2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/drivers/scsi/nsp32.c
James Bottomley c4e00fac42 Merge ../scsi-misc-2.6
Conflicts:

	drivers/scsi/nsp32.c
	drivers/scsi/pcmcia/nsp_cs.c

Removal of randomness flag conflicts with SA_ -> IRQF_ global
replacement.

Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-07-03 09:41:12 -05:00

3596 lines
93 KiB
C

/*
* NinjaSCSI-32Bi Cardbus, NinjaSCSI-32UDE PCI/CardBus SCSI driver
* Copyright (C) 2001, 2002, 2003
* YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>
* GOTO Masanori <gotom@debian.or.jp>, <gotom@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* Revision History:
* 1.0: Initial Release.
* 1.1: Add /proc SDTR status.
* Remove obsolete error handler nsp32_reset.
* Some clean up.
* 1.2: PowerPC (big endian) support.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/dma-mapping.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0))
# include <linux/blk.h>
#endif
#include "nsp32.h"
/***********************************************************************
* Module parameters
*/
static int trans_mode = 0; /* default: BIOS */
module_param (trans_mode, int, 0);
MODULE_PARM_DESC(trans_mode, "transfer mode (0: BIOS(default) 1: Async 2: Ultra20M");
#define ASYNC_MODE 1
#define ULTRA20M_MODE 2
static int auto_param = 0; /* default: ON */
module_param (auto_param, bool, 0);
MODULE_PARM_DESC(auto_param, "AutoParameter mode (0: ON(default) 1: OFF)");
static int disc_priv = 1; /* default: OFF */
module_param (disc_priv, bool, 0);
MODULE_PARM_DESC(disc_priv, "disconnection privilege mode (0: ON 1: OFF(default))");
MODULE_AUTHOR("YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>, GOTO Masanori <gotom@debian.or.jp>");
MODULE_DESCRIPTION("Workbit NinjaSCSI-32Bi/UDE CardBus/PCI SCSI host bus adapter module");
MODULE_LICENSE("GPL");
static const char *nsp32_release_version = "1.2";
/****************************************************************************
* Supported hardware
*/
static struct pci_device_id nsp32_pci_table[] __devinitdata = {
{
.vendor = PCI_VENDOR_ID_IODATA,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_IODATA,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_KME,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_KME,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_WBT,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_WORKBIT,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_WORKBIT_STANDARD,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_WORKBIT,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_LOGITEC,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_LOGITEC,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_MELCO,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO_II,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_MELCO,
},
{0,0,},
};
MODULE_DEVICE_TABLE(pci, nsp32_pci_table);
static nsp32_hw_data nsp32_data_base; /* probe <-> detect glue */
/*
* Period/AckWidth speed conversion table
*
* Note: This period/ackwidth speed table must be in descending order.
*/
static nsp32_sync_table nsp32_sync_table_40M[] = {
/* {PNo, AW, SP, EP, SREQ smpl} Speed(MB/s) Period AckWidth */
{0x1, 0, 0x0c, 0x0c, SMPL_40M}, /* 20.0 : 50ns, 25ns */
{0x2, 0, 0x0d, 0x18, SMPL_40M}, /* 13.3 : 75ns, 25ns */
{0x3, 1, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */
{0x4, 1, 0x1a, 0x1f, SMPL_20M}, /* 8.0 : 125ns, 50ns */
{0x5, 2, 0x20, 0x25, SMPL_20M}, /* 6.7 : 150ns, 75ns */
{0x6, 2, 0x26, 0x31, SMPL_20M}, /* 5.7 : 175ns, 75ns */
{0x7, 3, 0x32, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */
{0x8, 3, 0x33, 0x38, SMPL_10M}, /* 4.4 : 225ns, 100ns */
{0x9, 3, 0x39, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */
};
static nsp32_sync_table nsp32_sync_table_20M[] = {
{0x1, 0, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */
{0x2, 0, 0x1a, 0x25, SMPL_20M}, /* 6.7 : 150ns, 50ns */
{0x3, 1, 0x26, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */
{0x4, 1, 0x33, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */
{0x5, 2, 0x3f, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 150ns */
{0x6, 2, 0x4c, 0x57, SMPL_10M}, /* 2.8 : 350ns, 150ns */
{0x7, 3, 0x58, 0x64, SMPL_10M}, /* 2.5 : 400ns, 200ns */
{0x8, 3, 0x65, 0x70, SMPL_10M}, /* 2.2 : 450ns, 200ns */
{0x9, 3, 0x71, 0x7d, SMPL_10M}, /* 2.0 : 500ns, 200ns */
};
static nsp32_sync_table nsp32_sync_table_pci[] = {
{0x1, 0, 0x0c, 0x0f, SMPL_40M}, /* 16.6 : 60ns, 30ns */
{0x2, 0, 0x10, 0x16, SMPL_40M}, /* 11.1 : 90ns, 30ns */
{0x3, 1, 0x17, 0x1e, SMPL_20M}, /* 8.3 : 120ns, 60ns */
{0x4, 1, 0x1f, 0x25, SMPL_20M}, /* 6.7 : 150ns, 60ns */
{0x5, 2, 0x26, 0x2d, SMPL_20M}, /* 5.6 : 180ns, 90ns */
{0x6, 2, 0x2e, 0x34, SMPL_10M}, /* 4.8 : 210ns, 90ns */
{0x7, 3, 0x35, 0x3c, SMPL_10M}, /* 4.2 : 240ns, 120ns */
{0x8, 3, 0x3d, 0x43, SMPL_10M}, /* 3.7 : 270ns, 120ns */
{0x9, 3, 0x44, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 120ns */
};
/*
* function declaration
*/
/* module entry point */
static int __devinit nsp32_probe (struct pci_dev *, const struct pci_device_id *);
static void __devexit nsp32_remove(struct pci_dev *);
static int __init init_nsp32 (void);
static void __exit exit_nsp32 (void);
/* struct struct scsi_host_template */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int nsp32_proc_info (struct Scsi_Host *, char *, char **, off_t, int, int);
#else
static int nsp32_proc_info (char *, char **, off_t, int, int, int);
#endif
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int nsp32_detect (struct pci_dev *pdev);
#else
static int nsp32_detect (struct scsi_host_template *);
#endif
static int nsp32_queuecommand(struct scsi_cmnd *,
void (*done)(struct scsi_cmnd *));
static const char *nsp32_info (struct Scsi_Host *);
static int nsp32_release (struct Scsi_Host *);
/* SCSI error handler */
static int nsp32_eh_abort (struct scsi_cmnd *);
static int nsp32_eh_bus_reset (struct scsi_cmnd *);
static int nsp32_eh_host_reset(struct scsi_cmnd *);
/* generate SCSI message */
static void nsp32_build_identify(struct scsi_cmnd *);
static void nsp32_build_nop (struct scsi_cmnd *);
static void nsp32_build_reject (struct scsi_cmnd *);
static void nsp32_build_sdtr (struct scsi_cmnd *, unsigned char, unsigned char);
/* SCSI message handler */
static int nsp32_busfree_occur(struct scsi_cmnd *, unsigned short);
static void nsp32_msgout_occur (struct scsi_cmnd *);
static void nsp32_msgin_occur (struct scsi_cmnd *, unsigned long, unsigned short);
static int nsp32_setup_sg_table (struct scsi_cmnd *);
static int nsp32_selection_autopara(struct scsi_cmnd *);
static int nsp32_selection_autoscsi(struct scsi_cmnd *);
static void nsp32_scsi_done (struct scsi_cmnd *);
static int nsp32_arbitration (struct scsi_cmnd *, unsigned int);
static int nsp32_reselection (struct scsi_cmnd *, unsigned char);
static void nsp32_adjust_busfree (struct scsi_cmnd *, unsigned int);
static void nsp32_restart_autoscsi (struct scsi_cmnd *, unsigned short);
/* SCSI SDTR */
static void nsp32_analyze_sdtr (struct scsi_cmnd *);
static int nsp32_search_period_entry(nsp32_hw_data *, nsp32_target *, unsigned char);
static void nsp32_set_async (nsp32_hw_data *, nsp32_target *);
static void nsp32_set_max_sync (nsp32_hw_data *, nsp32_target *, unsigned char *, unsigned char *);
static void nsp32_set_sync_entry (nsp32_hw_data *, nsp32_target *, int, unsigned char);
/* SCSI bus status handler */
static void nsp32_wait_req (nsp32_hw_data *, int);
static void nsp32_wait_sack (nsp32_hw_data *, int);
static void nsp32_sack_assert (nsp32_hw_data *);
static void nsp32_sack_negate (nsp32_hw_data *);
static void nsp32_do_bus_reset(nsp32_hw_data *);
/* hardware interrupt handler */
static irqreturn_t do_nsp32_isr(int, void *, struct pt_regs *);
/* initialize hardware */
static int nsp32hw_init(nsp32_hw_data *);
/* EEPROM handler */
static int nsp32_getprom_param (nsp32_hw_data *);
static int nsp32_getprom_at24 (nsp32_hw_data *);
static int nsp32_getprom_c16 (nsp32_hw_data *);
static void nsp32_prom_start (nsp32_hw_data *);
static void nsp32_prom_stop (nsp32_hw_data *);
static int nsp32_prom_read (nsp32_hw_data *, int);
static int nsp32_prom_read_bit (nsp32_hw_data *);
static void nsp32_prom_write_bit(nsp32_hw_data *, int);
static void nsp32_prom_set (nsp32_hw_data *, int, int);
static int nsp32_prom_get (nsp32_hw_data *, int);
/* debug/warning/info message */
static void nsp32_message (const char *, int, char *, char *, ...);
#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *, int, int, char *, ...);
#endif
/*
* max_sectors is currently limited up to 128.
