mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 14:43:54 +08:00
c095ff93f9
Since commit 9427ecbed4
("gpio: Rework of_gpiochip_set_names()
to use device property accessors"), gpio chips have to have a
parent, otherwise devprop_gpiochip_set_names() prematurely exists
with message "GPIO chip parent is NULL" and doesn't proceed
'gpio-line-names' DT property.
This patch wraps the CPM GPIO into a platform driver to allow
assignment of the parent device.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
357 lines
8.3 KiB
C
357 lines
8.3 KiB
C
/*
|
|
* General Purpose functions for the global management of the
|
|
* 8260 Communication Processor Module.
|
|
* Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
|
|
* Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
|
|
* 2.3.99 Updates
|
|
*
|
|
* 2006 (c) MontaVista Software, Inc.
|
|
* Vitaly Bordug <vbordug@ru.mvista.com>
|
|
* Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* In addition to the individual control of the communication
|
|
* channels, there are a few functions that globally affect the
|
|
* communication processor.
|
|
*
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
* space. The allocator for that is here. When the communication
|
|
* process is reset, we reclaim the memory available. There is
|
|
* currently no deallocator for this memory.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/mpc8260.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/cpm2.h>
|
|
#include <asm/rheap.h>
|
|
#include <asm/fs_pd.h>
|
|
|
|
#include <sysdev/fsl_soc.h>
|
|
|
|
cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
|
|
|
|
/* We allocate this here because it is used almost exclusively for
|
|
* the communication processor devices.
|
|
*/
|
|
cpm2_map_t __iomem *cpm2_immr;
|
|
EXPORT_SYMBOL(cpm2_immr);
|
|
|
|
#define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
|
|
of space for CPM as it is larger
|
|
than on PQ2 */
|
|
|
|
void __init cpm2_reset(void)
|
|
{
|
|
#ifdef CONFIG_PPC_85xx
|
|
cpm2_immr = ioremap(get_immrbase() + 0x80000, CPM_MAP_SIZE);
|
|
#else
|
|
cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
|
|
#endif
|
|
|
|
/* Tell everyone where the comm processor resides.
|
|
*/
|
|
cpmp = &cpm2_immr->im_cpm;
|
|
|
|
#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
|
|
/* Reset the CPM.
|
|
*/
|
|
cpm_command(CPM_CR_RST, 0);
|
|
#endif
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(cmd_lock);
|
|
|
|
#define MAX_CR_CMD_LOOPS 10000
|
|
|
|
int cpm_command(u32 command, u8 opcode)
|
|
{
|
|
int i, ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cmd_lock, flags);
|
|
|
|
ret = 0;
|
|
out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
|
|
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
|
|
if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
|
|
goto out;
|
|
|
|
printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
|
|
ret = -EIO;
|
|
out:
|
|
spin_unlock_irqrestore(&cmd_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cpm_command);
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* eight BRGs, which can be connected to the CPM channels or output
|
|
* as clocks. The BRGs are in two different block of internal
|
|
* memory mapped space.
|
|
* The baud rate clock is the system clock divided by something.
|
|
* It was set up long ago during the initial boot phase and is
|
|
* is given to us.
|
|
* Baud rate clocks are zero-based in the driver code (as that maps
|
|
* to port numbers). Documentation uses 1-based numbering.
