, sizeof(cpumask_t));
else if (len > sizeof(cpumask_t))
len = sizeof(cpumask_t);
k = cpus_addr(*new_mask);
return compat_get_bitmap(k, user_mask_ptr, len * 8);
}
asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid,
unsigned int len,
compat_ulong_t __user *user_mask_ptr)
{
cpumask_t new_mask;
int retval;
retval = compat_get_user_cpu_mask(user_mask_ptr, len, &new_mask);
if (retval)
return retval;
return sched_setaffinity(pid, new_mask);
}
asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len,
compat_ulong_t __user *user_mask_ptr)
{
int ret;
cpumask_t mask;
unsigned long *k;
unsigned int min_length = sizeof(cpumask_t);
if (NR_CPUS <= BITS_PER_COMPAT_LONG)
min_length = sizeof(compat_ulong_t);
if (len < min_length)
return -EINVAL;
ret = sched_getaffinity(pid, &mask);
if (ret < 0)
return ret;
k = cpus_addr(mask);
ret = compat_put_bitmap(user_mask_ptr, k, min_length * 8);
if (ret)
return ret;
return min_length;
}
static int get_compat_itimerspec(struct itimerspec *dst,
struct compat_itimerspec __user *src)
{
if (get_compat_timespec(&dst->it_interval, &src->it_interval) ||
get_compat_timespec(&dst->it_value, &src->it_value))
return -EFAULT;
return 0;
}
static int put_compat_itimerspec(struct compat_itimerspec __user *dst,
struct itimerspec *src)
{
if (put_compat_timespec(&src->it_interval, &dst->it_interval) ||
put_compat_timespec(&src->it_value, &dst->it_value))
return -EFAULT;
return 0;
}
long compat_sys_timer_create(clockid_t which_clock,
struct compat_sigevent __user *timer_event_spec,
timer_t __user *created_timer_id)
{
struct sigevent __user *event = NULL;
if (timer_event_spec) {
struct sigevent kevent;
event = compat_alloc_user_space(sizeof(*event));
if (get_compat_sigevent(&kevent, timer_event_spec) ||
copy_to_user(event, &kevent, sizeof(*event)))
return -EFAULT;
}
return sys_timer_create(which_clock, event, created_timer_id);
}
long compat_sys_timer_settime(timer_t timer_id, int flags,
struct compat_itimerspec __user *new,
struct compat_itimerspec __user *old)
{
long err;
mm_segment_t oldfs;
struct itimerspec newts, oldts;
if (!new)
return -EINVAL;
if (get_compat_itimerspec(&newts, new))
return -EFAULT;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_timer_settime(timer_id, flags,
(struct itimerspec __user *) &newts,
(struct itimerspec __user *) &oldts);
set_fs(oldfs);
if (!err && old && put_compat_itimerspec(old, &oldts))
return -EFAULT;
return err;
}
long compat_sys_timer_gettime(timer_t timer_id,
struct compat_itimerspec __user *setting)
{
long err;
mm_segment_t oldfs;
struct itimerspec ts;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_timer_gettime(timer_id,
(struct itimerspec __user *) &ts);
set_fs(oldfs);
if (!err && put_compat_itimerspec(setting, &ts))
return -EFAULT;
return err;
}
long compat_sys_clock_settime(clockid_t which_clock,
struct compat_timespec __user *tp)
{
long err;
mm_segment_t oldfs;
struct timespec ts;
if (get_compat_timespec(&ts, tp))
return -EFAULT;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_clock_settime(which_clock,
(struct timespec __user *) &ts);
set_fs(oldfs);
return err;
}
long compat_sys_clock_gettime(clockid_t which_clock,
struct compat_timespec __user *tp)
{
long err;
mm_segment_t oldfs;
struct timespec ts;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_clock_gettime(which_clock,
(struct timespec __user *) &ts);
set_fs(oldfs);
if (!err && put_compat_timespec(&ts, tp))
return -EFAULT;
return err;
}
long compat_sys_clock_getres(clockid_t which_clock,
struct compat_timespec __user *tp)
{
long err;
mm_segment_t oldfs;
struct timespec ts;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_clock_getres(which_clock,
(struct timespec __user *) &ts);
set_fs(oldfs);
if (!err && tp && put_compat_timespec(&ts, tp))
return -EFAULT;
return err;
}
long compat_sys_clock_nanosleep(clockid_t which_clock, int flags,
struct compat_timespec __user *rqtp,
struct compat_timespec __user *rmtp)
{
long err;
mm_segment_t oldfs;
struct timespec in, out;
if (get_compat_timespec(&in, rqtp))
return -EFAULT;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_clock_nanosleep(which_clock, flags,
(struct timespec __user *) &in,
(struct timespec __user *) &out);
set_fs(oldfs);
if ((err == -ERESTART_RESTARTBLOCK) && rmtp &&
put_compat_timespec(&out, rmtp))
return -EFAULT;
return err;
}
/*
* We currently only need the following fields from the sigevent
* structure: sigev_value, sigev_signo, sig_notify and (sometimes
* sigev_notify_thread_id). The others are handled in user mode.
* We also assume that copying sigev_value.sival_int is sufficient
* to keep all the bits of sigev_value.sival_ptr intact.