*/
static struct scsi_host_template nsp32_template = {
.proc_name = "nsp32",
.name = "Workbit NinjaSCSI-32Bi/UDE",
.proc_info = nsp32_proc_info,
.info = nsp32_info,
.queuecommand = nsp32_queuecommand,
.can_queue = 1,
.sg_tablesize = NSP32_SG_SIZE,
.max_sectors = 128,
.cmd_per_lun = 1,
.this_id = NSP32_HOST_SCSIID,
.use_clustering = DISABLE_CLUSTERING,
.eh_abort_handler = nsp32_eh_abort,
.eh_bus_reset_handler = nsp32_eh_bus_reset,
.eh_host_reset_handler = nsp32_eh_host_reset,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,74))
.detect = nsp32_detect,
.release = nsp32_release,
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,2))
.use_new_eh_code = 1,
#else
/* .highmem_io = 1, */
#endif
};
#include "nsp32_io.h"
/***********************************************************************
* debug, error print
*/
#ifndef NSP32_DEBUG
# define NSP32_DEBUG_MASK 0x000000
# define nsp32_msg(type, args...) nsp32_message ("", 0, (type), args)
# define nsp32_dbg(mask, args...) /* */
#else
# define NSP32_DEBUG_MASK 0xffffff
# define nsp32_msg(type, args...) \
nsp32_message (__FUNCTION__, __LINE__, (type), args)
# define nsp32_dbg(mask, args...) \
nsp32_dmessage(__FUNCTION__, __LINE__, (mask), args)
#endif
#define NSP32_DEBUG_QUEUECOMMAND BIT(0)
#define NSP32_DEBUG_REGISTER BIT(1)
#define NSP32_DEBUG_AUTOSCSI BIT(2)
#define NSP32_DEBUG_INTR BIT(3)
#define NSP32_DEBUG_SGLIST BIT(4)
#define NSP32_DEBUG_BUSFREE BIT(5)
#define NSP32_DEBUG_CDB_CONTENTS BIT(6)
#define NSP32_DEBUG_RESELECTION BIT(7)
#define NSP32_DEBUG_MSGINOCCUR BIT(8)
#define NSP32_DEBUG_EEPROM BIT(9)
#define NSP32_DEBUG_MSGOUTOCCUR BIT(10)
#define NSP32_DEBUG_BUSRESET BIT(11)
#define NSP32_DEBUG_RESTART BIT(12)
#define NSP32_DEBUG_SYNC BIT(13)
#define NSP32_DEBUG_WAIT BIT(14)
#define NSP32_DEBUG_TARGETFLAG BIT(15)
#define NSP32_DEBUG_PROC BIT(16)
#define NSP32_DEBUG_INIT BIT(17)
#define NSP32_SPECIAL_PRINT_REGISTER BIT(20)
#define NSP32_DEBUG_BUF_LEN 100
static void nsp32_message(const char *func, int line, char *type, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
#ifndef NSP32_DEBUG
printk("%snsp32: %s\n", type, buf);
#else
printk("%snsp32: %s (%d): %s\n", type, func, line, buf);
#endif
}
#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *func, int line, int mask, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
if (mask & NSP32_DEBUG_MASK) {
printk("nsp32-debug: 0x%x %s (%d): %s\n", mask, func, line, buf);
}
}
#endif
#ifdef NSP32_DEBUG
# include "nsp32_debug.c"
#else
# define show_command(arg) /* */
# define show_busphase(arg) /* */
# define show_autophase(arg) /* */
#endif
/*
* IDENTIFY Message
*/
static void nsp32_build_identify(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
int mode = FALSE;
/* XXX: Auto DiscPriv detection is progressing... */
if (disc_priv == 0) {
/* mode = TRUE; */
}
data->msgoutbuf[pos] = IDENTIFY(mode, SCpnt->device->lun); pos++;
data->msgout_len = pos;
}
/*
* SDTR Message Routine
*/
static void nsp32_build_sdtr(struct scsi_cmnd *SCpnt,
unsigned char period,
unsigned char offset)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
data->msgoutbuf[pos] = EXTENDED_MESSAGE; pos++;
data->msgoutbuf[pos] = EXTENDED_SDTR_LEN; pos++;
data->msgoutbuf[pos] = EXTENDED_SDTR; pos++;
data->msgoutbuf[pos] = period; pos++;
data->msgoutbuf[pos] = offset; pos++;
data->msgout_len = pos;
}
/*
* No Operation Message
*/
static void nsp32_build_nop(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
if (pos != 0) {
nsp32_msg(KERN_WARNING,
"Some messages are already contained!");
return;
}
data->msgoutbuf[pos] = NOP; pos++;
data->msgout_len = pos;
}
/*
* Reject Message
*/
static void nsp32_build_reject(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
data->msgoutbuf[pos] = MESSAGE_REJECT; pos++;
data->msgout_len = pos;
}
/*
* timer
*/
#if 0
static void nsp32_start_timer(struct scsi_cmnd *SCpnt, int time)
{
unsigned int base = SCpnt->host->io_port;
nsp32_dbg(NSP32_DEBUG_INTR, "timer=%d", time);
if (time & (~TIMER_CNT_MASK)) {
nsp32_dbg(NSP32_DEBUG_INTR, "timer set overflow");
}
nsp32_write2(base, TIMER_SET, time & TIMER_CNT_MASK);
}
#endif
/*
* set SCSI command and other parameter to asic, and start selection phase
*/
static int nsp32_selection_autopara(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned char target = scmd_id(SCpnt);
nsp32_autoparam *param = data->autoparam;
unsigned char phase;
int i, ret;
unsigned int msgout;
u16_le s;
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");
/*
* check bus free
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if (phase != BUSMON_BUS_FREE) {
nsp32_msg(KERN_WARNING, "bus busy");
show_busphase(phase & BUSMON_PHASE_MASK);
SCpnt->result = DID_BUS_BUSY << 16;
return FALSE;
}
/*
* message out
*
* Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgout_len == 0) {
nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
return FALSE;
} else if (data->msgout_len > 0 && data->msgout_len <= 3) {
msgout = 0;
for (i = 0; i < data->msgout_len; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgout_len; /* len */
} else {
/* data->msgout_len > 3 */
msgout = 0;
}
// nsp_dbg(NSP32_DEBUG_AUTOSCSI, "sel time out=0x%x\n", nsp32_read2(base, SEL_TIME_OUT));
// nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* setup asic parameter
*/
memset(param, 0, sizeof(nsp32_autoparam));
/* cdb */
for (i = 0; i < SCpnt->cmd_len; i++) {
param->cdb[4 * i] = SCpnt->cmnd[i];
}
/* outgoing messages */
param->msgout = cpu_to_le32(msgout);
/* syncreg, ackwidth, target id, SREQ sampling rate */
param->syncreg = data->cur_target->syncreg;
param->ackwidth = data->cur_target->ackwidth;
param->target_id = BIT(host_id) | BIT(target);
param->sample_reg = data->cur_target->sample_reg;
// nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "sample rate=0x%x\n", data->cur_target->sample_reg);
/* command control */
param->command_control = cpu_to_le16(CLEAR_CDB_FIFO_POINTER |
AUTOSCSI_START |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 |
AUTO_ATN );
/* transfer control */
s = 0;
switch (data->trans_method) {
case NSP32_TRANSFER_BUSMASTER:
s |= BM_START;
break;
case NSP32_TRANSFER_MMIO:
s |= CB_MMIO_MODE;
break;
case NSP32_TRANSFER_PIO:
s |= CB_IO_MODE;
break;
default:
nsp32_msg(KERN_ERR, "unknown trans_method");
break;
}
/*
* OR-ed BLIEND_MODE, FIFO intr is decreased, instead of PCI bus waits.