|
|
*/
|
|
void __cpm2_setbrg(uint brg, uint rate, uint clk, int div16, int src)
|
|
{
|
|
u32 __iomem *bp;
|
|
u32 val;
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
*/
|
|
if (brg < 4) {
|
|
bp = cpm2_map_size(im_brgc1, 16);
|
|
} else {
|
|
bp = cpm2_map_size(im_brgc5, 16);
|
|
brg -= 4;
|
|
}
|
|
bp += brg;
|
|
/* Round the clock divider to the nearest integer. */
|
|
val = (((clk * 2 / rate) - 1) & ~1) | CPM_BRG_EN | src;
|
|
if (div16)
|
|
val |= CPM_BRG_DIV16;
|
|
|
|
out_be32(bp, val);
|
|
cpm2_unmap(bp);
|
|
}
|
|
EXPORT_SYMBOL(__cpm2_setbrg);
|
|
|
|
int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
|
|
{
|
|
int ret = 0;
|
|
int shift;
|
|
int i, bits = 0;
|
|
cpmux_t __iomem *im_cpmux;
|
|
u32 __iomem *reg;
|
|
u32 mask = 7;
|
|
|
|
u8 clk_map[][3] = {
|
|
{CPM_CLK_FCC1, CPM_BRG5, 0},
|
|
{CPM_CLK_FCC1, CPM_BRG6, 1},
|
|
{CPM_CLK_FCC1, CPM_BRG7, 2},
|
|
{CPM_CLK_FCC1, CPM_BRG8, 3},
|
|
{CPM_CLK_FCC1, CPM_CLK9, 4},
|
|
{CPM_CLK_FCC1, CPM_CLK10, 5},
|
|
{CPM_CLK_FCC1, CPM_CLK11, 6},
|
|
{CPM_CLK_FCC1, CPM_CLK12, 7},
|
|
{CPM_CLK_FCC2, CPM_BRG5, 0},
|
|
{CPM_CLK_FCC2, CPM_BRG6, 1},
|
|
{CPM_CLK_FCC2, CPM_BRG7, 2},
|
|
{CPM_CLK_FCC2, CPM_BRG8, 3},
|
|
{CPM_CLK_FCC2, CPM_CLK13, 4},
|
|
{CPM_CLK_FCC2, CPM_CLK14, 5},
|
|
{CPM_CLK_FCC2, CPM_CLK15, 6},
|
|
{CPM_CLK_FCC2, CPM_CLK16, 7},
|
|
{CPM_CLK_FCC3, CPM_BRG5, 0},
|
|
{CPM_CLK_FCC3, CPM_BRG6, 1},
|
|
{CPM_CLK_FCC3, CPM_BRG7, 2},
|
|
{CPM_CLK_FCC3, CPM_BRG8, 3},
|
|
{CPM_CLK_FCC3, CPM_CLK13, 4},
|
|
{CPM_CLK_FCC3, CPM_CLK14, 5},
|
|
{CPM_CLK_FCC3, CPM_CLK15, 6},
|
|
{CPM_CLK_FCC3, CPM_CLK16, 7},
|
|
{CPM_CLK_SCC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC1, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC1, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC1, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC1, CPM_CLK11, 4},
|
|
{CPM_CLK_SCC1, CPM_CLK12, 5},
|
|
{CPM_CLK_SCC1, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC1, CPM_CLK4, 7},
|
|
{CPM_CLK_SCC2, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC2, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC2, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC2, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC2, CPM_CLK11, 4},
|
|
{CPM_CLK_SCC2, CPM_CLK12, 5},
|
|
{CPM_CLK_SCC2, CPM_CLK3, 6},
|
|
{CPM_CLK_SCC2, CPM_CLK4, 7},
|
|
{CPM_CLK_SCC3, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC3, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC3, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC3, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC3, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC3, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC3, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC3, CPM_CLK8, 7},
|
|
{CPM_CLK_SCC4, CPM_BRG1, 0},
|
|
{CPM_CLK_SCC4, CPM_BRG2, 1},
|
|
{CPM_CLK_SCC4, CPM_BRG3, 2},
|
|
{CPM_CLK_SCC4, CPM_BRG4, 3},
|
|
{CPM_CLK_SCC4, CPM_CLK5, 4},
|
|
{CPM_CLK_SCC4, CPM_CLK6, 5},