*/
int get_compat_sigevent(struct sigevent *event,
const struct compat_sigevent __user *u_event)
{
memset(event, 0, sizeof(*event));
return (!access_ok(VERIFY_READ, u_event, sizeof(*u_event)) ||
__get_user(event->sigev_value.sival_int,
&u_event->sigev_value.sival_int) ||
__get_user(event->sigev_signo, &u_event->sigev_signo) ||
__get_user(event->sigev_notify, &u_event->sigev_notify) ||
__get_user(event->sigev_notify_thread_id,
&u_event->sigev_notify_thread_id))
? -EFAULT : 0;
}
long compat_get_bitmap(unsigned long *mask, compat_ulong_t __user *umask,
unsigned long bitmap_size)
{
int i, j;
unsigned long m;
compat_ulong_t um;
unsigned long nr_compat_longs;
/* align bitmap up to nearest compat_long_t boundary */
bitmap_size = ALIGN(bitmap_size, BITS_PER_COMPAT_LONG);
if (!access_ok(VERIFY_READ, umask, bitmap_size / 8))
return -EFAULT;
nr_compat_longs = BITS_TO_COMPAT_LONGS(bitmap_size);
for (i = 0; i < BITS_TO_LONGS(bitmap_size); i++) {
m = 0;
for (j = 0; j < sizeof(m)/sizeof(um); j++) {
/*
* We dont want to read past the end of the userspace
* bitmap. We must however ensure the end of the
* kernel bitmap is zeroed.
*/
if (nr_compat_longs-- > 0) {
if (__get_user(um, umask))
return -EFAULT;
} else {
um = 0;
}
umask++;
m |= (long)um << (j * BITS_PER_COMPAT_LONG);
}
*mask++ = m;
}
return 0;
}
long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask,
unsigned long bitmap_size)
{
int i, j;
unsigned long m;
compat_ulong_t um;
unsigned long nr_compat_longs;
/* align bitmap up to nearest compat_long_t boundary */
bitmap_size = ALIGN(bitmap_size, BITS_PER_COMPAT_LONG);
if (!access_ok(VERIFY_WRITE, umask, bitmap_size / 8))
return -EFAULT;
nr_compat_longs = BITS_TO_COMPAT_LONGS(bitmap_size);
for (i = 0; i < BITS_TO_LONGS(bitmap_size); i++) {
m = *mask++;
for (j = 0; j < sizeof(m)/sizeof(um); j++) {
um = m;
/*
* We dont want to write past the end of the userspace
* bitmap.
*/
if (nr_compat_longs-- > 0) {
if (__put_user(um, umask))
return -EFAULT;
}
umask++;
m >>= 4*sizeof(um);
m >>= 4*sizeof(um);
}
}
return 0;
}
void
sigset_from_compat (sigset_t *set, compat_sigset_t *compat)
{
switch (_NSIG_WORDS) {
#if defined (__COMPAT_ENDIAN_SWAP__)
case 4: set->sig[3] = compat->sig[7] | (((long)compat->sig[6]) << 32 );
case 3: set->sig[2] = compat->sig[5] | (((long)compat->sig[4]) << 32 );
case 2: set->sig[1] = compat->sig[3] | (((long)compat->sig[2]) << 32 );
case 1: set->sig[0] = compat->sig[1] | (((long)compat->sig[0]) << 32 );
#else
case 4: set->sig[3] = compat->sig[6] | (((long)compat->sig[7]) << 32 );
case 3: set->sig[2] = compat->sig[4] | (((long)compat->sig[5]) << 32 );
case 2: set->sig[1] = compat->sig[2] | (((long)compat->sig[3]) << 32 );
case 1: set->sig[0] = compat->sig[0] | (((long)compat->sig[1]) << 32 );
#endif
}
}
asmlinkage long
compat_sys_rt_sigtimedwait (compat_sigset_t __user *uthese,
struct compat_siginfo __user *uinfo,
struct compat_timespec __user *uts, compat_size_t sigsetsize)
{
compat_sigset_t s32;
sigset_t s;
int sig;
struct timespec t;
siginfo_t info;
long ret, timeout = 0;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
return -EFAULT;
sigset_from_compat(&s, &s32);
sigdelsetmask(&s,sigmask(SIGKILL)|sigmask(SIGSTOP));
signotset(&s);
if (uts) {
if (get_compat_timespec (&t, uts))
return -EFAULT;
if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0
|| t.tv_sec < 0)
return -EINVAL;
}
spin_lock_irq(&current->sighand->siglock);
sig = dequeue_signal(current, &s, &info);
if (!sig) {
timeout = MAX_SCHEDULE_TIMEOUT;
if (uts)
timeout = timespec_to_jiffies(&t)
+(t.tv_sec || t.tv_nsec);
if (timeout) {
current->real_blocked = current->blocked;
sigandsets(&current->blocked, &current->blocked, &s);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
timeout = schedule_timeout_interruptible(timeout);
spin_lock_irq(&current->sighand->siglock);
sig = dequeue_signal(current, &s, &info);
current->blocked = current->real_blocked;
siginitset(&current->real_blocked, 0);
recalc_sigpending();
}
}
spin_unlock_irq(&current->sighand->siglock);
if (sig) {
ret = sig;
if (uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
}else {
ret = timeout?-EINTR:-EAGAIN;
}
return ret;
}
#ifdef __ARCH_WANT_COMPAT_SYS_TIME
/* compat_time_t is a 32 bit "long" and needs to get converted. */
asmlinkage long compat_sys_time(compat_time_t __user * tloc)
{
compat_time_t i;
struct timeval tv;
do_gettimeofday(&tv);
i = tv.tv_sec;
if (tloc) {
if (put_user(i,tloc))
i = -EFAULT;
}
return i;
}
asmlinkage long compat_sys_stime(compat_time_t __user *tptr)
{
struct timespec tv;
int err;
if (get_user(tv.tv_sec, tptr))
return -EFAULT;
tv.tv_nsec = 0;
err = security_settime(&tv, NULL);
if (err)
return err;
do_settimeofday(&tv);
return 0;
}
#endif /* __ARCH_WANT_COMPAT_SYS_TIME */