* For bus master transfer, it's taken off.
*/
s |= (TRANSFER_GO | ALL_COUNTER_CLR);
param->transfer_control = cpu_to_le16(s);
/* sg table addr */
param->sgt_pointer = cpu_to_le32(data->cur_lunt->sglun_paddr);
/*
* transfer parameter to ASIC
*/
nsp32_write4(base, SGT_ADR, data->auto_paddr);
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER |
AUTO_PARAMETER );
/*
* Check arbitration
*/
ret = nsp32_arbitration(SCpnt, base);
return ret;
}
/*
* Selection with AUTO SCSI (without AUTO PARAMETER)
*/
static int nsp32_selection_autoscsi(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned char target = scmd_id(SCpnt);
unsigned char phase;
int status;
unsigned short command = 0;
unsigned int msgout = 0;
unsigned short execph;
int i;
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");
/*
* IRQ disable
*/
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
/*
* check bus line
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if(((phase & BUSMON_BSY) == 1) || (phase & BUSMON_SEL) == 1) {
nsp32_msg(KERN_WARNING, "bus busy");
SCpnt->result = DID_BUS_BUSY << 16;
status = 1;
goto out;
}
/*
* clear execph
*/
execph = nsp32_read2(base, SCSI_EXECUTE_PHASE);
/*
* clear FIFO counter to set CDBs
*/
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER);
/*
* set CDB0 - CDB15
*/
for (i = 0; i < SCpnt->cmd_len; i++) {
nsp32_write1(base, COMMAND_DATA, SCpnt->cmnd[i]);
}
nsp32_dbg(NSP32_DEBUG_CDB_CONTENTS, "CDB[0]=[0x%x]", SCpnt->cmnd[0]);
/*
* set SCSIOUT LATCH(initiator)/TARGET(target) (OR-ed) ID
*/
nsp32_write1(base, SCSI_OUT_LATCH_TARGET_ID, BIT(host_id) | BIT(target));
/*
* set SCSI MSGOUT REG
*
* Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgout_len == 0) {
nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
status = 1;
goto out;
} else if (data->msgout_len > 0 && data->msgout_len <= 3) {
msgout = 0;
for (i = 0; i < data->msgout_len; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgout_len; /* len */
nsp32_write4(base, SCSI_MSG_OUT, msgout);
} else {
/* data->msgout_len > 3 */
nsp32_write4(base, SCSI_MSG_OUT, 0);
}
/*
* set selection timeout(= 250ms)
*/
nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* set SREQ hazard killer sampling rate
*
* TODO: sample_rate (BASE+0F) is 0 when internal clock = 40MHz.
* check other internal clock!
*/
nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
/*
* set SYNCREG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->cur_target->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"syncreg=0x%x, ackwidth=0x%x, sgtpaddr=0x%x, id=0x%x",
nsp32_read1(base, SYNC_REG), nsp32_read1(base, ACK_WIDTH),
nsp32_read4(base, SGT_ADR), nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "msgout_len=%d, msgout=0x%x",
data->msgout_len, msgout);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
command = 0;
command |= (TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
command |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
command |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
command |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, command);
/*
* start AUTO SCSI, kick off arbitration
*/
command = (CLEAR_CDB_FIFO_POINTER |
AUTOSCSI_START |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 |
AUTO_ATN );
nsp32_write2(base, COMMAND_CONTROL, command);
/*
* Check arbitration
*/
status = nsp32_arbitration(SCpnt, base);
out:
/*
* IRQ enable
*/
nsp32_write2(base, IRQ_CONTROL, 0);
return status;
}
/*
* Arbitration Status Check
*
* Note: Arbitration counter is waited during ARBIT_GO is not lifting.
* Using udelay(1) consumes CPU time and system time, but
* arbitration delay time is defined minimal 2.4us in SCSI
* specification, thus udelay works as coarse grained wait timer.
*/
static int nsp32_arbitration(struct scsi_cmnd *SCpnt, unsigned int base)
{
unsigned char arbit;
int status = TRUE;
int time = 0;
do {
arbit = nsp32_read1(base, ARBIT_STATUS);
time++;
} while ((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 &&
(time <= ARBIT_TIMEOUT_TIME));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"arbit: 0x%x, delay time: %d", arbit, time);
if (arbit & ARBIT_WIN) {
/* Arbitration succeeded */
SCpnt->result = DID_OK << 16;
nsp32_index_write1(base, EXT_PORT, LED_ON); /* PCI LED on */
} else if (arbit & ARBIT_FAIL) {
/* Arbitration failed */
SCpnt->result = DID_BUS_BUSY << 16;
status = FALSE;
} else {
/*
* unknown error or ARBIT_GO timeout,
* something lock up! guess no connection.
*/
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit timeout");
SCpnt->result = DID_NO_CONNECT << 16;
status = FALSE;
}
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
return status;
}
/*
* reselection
*
* Note: This reselection routine is called from msgin_occur,
* reselection target id&lun must be already set.
* SCSI-2 says IDENTIFY implies RESTORE_POINTER operation.
*/
static int nsp32_reselection(struct scsi_cmnd *SCpnt, unsigned char newlun)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned int base = SCpnt->device->host->io_port;
unsigned char tmpid, newid;
nsp32_dbg(NSP32_DEBUG_RESELECTION, "enter");
/*
* calculate reselected SCSI ID
*/
tmpid = nsp32_read1(base, RESELECT_ID);
tmpid &= (~BIT(host_id));
newid = 0;
while (tmpid) {
if (tmpid & 1) {
break;
}
tmpid >>= 1;
newid++;
}
/*
* If reselected New ID:LUN is not existed
* or current nexus is not existed, unexpected
* reselection is occurred. Send reject message.
*/
if (newid >= ARRAY_SIZE(data->lunt) || newlun >= ARRAY_SIZE(data->lunt[0])) {
nsp32_msg(KERN_WARNING, "unknown id/lun");
return FALSE;
} else if(data->lunt[newid][newlun].SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "no SCSI command is processing");
return FALSE;
}
data->cur_id = newid;
data->cur_lun = newlun;
data->cur_target = &(data->target[newid]);
data->cur_lunt = &(data->lunt[newid][newlun]);
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
return TRUE;
}
/*
* nsp32_setup_sg_table - build scatter gather list for transfer data
* with bus master.
*
* Note: NinjaSCSI-32Bi/UDE bus master can not transfer over 64KB at a time.
*/
static int nsp32_setup_sg_table(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
struct scatterlist *sgl;
nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt;
int num, i;
u32_le l;
if (SCpnt->request_bufflen == 0) {
return TRUE;
}
if (sgt == NULL) {
nsp32_dbg(NSP32_DEBUG_SGLIST, "SGT == null");
return FALSE;
}
if (SCpnt->use_sg) {
sgl = (struct scatterlist *)SCpnt->request_buffer;
num = pci_map_sg(data->Pci, sgl, SCpnt->use_sg,
SCpnt->sc_data_direction);
for (i = 0; i < num; i++) {
/*
* Build nsp32_sglist, substitute sg dma addresses.