|
|
{CPM_CLK_SCC4, CPM_CLK7, 6},
|
|
{CPM_CLK_SCC4, CPM_CLK8, 7},
|
|
};
|
|
|
|
im_cpmux = cpm2_map(im_cpmux);
|
|
|
|
switch (target) {
|
|
case CPM_CLK_SCC1:
|
|
reg = &im_cpmux->cmx_scr;
|
|
shift = 24;
|
|
break;
|
|
case CPM_CLK_SCC2:
|
|
reg = &im_cpmux->cmx_scr;
|
|
shift = 16;
|
|
break;
|
|
case CPM_CLK_SCC3:
|
|
reg = &im_cpmux->cmx_scr;
|
|
shift = 8;
|
|
break;
|
|
case CPM_CLK_SCC4:
|
|
reg = &im_cpmux->cmx_scr;
|
|
shift = 0;
|
|
break;
|
|
case CPM_CLK_FCC1:
|
|
reg = &im_cpmux->cmx_fcr;
|
|
shift = 24;
|
|
break;
|
|
case CPM_CLK_FCC2:
|
|
reg = &im_cpmux->cmx_fcr;
|
|
shift = 16;
|
|
break;
|
|
case CPM_CLK_FCC3:
|
|
reg = &im_cpmux->cmx_fcr;
|
|
shift = 8;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
|
bits = clk_map[i][2];
|
|
break;
|
|
}
|
|
}
|
|
if (i == ARRAY_SIZE(clk_map))
|
|
ret = -EINVAL;
|
|
|
|
bits <<= shift;
|
|
mask <<= shift;
|
|
|
|
if (mode == CPM_CLK_RTX) {
|
|
bits |= bits << 3;
|
|
mask |= mask << 3;
|
|
} else if (mode == CPM_CLK_RX) {
|
|
bits <<= 3;
|
|
mask <<= 3;
|
|
}
|
|
|
|
out_be32(reg, (in_be32(reg) & ~mask) | bits);
|
|
|
|
cpm2_unmap(im_cpmux);
|
|
return ret;
|
|
}
|
|
|
|
int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
|
|
{
|
|
int ret = 0;
|
|
int shift;
|
|
int i, bits = 0;
|
|
cpmux_t __iomem *im_cpmux;
|
|
u8 __iomem *reg;
|
|
u8 mask = 3;
|
|
|
|
u8 clk_map[][3] = {
|
|
{CPM_CLK_SMC1, CPM_BRG1, 0},
|
|
{CPM_CLK_SMC1, CPM_BRG7, 1},
|
|
{CPM_CLK_SMC1, CPM_CLK7, 2},
|
|
{CPM_CLK_SMC1, CPM_CLK9, 3},
|
|
{CPM_CLK_SMC2, CPM_BRG2, 0},
|
|
{CPM_CLK_SMC2, CPM_BRG8, 1},
|
|
{CPM_CLK_SMC2, CPM_CLK4, 2},
|
|
{CPM_CLK_SMC2, CPM_CLK15, 3},
|
|
};
|
|
|
|
im_cpmux = cpm2_map(im_cpmux);
|
|
|
|
switch (target) {
|
|
case CPM_CLK_SMC1:
|
|
reg = &im_cpmux->cmx_smr;
|
|
mask = 3;
|
|
shift = 4;
|
|
break;
|
|
case CPM_CLK_SMC2:
|
|
reg = &im_cpmux->cmx_smr;
|
|
mask = 3;
|
|
shift = 0;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
|
bits = clk_map[i][2];
|
|
break;
|
|
}
|
|
}
|
|
if (i == ARRAY_SIZE(clk_map))
|
|
ret = -EINVAL;
|
|
|
|
bits <<= shift;
|
|
mask <<= shift;
|
|
|
|
out_8(reg, (in_8(reg) & ~mask) | bits);
|
|
|
|
cpm2_unmap(im_cpmux);
|
|
return ret;
|
|
}
|
|
|
|
struct cpm2_ioports {
|
|
u32 dir, par, sor, odr, dat;
|
|
u32 res[3];
|
|
};
|
|
|
|
void cpm2_set_pin(int port, int pin, int flags)
|
|
{
|
|
struct cpm2_ioports __iomem *iop =
|
|
(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
|
|
|
|
pin = 1 << (31 - pin);
|
|
|
|
if (flags & CPM_PIN_OUTPUT)
|
|
setbits32(&iop[port].dir, pin);
|
|
else
|
|
clrbits32(&iop[port].dir, pin);
|
|
|
|
if (!(flags & CPM_PIN_GPIO))
|
|
setbits32(&iop[port].par, pin);
|
|
else
|
|
clrbits32(&iop[port].par, pin);
|
|
|
|
if (flags & CPM_PIN_SECONDARY)
|
|
setbits32(&iop[port].sor, pin);
|
|
else
|
|
clrbits32(&iop[port].sor, pin);
|
|
|
|
if (flags & CPM_PIN_OPENDRAIN)
|
|
setbits32(&iop[port].odr, pin);
|
|
else
|
|
clrbits32(&iop[port].odr, pin);
|
|
}
|