*/
sgt[i].addr = cpu_to_le32(sg_dma_address(sgl));
sgt[i].len = cpu_to_le32(sg_dma_len(sgl));
sgl++;
if (le32_to_cpu(sgt[i].len) > 0x10000) {
nsp32_msg(KERN_ERR,
"can't transfer over 64KB at a time, size=0x%lx", le32_to_cpu(sgt[i].len));
return FALSE;
}
nsp32_dbg(NSP32_DEBUG_SGLIST,
"num 0x%x : addr 0x%lx len 0x%lx",
i,
le32_to_cpu(sgt[i].addr),
le32_to_cpu(sgt[i].len ));
}
/* set end mark */
l = le32_to_cpu(sgt[num-1].len);
sgt[num-1].len = cpu_to_le32(l | SGTEND);
} else {
SCpnt->SCp.have_data_in = pci_map_single(data->Pci,
SCpnt->request_buffer, SCpnt->request_bufflen,
SCpnt->sc_data_direction);
sgt[0].addr = cpu_to_le32(SCpnt->SCp.have_data_in);
sgt[0].len = cpu_to_le32(SCpnt->request_bufflen | SGTEND); /* set end mark */
if (SCpnt->request_bufflen > 0x10000) {
nsp32_msg(KERN_ERR,
"can't transfer over 64KB at a time, size=0x%lx", SCpnt->request_bufflen);
return FALSE;
}
nsp32_dbg(NSP32_DEBUG_SGLIST, "single : addr 0x%lx len=0x%lx",
le32_to_cpu(sgt[0].addr),
le32_to_cpu(sgt[0].len ));
}
return TRUE;
}
static int nsp32_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *))
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
nsp32_target *target;
nsp32_lunt *cur_lunt;
int ret;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"enter. target: 0x%x LUN: 0x%x cmnd: 0x%x cmndlen: 0x%x "
"use_sg: 0x%x reqbuf: 0x%lx reqlen: 0x%x",
SCpnt->device->id, SCpnt->device->lun, SCpnt->cmnd[0], SCpnt->cmd_len,
SCpnt->use_sg, SCpnt->request_buffer, SCpnt->request_bufflen);
if (data->CurrentSC != NULL) {
nsp32_msg(KERN_ERR, "Currentsc != NULL. Cancel this command request");
data->CurrentSC = NULL;
SCpnt->result = DID_NO_CONNECT << 16;
done(SCpnt);
return 0;
}
/* check target ID is not same as this initiator ID */
if (scmd_id(SCpnt) == SCpnt->device->host->this_id) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "terget==host???");
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 0;
}
/* check target LUN is allowable value */
if (SCpnt->device->lun >= MAX_LUN) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "no more lun");
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 0;
}
show_command(SCpnt);
SCpnt->scsi_done = done;
data->CurrentSC = SCpnt;
SCpnt->SCp.Status = CHECK_CONDITION;
SCpnt->SCp.Message = 0;
SCpnt->resid = SCpnt->request_bufflen;
SCpnt->SCp.ptr = (char *) SCpnt->request_buffer;
SCpnt->SCp.this_residual = SCpnt->request_bufflen;
SCpnt->SCp.buffer = NULL;
SCpnt->SCp.buffers_residual = 0;
/* initialize data */
data->msgout_len = 0;
data->msgin_len = 0;
cur_lunt = &(data->lunt[SCpnt->device->id][SCpnt->device->lun]);
cur_lunt->SCpnt = SCpnt;
cur_lunt->save_datp = 0;
cur_lunt->msgin03 = FALSE;
data->cur_lunt = cur_lunt;
data->cur_id = SCpnt->device->id;
data->cur_lun = SCpnt->device->lun;
ret = nsp32_setup_sg_table(SCpnt);
if (ret == FALSE) {
nsp32_msg(KERN_ERR, "SGT fail");
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(SCpnt);
return 0;
}
/* Build IDENTIFY */
nsp32_build_identify(SCpnt);
/*
* If target is the first time to transfer after the reset
* (target don't have SDTR_DONE and SDTR_INITIATOR), sync
* message SDTR is needed to do synchronous transfer.
*/
target = &data->target[scmd_id(SCpnt)];
data->cur_target = target;
if (!(target->sync_flag & (SDTR_DONE | SDTR_INITIATOR | SDTR_TARGET))) {
unsigned char period, offset;
if (trans_mode != ASYNC_MODE) {
nsp32_set_max_sync(data, target, &period, &offset);
nsp32_build_sdtr(SCpnt, period, offset);
target->sync_flag |= SDTR_INITIATOR;
} else {
nsp32_set_async(data, target);
target->sync_flag |= SDTR_DONE;
}
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR: entry: %d start_period: 0x%x offset: 0x%x\n",
target->limit_entry, period, offset);
} else if (target->sync_flag & SDTR_INITIATOR) {
/*
* It was negotiating SDTR with target, sending from the
* initiator, but there are no chance to remove this flag.
* Set async because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR_INITIATOR: fall back to async");
} else if (target->sync_flag & SDTR_TARGET) {
/*
* It was negotiating SDTR with target, sending from target,
* but there are no chance to remove this flag. Set async
* because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_TARGET;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"Unknown SDTR from target is reached, fall back to async.");
}
nsp32_dbg(NSP32_DEBUG_TARGETFLAG,
"target: %d sync_flag: 0x%x syncreg: 0x%x ackwidth: 0x%x",
SCpnt->device->id, target->sync_flag, target->syncreg,
target->ackwidth);
/* Selection */
if (auto_param == 0) {
ret = nsp32_selection_autopara(SCpnt);
} else {
ret = nsp32_selection_autoscsi(SCpnt);
}
if (ret != TRUE) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "selection fail");
nsp32_scsi_done(SCpnt);
}
return 0;
}
/* initialize asic */
static int nsp32hw_init(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short irq_stat;
unsigned long lc_reg;
unsigned char power;
lc_reg = nsp32_index_read4(base, CFG_LATE_CACHE);
if ((lc_reg & 0xff00) == 0) {
lc_reg |= (0x20 << 8);
nsp32_index_write2(base, CFG_LATE_CACHE, lc_reg & 0xffff);
}
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
do {
irq_stat = nsp32_read2(base, IRQ_STATUS);
nsp32_dbg(NSP32_DEBUG_INIT, "irq_stat 0x%x", irq_stat);
} while (irq_stat & IRQSTATUS_ANY_IRQ);
/*
* Fill FIFO_FULL_SHLD, FIFO_EMPTY_SHLD. Below parameter is
* designated by specification.
*/
if ((data->trans_method & NSP32_TRANSFER_PIO) ||
(data->trans_method & NSP32_TRANSFER_MMIO)) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x40);
nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x40);
} else if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x10);
nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x60);
} else {
nsp32_dbg(NSP32_DEBUG_INIT, "unknown transfer mode");
}
nsp32_dbg(NSP32_DEBUG_INIT, "full 0x%x emp 0x%x",
nsp32_index_read1(base, FIFO_FULL_SHLD_COUNT),
nsp32_index_read1(base, FIFO_EMPTY_SHLD_COUNT));
nsp32_index_write1(base, CLOCK_DIV, data->clock);
nsp32_index_write1(base, BM_CYCLE, MEMRD_CMD1 | SGT_AUTO_PARA_MEMED_CMD);
nsp32_write1(base, PARITY_CONTROL, 0); /* parity check is disable */
/*
* initialize MISC_WRRD register
*
* Note: Designated parameters is obeyed as following:
* MISC_SCSI_DIRECTION_DETECTOR_SELECT: It must be set.
* MISC_MASTER_TERMINATION_SELECT: It must be set.
* MISC_BMREQ_NEGATE_TIMING_SEL: It should be set.
* MISC_AUTOSEL_TIMING_SEL: It should be set.
* MISC_BMSTOP_CHANGE2_NONDATA_PHASE: It should be set.
* MISC_DELAYED_BMSTART: It's selected for safety.
*
* Note: If MISC_BMSTOP_CHANGE2_NONDATA_PHASE is set, then
* we have to set TRANSFERCONTROL_BM_START as 0 and set
* appropriate value before restarting bus master transfer.
*/
nsp32_index_write2(base, MISC_WR,
(SCSI_DIRECTION_DETECTOR_SELECT |
DELAYED_BMSTART |
MASTER_TERMINATION_SELECT |
BMREQ_NEGATE_TIMING_SEL |
AUTOSEL_TIMING_SEL |
BMSTOP_CHANGE2_NONDATA_PHASE));
nsp32_index_write1(base, TERM_PWR_CONTROL, 0);
power = nsp32_index_read1(base, TERM_PWR_CONTROL);
if (!(power & SENSE)) {
nsp32_msg(KERN_INFO, "term power on");
nsp32_index_write1(base, TERM_PWR_CONTROL, BPWR);
}
nsp32_write2(base, TIMER_SET, TIMER_STOP);
nsp32_write2(base, TIMER_SET, TIMER_STOP); /* Required 2 times */
nsp32_write1(base, SYNC_REG, 0);
nsp32_write1(base, ACK_WIDTH, 0);
nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* enable to select designated IRQ (except for
* IRQSELECT_SERR, IRQSELECT_PERR, IRQSELECT_BMCNTERR)
*/
nsp32_index_write2(base, IRQ_SELECT, IRQSELECT_TIMER_IRQ |
IRQSELECT_SCSIRESET_IRQ |
IRQSELECT_FIFO_SHLD_IRQ |
IRQSELECT_RESELECT_IRQ |
IRQSELECT_PHASE_CHANGE_IRQ |
IRQSELECT_AUTO_SCSI_SEQ_IRQ |
// IRQSELECT_BMCNTERR_IRQ |
IRQSELECT_TARGET_ABORT_IRQ |
IRQSELECT_MASTER_ABORT_IRQ );
nsp32_write2(base, IRQ_CONTROL, 0);
/* PCI LED off */
nsp32_index_write1(base, EXT_PORT_DDR, LED_OFF);
nsp32_index_write1(base, EXT_PORT, LED_OFF);
return TRUE;
}
/* interrupt routine */
static irqreturn_t do_nsp32_isr(int irq, void *dev_id, struct pt_regs *regs)
{
nsp32_hw_data *data = dev_id;
unsigned int base = data->BaseAddress;
struct scsi_cmnd *SCpnt = data->CurrentSC;
unsigned short auto_stat, irq_stat, trans_stat;
unsigned char busmon, busphase;
unsigned long flags;
int ret;
int handled = 0;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
struct Scsi_Host *host = data->Host;
spin_lock_irqsave(host->host_lock, flags);
#else
spin_lock_irqsave(&io_request_lock, flags);
#endif
/*
* IRQ check, then enable IRQ mask
*/
irq_stat = nsp32_read2(base, IRQ_STATUS);
nsp32_dbg(NSP32_DEBUG_INTR,
"enter IRQ: %d, IRQstatus: 0x%x", irq, irq_stat);
/* is this interrupt comes from Ninja asic? */
if ((irq_stat & IRQSTATUS_ANY_IRQ) == 0) {
nsp32_dbg(NSP32_DEBUG_INTR, "shared interrupt: irq other 0x%x", irq_stat);
goto out2;
}
handled = 1;
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
busmon = nsp32_read1(base, SCSI_BUS_MONITOR);
busphase = busmon & BUSMON_PHASE_MASK;
trans_stat = nsp32_read2(base, TRANSFER_STATUS);
if ((irq_stat == 0xffff) && (trans_stat == 0xffff)) {
nsp32_msg(KERN_INFO, "card disconnect");
if (data->CurrentSC != NULL) {
nsp32_msg(KERN_INFO, "clean up current SCSI command");
SCpnt->result = DID_BAD_TARGET << 16;
nsp32_scsi_done(SCpnt);
}
goto out;
}
/* Timer IRQ */
if (irq_stat & IRQSTATUS_TIMER_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "timer stop");
nsp32_write2(base, TIMER_SET, TIMER_STOP);
goto out;
}
/* SCSI reset */
if (irq_stat & IRQSTATUS_SCSIRESET_IRQ) {
nsp32_msg(KERN_INFO, "detected someone do bus reset");
nsp32_do_bus_reset(data);
if (SCpnt != NULL) {
SCpnt->result = DID_RESET << 16;
nsp32_scsi_done(SCpnt);
}
goto out;
}
if (SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "SCpnt==NULL this can't be happened");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
goto out;
}
/*
* AutoSCSI Interrupt.
* Note: This interrupt is occurred when AutoSCSI is finished. Then
* check SCSIEXECUTEPHASE, and do appropriate action. Each phases are
* recorded when AutoSCSI sequencer has been processed.
*/
if(irq_stat & IRQSTATUS_AUTOSCSI_IRQ) {
/* getting SCSI executed phase */
auto_stat = nsp32_read2(base, SCSI_EXECUTE_PHASE);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
/* Selection Timeout, go busfree phase. */
if (auto_stat & SELECTION_TIMEOUT) {
nsp32_dbg(NSP32_DEBUG_INTR,
"selection timeout occurred");
SCpnt->result = DID_TIME_OUT << 16;
nsp32_scsi_done(SCpnt);
goto out;
}
if (auto_stat & MSGOUT_PHASE) {
/*
* MsgOut phase was processed.
* If MSG_IN_OCCUER is not set, then MsgOut phase is
* completed. Thus, msgout_len must reset. Otherwise,
* nothing to do here. If MSG_OUT_OCCUER is occurred,
* then we will encounter the condition and check.
*/
if (!(auto_stat & MSG_IN_OCCUER) &&
(data->msgout_len <= 3)) {
/*
* !MSG_IN_OCCUER && msgout_len <=3
* ---> AutoSCSI with MSGOUTreg is processed.
*/
data->msgout_len = 0;
};
nsp32_dbg(NSP32_DEBUG_INTR, "MsgOut phase processed");
}
if ((auto_stat & DATA_IN_PHASE) &&
(SCpnt->resid > 0) &&
((nsp32_read2(base, FIFO_REST_CNT) & FIFO_REST_MASK) != 0)) {
printk( "auto+fifo\n");
//nsp32_pio_read(SCpnt);
}
if (auto_stat & (DATA_IN_PHASE | DATA_OUT_PHASE)) {
/* DATA_IN_PHASE/DATA_OUT_PHASE was processed. */
nsp32_dbg(NSP32_DEBUG_INTR,
"Data in/out phase processed");
/* read BMCNT, SGT pointer addr */
nsp32_dbg(NSP32_DEBUG_INTR, "BMCNT=0x%lx",
nsp32_read4(base, BM_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "addr=0x%lx",
nsp32_read4(base, SGT_ADR));
nsp32_dbg(NSP32_DEBUG_INTR, "SACK=0x%lx",
nsp32_read4(base, SACK_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "SSACK=0x%lx",
nsp32_read4(base, SAVED_SACK_CNT));
SCpnt->resid = 0; /* all data transfered! */
}
/*
* MsgIn Occur
*/
if (auto_stat & MSG_IN_OCCUER) {
nsp32_msgin_occur(SCpnt, irq_stat, auto_stat);
}
/*
* MsgOut Occur
*/
if (auto_stat & MSG_OUT_OCCUER) {
nsp32_msgout_occur(SCpnt);
}
/*
* Bus Free Occur
*/
if (auto_stat & BUS_FREE_OCCUER) {
ret = nsp32_busfree_occur(SCpnt, auto_stat);
if (ret == TRUE) {
goto out;
}
}
if (auto_stat & STATUS_PHASE) {
/*
* Read CSB and substitute CSB for SCpnt->result
* to save status phase stutas byte.
* scsi error handler checks host_byte (DID_*:
* low level driver to indicate status), then checks
* status_byte (SCSI status byte).
*/
SCpnt->result = (int)nsp32_read1(base, SCSI_CSB_IN);
}
if (auto_stat & ILLEGAL_PHASE) {
/* Illegal phase is detected. SACK is not back. */
nsp32_msg(KERN_WARNING,
"AUTO SCSI ILLEGAL PHASE OCCUR!!!!");
/* TODO: currently we don't have any action... bus reset? */
/*
* To send back SACK, assert, wait, and negate.
*/
nsp32_sack_assert(data);
nsp32_wait_req(data, NEGATE);
nsp32_sack_negate(data);
}
if (auto_stat & COMMAND_PHASE) {
/* nothing to do */
nsp32_dbg(NSP32_DEBUG_INTR, "Command phase processed");
}
if (auto_stat & AUTOSCSI_BUSY) {
/* AutoSCSI is running */
}
show_autophase(auto_stat);
}
/* FIFO_SHLD_IRQ */
if (irq_stat & IRQSTATUS_FIFO_SHLD_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "FIFO IRQ");
switch(busphase) {
case BUSPHASE_DATA_OUT:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/write");
//nsp32_pio_write(SCpnt);
break;
case BUSPHASE_DATA_IN:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/read");
//nsp32_pio_read(SCpnt);
break;
case BUSPHASE_STATUS:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/status");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
break;
default:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/other phase");
nsp32_dbg(NSP32_DEBUG_INTR, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* Phase Change IRQ */
if (irq_stat & IRQSTATUS_PHASE_CHANGE_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "phase change IRQ");
switch(busphase) {
case BUSPHASE_MESSAGE_IN:
nsp32_dbg(NSP32_DEBUG_INTR, "phase chg/msg in");
nsp32_msgin_occur(SCpnt, irq_stat, 0);
break;
default:
nsp32_msg(KERN_WARNING, "phase chg/other phase?");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n",
irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* PCI_IRQ */
if (irq_stat & IRQSTATUS_PCI_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "PCI IRQ occurred");
/* Do nothing */
}
/* BMCNTERR_IRQ */
if (irq_stat & IRQSTATUS_BMCNTERR_IRQ) {
nsp32_msg(KERN_ERR, "Received unexpected BMCNTERR IRQ! ");
/*
* TODO: To be implemented improving bus master
* transfer reliablity when BMCNTERR is occurred in
* AutoSCSI phase described in specification.
*/
}
#if 0
nsp32_dbg(NSP32_DEBUG_INTR,
"irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
show_busphase(busphase);
#endif
out:
/* disable IRQ mask */
nsp32_write2(base, IRQ_CONTROL, 0);
out2:
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
spin_unlock_irqrestore(host->host_lock, flags);
#else
spin_unlock_irqrestore(&io_request_lock, flags);
#endif
nsp32_dbg(NSP32_DEBUG_INTR, "exit");
return IRQ_RETVAL(handled);
}
#undef SPRINTF
#define SPRINTF(args...) \
do { \
if(length > (pos - buffer)) { \
pos += snprintf(pos, length - (pos - buffer) + 1, ## args); \
nsp32_dbg(NSP32_DEBUG_PROC, "buffer=0x%p pos=0x%p length=%d %d\n", buffer, pos, length, length - (pos - buffer));\
} \
} while(0)
static int nsp32_proc_info(
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
struct Scsi_Host *host,
#endif
char *buffer,
char **start,
off_t offset,
int length,
#if !(LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
int hostno,
#endif
int inout)
{
char *pos = buffer;
int thislength;
unsigned long flags;
nsp32_hw_data *data;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
int hostno;
#else
struct Scsi_Host *host;
#endif
unsigned int base;
unsigned char mode_reg;
int id, speed;
long model;
/* Write is not supported, just return. */
if (inout == TRUE) {
return -EINVAL;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
hostno = host->host_no;
#else
/* search this HBA host */
host = scsi_host_hn_get(hostno);
if (host == NULL) {
return -ESRCH;
}
#endif
data = (nsp32_hw_data *)host->hostdata;
base = host->io_port;
SPRINTF("NinjaSCSI-32 status\n\n");
SPRINTF("Driver version: %s, $Revision: 1.33 $\n", nsp32_release_version);
SPRINTF("SCSI host No.: %d\n", hostno);
SPRINTF("IRQ: %d\n", host->irq);
SPRINTF("IO: 0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1);
SPRINTF("MMIO(virtual address): 0x%lx-0x%lx\n", host->base, host->base + data->MmioLength - 1);
SPRINTF("sg_tablesize: %d\n", host->sg_tablesize);
SPRINTF("Chip revision: 0x%x\n", (nsp32_read2(base, INDEX_REG) >> 8) & 0xff);
mode_reg = nsp32_index_read1(base, CHIP_MODE);
model = data->pci_devid->driver_data;
#ifdef CONFIG_PM
SPRINTF("Power Management: %s\n", (mode_reg & OPTF) ? "yes" : "no");
#endif
SPRINTF("OEM: %ld, %s\n", (mode_reg & (OEM0|OEM1)), nsp32_model[model]);
spin_lock_irqsave(&(data->Lock), flags);
SPRINTF("CurrentSC: 0x%p\n\n", data->CurrentSC);
spin_unlock_irqrestore(&(data->Lock), flags);
SPRINTF("SDTR status\n");
for (id = 0; id < ARRAY_SIZE(data->target); id++) {
SPRINTF("id %d: ", id);
if (id == host->this_id) {
SPRINTF("----- NinjaSCSI-32 host adapter\n");
continue;
}
if (data->target[id].sync_flag == SDTR_DONE) {
if (data->target[id].period == 0 &&
data->target[id].offset == ASYNC_OFFSET ) {
SPRINTF("async");
} else {
SPRINTF(" sync");
}
} else {
SPRINTF(" none");
}
if (data->target[id].period != 0) {
speed = 1000000 / (data->target[id].period * 4);
SPRINTF(" transfer %d.%dMB/s, offset %d",
speed / 1000,
speed % 1000,
data->target[id].offset
);
}
SPRINTF("\n");
}
thislength = pos - (buffer + offset);
if(thislength < 0) {
*start = NULL;
return 0;
}
thislength = min(thislength, length);
*start = buffer + offset;
return thislength;
}
#undef SPRINTF
/*
* Reset parameters and call scsi_done for data->cur_lunt.
* Be careful setting SCpnt->result = DID_* before calling this function.
*/
static void nsp32_scsi_done(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
/*
* unmap pci
*/
if (SCpnt->request_bufflen == 0) {
goto skip;
}
if (SCpnt->use_sg) {
pci_unmap_sg(data->Pci,
(struct scatterlist *)SCpnt->request_buffer,
SCpnt->use_sg, SCpnt->sc_data_direction);
} else {
pci_unmap_single(data->Pci,
(u32)SCpnt->SCp.have_data_in,
SCpnt->request_bufflen,
SCpnt->sc_data_direction);
}
skip:
/*
* clear TRANSFERCONTROL_BM_START
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
/*
* call scsi_done
*/
(*SCpnt->scsi_done)(SCpnt);
/*
* reset parameters
*/
data->cur_lunt->SCpnt = NULL;
data->cur_lunt = NULL;
data->cur_target = NULL;
data->CurrentSC = NULL;
}
/*
* Bus Free Occur
*
* Current Phase is BUSFREE. AutoSCSI is automatically execute BUSFREE phase
* with ACK reply when below condition is matched:
* MsgIn 00: Command Complete.
* MsgIn 02: Save Data Pointer.
* MsgIn 04: Diconnect.
* In other case, unexpected BUSFREE is detected.
*/
static int nsp32_busfree_occur(struct scsi_cmnd *SCpnt, unsigned short execph)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "enter execph=0x%x", execph);
show_autophase(execph);
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, TRANSFER_CONTROL, 0);
/*
* MsgIn 02: Save Data Pointer
*
* VALID:
* Save Data Pointer is received. Adjust pointer.
*
* NO-VALID:
* SCSI-3 says if Save Data Pointer is not received, then we restart
* processing and we can't adjust any SCSI data pointer in next data
* phase.
*/
if (execph & MSGIN_02_VALID) {
nsp32_dbg(NSP32_DEBUG_BUSFREE, "MsgIn02_Valid");
/*
* Check sack_cnt/saved_sack_cnt, then adjust sg table if
* needed.
*/
if (!(execph & MSGIN_00_VALID) &&
((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE))) {
unsigned int sacklen, s_sacklen;
/*
* Read SACK count and SAVEDSACK count, then compare.
*/
sacklen = nsp32_read4(base, SACK_CNT );
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
/*
* If SAVEDSACKCNT == 0, it means SavedDataPointer is
* come after data transfering.
*/
if (s_sacklen > 0) {
/*
* Comparing between sack and savedsack to
* check the condition of AutoMsgIn03.
*
* If they are same, set msgin03 == TRUE,
* COMMANDCONTROL_AUTO_MSGIN_03 is enabled at
* reselection. On the other hand, if they
* aren't same, set msgin03 == FALSE, and
* COMMANDCONTROL_AUTO_MSGIN_03 is disabled at
* reselection.
*/
if (sacklen != s_sacklen) {
data->cur_lunt->msgin03 = FALSE;
} else {
data->cur_lunt->msgin03 = TRUE;
}
nsp32_adjust_busfree(SCpnt, s_sacklen);
}
}
/* This value has not substitude with valid value yet... */
//data->cur_lunt->save_datp = data->cur_datp;
} else {
/*
* no processing.
*/
}
if (execph & MSGIN_03_VALID) {
/* MsgIn03 was valid to be processed. No need processing. */
}
/*
* target SDTR check
*/
if (data->cur_target->sync_flag & SDTR_INITIATOR) {
/*
* SDTR negotiation pulled by the initiator has not
* finished yet. Fall back to ASYNC mode.
*/
nsp32_set_async(data, data->cur_target);
data->cur_target->sync_flag &= ~SDTR_INITIATOR;
data->cur_target->sync_flag |= SDTR_DONE;
} else if (data->cur_target->sync_flag & SDTR_TARGET) {
/*
* SDTR negotiation pulled by the target has been
* negotiating.
*/
if (execph & (MSGIN_00_VALID | MSGIN_04_VALID)) {
/*
* If valid message is received, then
* negotiation is succeeded.
*/
} else {
/*
* On the contrary, if unexpected bus free is
* occurred, then negotiation is failed. Fall
* back to ASYNC mode.
*/
nsp32_set_async(data, data->cur_target);
}
data->cur_target->sync_flag &= ~SDTR_TARGET;
data->cur_target->sync_flag |= SDTR_DONE;
}
/*
* It is always ensured by SCSI standard that initiator
* switches into Bus Free Phase after
* receiving message 00 (Command Complete), 04 (Disconnect).
* It's the reason that processing here is valid.
*/
if (execph & MSGIN_00_VALID) {
/* MsgIn 00: Command Complete */
nsp32_dbg(NSP32_DEBUG_BUSFREE, "command complete");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 0;
nsp32_dbg(NSP32_DEBUG_BUSFREE,
"normal end stat=0x%x resid=0x%x\n",
SCpnt->SCp.Status, SCpnt->resid);
SCpnt->result = (DID_OK << 16) |
(SCpnt->SCp.Message << 8) |
(SCpnt->SCp.Status << 0);
nsp32_scsi_done(SCpnt);
/* All operation is done */
return TRUE;
} else if (execph & MSGIN_04_VALID) {
/* MsgIn 04: Disconnect */
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 4;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "disconnect");
return TRUE;
} else {
/* Unexpected bus free */
nsp32_msg(KERN_WARNING, "unexpected bus free occurred");
/* DID_ERROR? */
//SCpnt->result = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0);
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(SCpnt);
return TRUE;
}
return FALSE;
}
/*
* nsp32_adjust_busfree - adjusting SG table
*
* Note: This driver adjust the SG table using SCSI ACK
* counter instead of BMCNT counter!
*/
static void nsp32_adjust_busfree(struct scsi_cmnd *SCpnt, unsigned int s_sacklen)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int old_entry = data->cur_entry;
int new_entry;
int sg_num = data->cur_lunt->sg_num;
nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt;
unsigned int restlen, sentlen;
u32_le len, addr;
nsp32_dbg(NSP32_DEBUG_SGLIST, "old resid=0x%x", SCpnt->resid);
/* adjust saved SACK count with 4 byte start address boundary */
s_sacklen -= le32_to_cpu(sgt[old_entry].addr) & 3;
/*
* calculate new_entry from sack count and each sgt[].len
* calculate the byte which is intent to send
*/
sentlen = 0;
for (new_entry = old_entry; new_entry < sg_num; new_entry++) {
sentlen += (le32_to_cpu(sgt[new_entry].len) & ~SGTEND);
if (sentlen > s_sacklen) {
break;
}
}
/* all sgt is processed */
if (new_entry == sg_num) {
goto last;
}
if (sentlen == s_sacklen) {
/* XXX: confirm it's ok or not */
/* In this case, it's ok because we are at
the head element of the sg. restlen is correctly calculated. */
}
/* calculate the rest length for transfering */
restlen = sentlen - s_sacklen;
/* update adjusting current SG table entry */
len = le32_to_cpu(sgt[new_entry].len);
addr = le32_to_cpu(sgt[new_entry].addr);
addr += (len - restlen);
sgt[new_entry].addr = cpu_to_le32(addr);
sgt[new_entry].len = cpu_to_le32(restlen);
/* set cur_entry with new_entry */
data->cur_entry = new_entry;
return;
last:
if (SCpnt->resid < sentlen) {
nsp32_msg(KERN_ERR, "resid underflow");
}
SCpnt->resid -= sentlen;
nsp32_dbg(NSP32_DEBUG_SGLIST, "new resid=0x%x", SCpnt->resid);
/* update hostdata and lun */
return;
}
/*
* It's called MsgOut phase occur.
* NinjaSCSI-32Bi/UDE automatically processes up to 3 messages in
* message out phase. It, however, has more than 3 messages,
* HBA creates the interrupt and we have to process by hand.
*/
static void nsp32_msgout_occur(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
//unsigned short command;
long new_sgtp;
int i;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"enter: msgout_len: 0x%x", data->msgout_len);
/*
* If MsgOut phase is occurred without having any
* message, then No_Operation is sent (SCSI-2).
*/
if (data->msgout_len == 0) {
nsp32_build_nop(SCpnt);
}
/*
* Set SGTP ADDR current entry for restarting AUTOSCSI,
* because SGTP is incremented next point.
* There is few statement in the specification...
*/
new_sgtp = data->cur_lunt->sglun_paddr +
(data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));
/*
* send messages
*/
for (i = 0; i < data->msgout_len; i++) {
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"%d : 0x%x", i, data->msgoutbuf[i]);
/*
* Check REQ is asserted.
*/
nsp32_wait_req(data, ASSERT);
if (i == (data->msgout_len - 1)) {
/*
* If the last message, set the AutoSCSI restart
* before send back the ack message. AutoSCSI
* restart automatically negate ATN signal.
*/
//command = (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
//nsp32_restart_autoscsi(SCpnt, command);
nsp32_write2(base, COMMAND_CONTROL,
(CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 ));
}
/*
* Write data with SACK, then wait sack is
* automatically negated.
*/
nsp32_write1(base, SCSI_DATA_WITH_ACK, data->msgoutbuf[i]);
nsp32_wait_sack(data, NEGATE);
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "bus: 0x%x\n",
nsp32_read1(base, SCSI_BUS_MONITOR));
};
data->msgout_len = 0;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "exit");
}
/*
* Restart AutoSCSI
*
* Note: Restarting AutoSCSI needs set:
* SYNC_REG, ACK_WIDTH, SGT_ADR, TRANSFER_CONTROL
*/
static void nsp32_restart_autoscsi(struct scsi_cmnd *SCpnt, unsigned short command)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = data->BaseAddress;
unsigned short transfer = 0;
nsp32_dbg(NSP32_DEBUG_RESTART, "enter");
if (data->cur_target == NULL || data->cur_lunt == NULL) {
nsp32_msg(KERN_ERR, "Target or Lun is invalid");
}
/*
* set SYNC_REG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->cur_target->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);
/*
* set SREQ hazard killer sampling rate
*/
nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
transfer = 0;
transfer |= (TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
transfer |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
transfer |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
transfer |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, transfer);
/*
* restart AutoSCSI
*
* TODO: COMMANDCONTROL_AUTO_COMMAND_PHASE is needed ?
*/
command |= (CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART );
nsp32_write2(base, COMMAND_CONTROL, command);
nsp32_dbg(NSP32_DEBUG_RESTART, "exit");
}
/*
* cannot run automatically message in occur
*/
static void nsp32_msgin_occur(struct scsi_cmnd *SCpnt,
unsigned long irq_status,
unsigned short execph)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned char msg;
unsigned char msgtype;
unsigned char newlun;
unsigned short command = 0;
int msgclear = TRUE;
long new_sgtp;
int ret;
/*
* read first message
* Use SCSIDATA_W_ACK instead of SCSIDATAIN, because the procedure
* of Message-In have to be processed before sending back SCSI ACK.
*/
msg = nsp32_read1(base, SCSI_DATA_IN);
data->msginbuf[(unsigned char)data->msgin_len] = msg;
msgtype = data->msginbuf[0];
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR,
"enter: msglen: 0x%x msgin: 0x%x msgtype: 0x%x",
data->msgin_len, msg, msgtype);
/*
* TODO: We need checking whether bus phase is message in?
*/
/*
* assert SCSI ACK
*/
nsp32_sack_assert(data);
/*
* processing IDENTIFY
*/
if (msgtype & 0x80) {
if (!(irq_status & IRQSTATUS_RESELECT_OCCUER)) {
/* Invalid (non reselect) phase */
goto reject;
}
newlun = msgtype & 0x1f; /* TODO: SPI-3 compliant? */
ret = nsp32_reselection(SCpnt, newlun);
if (ret == TRUE) {
goto restart;
} else {
goto reject;
}
}
/*
* processing messages except for IDENTIFY
*
* TODO: Messages are all SCSI-2 terminology. SCSI-3 compliance is TODO.
*/
switch (msgtype) {
/*
* 1-byte message
*/
case COMMAND_COMPLETE:
case DISCONNECT:
/*
* These messages should not be occurred.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg(KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: 0x%x", msg);
break;
case RESTORE_POINTERS:
/*
* AutoMsgIn03 is disabled, and HBA gets this message.
*/
if ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE)) {
unsigned int s_sacklen;
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
if ((execph & MSGIN_02_VALID) && (s_sacklen > 0)) {
nsp32_adjust_busfree(SCpnt, s_sacklen);
} else {
/* No need to rewrite SGT */
}
}
data->cur_lunt->msgin03 = FALSE;
/* Update with the new value */
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* set new sg pointer
*/
new_sgtp = data->cur_lunt->sglun_paddr +
(data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));
nsp32_write4(base, SGT_ADR, new_sgtp);
break;
case SAVE_POINTERS:
/*
* These messages should not be occurred.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg (KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: SAVE_POINTERS");
break;
case MESSAGE_REJECT:
/* If previous message_out is sending SDTR, and get
message_reject from target, SDTR negotiation is failed */
if (data->cur_target->sync_flag &
(SDTR_INITIATOR | SDTR_TARGET)) {
/*
* Current target is negotiating SDTR, but it's
* failed. Fall back to async transfer mode, and set
* SDTR_DONE.
*/
nsp32_set_async(data, data->cur_target);
data->cur_target->sync_flag &= ~SDTR_INITIATOR;
data->cur_target->sync_flag |= SDTR_DONE;
}
break;
case LINKED_CMD_COMPLETE:
case LINKED_FLG_CMD_COMPLETE:
/* queue tag is not supported currently */
nsp32_msg (KERN_WARNING,
"unsupported message: 0x%x", msgtype);
break;
case INITIATE_RECOVERY:
/* staring ECA (Extended Contingent Allegiance) state. */
/* This message is declined in SPI2 or later. */
goto reject;
/*
* 2-byte message
*/
case SIMPLE_QUEUE_TAG:
case 0x23:
/*
* 0x23: Ignore_Wide_Residue is not declared in scsi.h.
* No support is needed.
*/
if (data->msgin_len >= 1) {
goto reject;
}
/* current position is 1-byte of 2 byte */
msgclear = FALSE;
break;
/*
* extended message
*/
case EXTENDED_MESSAGE:
if (data->msgin_len < 1) {
/*
* Current position does not reach 2-byte
* (2-byte is extended message length).
*/
msgclear = FALSE;
break;
}
if ((data->msginbuf[1] + 1) > data->msgin_len) {
/*
* Current extended message has msginbuf[1] + 2
* (msgin_len starts counting from 0, so buf[1] + 1).
* If current message position is not finished,
* continue receiving message.
*/
msgclear = FALSE;
break;
}
/*
* Reach here means regular length of each type of
* extended messages.
*/
switch (data->msginbuf[2]) {
case EXTENDED_MODIFY_DATA_POINTER:
/* TODO */
goto reject; /* not implemented yet */
break;
case EXTENDED_SDTR:
/*
* Exchange this message between initiator and target.
*/
if (data->msgin_len != EXTENDED_SDTR_LEN + 1) {
/*
* received inappropriate message.
*/
goto reject;
break;
}
nsp32_analyze_sdtr(SCpnt);
break;
case EXTENDED_EXTENDED_IDENTIFY:
/* SCSI-I only, not supported. */
goto reject; /* not implemented yet */
break;
case EXTENDED_WDTR:
goto reject; /* not implemented yet */
break;
default:
goto reject;
}
break;
default:
goto reject;
}
restart:
if (msgclear == TRUE) {
data->msgin_len = 0;
/*
* If restarting AutoSCSI, but there are some message to out
* (msgout_len > 0), set AutoATN, and set SCSIMSGOUT as 0
* (MV_VALID = 0). When commandcontrol is written with
* AutoSCSI restart, at the same time MsgOutOccur should be
* happened (however, such situation is really possible...?).
*/
if (data->msgout_len > 0) {
nsp32_write4(base, SCSI_MSG_OUT, 0);
command |= AUTO_ATN;
}
/*
* restart AutoSCSI
* If it's failed, COMMANDCONTROL_AUTO_COMMAND_PHASE is needed.
*/
command |= (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
/*
* If current msgin03 is TRUE, then flag on.
*/
if (data->cur_lunt->msgin03 == TRUE) {
command |= AUTO_MSGIN_03;
}
data->cur_lunt->msgin03 = FALSE;
} else {
data->msgin_len++;
}
/*
* restart AutoSCSI
*/
nsp32_restart_autoscsi(SCpnt, command);
/*
* wait SCSI REQ negate for REQ-ACK handshake
*/
nsp32_wait_req(data, NEGATE);
/*
* negate SCSI ACK
*/
nsp32_sack_negate(data);
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
nsp32_msg(KERN_WARNING,
"invalid or unsupported MessageIn, rejected. "
"current msg: 0x%x (len: 0x%x), processing msg: 0x%x",
msg, data->msgin_len, msgtype);
nsp32_build_reject(SCpnt);
data->msgin_len = 0;
goto restart;
}
/*
*
*/
static void nsp32_analyze_sdtr(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
nsp32_target *target = data->cur_target;
nsp32_sync_table *synct;
unsigned char get_period = data->msginbuf[3];
unsigned char get_offset = data->msginbuf[4];
int entry;
int syncnum;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter");
synct = data->synct;
syncnum = data->syncnum;
/*
* If this inititor sent the SDTR message, then target responds SDTR,
* initiator SYNCREG, ACKWIDTH from SDTR parameter.
* Messages are not appropriate, then send back reject message.
* If initiator did not send the SDTR, but target sends SDTR,
* initiator calculator the appropriate parameter and send back SDTR.
*/
if (target->sync_flag & SDTR_INITIATOR) {
/*
* Initiator sent SDTR, the target responds and
* send back negotiation SDTR.
*/
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target responds SDTR");
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
/*
* offset:
*/
if (get_offset > SYNC_OFFSET) {
/*
* Negotiation is failed, the target send back
* unexpected offset value.
*/
goto reject;
}
if (get_offset == ASYNC_OFFSET) {
/*
* Negotiation is succeeded, the target want
* to fall back into asynchronous transfer mode.
*/
goto async;
}
/*
* period:
* Check whether sync period is too short. If too short,
* fall back to async mode. If it's ok, then investigate
* the received sync period. If sync period is acceptable
* between sync table start_period and end_period, then
* set this I_T nexus as sent offset and period.
* If it's not acceptable, send back reject and fall back
* to async mode.
*/
if (get_period < data->synct[0].period_num) {
/*
* Negotiation is failed, the target send back
* unexpected period value.
*/
goto reject;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (entry < 0) {
/*
* Target want to use long period which is not
* acceptable NinjaSCSI-32Bi/UDE.
*/
goto reject;
}
/*
* Set new sync table and offset in this I_T nexus.
*/
nsp32_set_sync_entry(data, target, entry, get_offset);
} else {
/* Target send SDTR to initiator. */
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target send SDTR");
target->sync_flag |= SDTR_INITIATOR;
/* offset: */
if (get_offset > SYNC_OFFSET) {
/* send back as SYNC_OFFSET */
get_offset = SYNC_OFFSET;
}
/* period: */
if (get_period < data->synct[0].period_num) {
get_period = data->synct[0].period_num;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (get_offset == ASYNC_OFFSET || entry < 0) {
nsp32_set_async(data, target);
nsp32_build_sdtr(SCpnt, 0, ASYNC_OFFSET);
} else {
nsp32_set_sync_entry(data, target, entry, get_offset);
nsp32_build_sdtr(SCpnt, get_period, get_offset);
}
}
target->period = get_period;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
/*
* If the current message is unacceptable, send back to the target
* with reject message.
*/
nsp32_build_reject(SCpnt);
async:
nsp32_set_async(data, target); /* set as ASYNC transfer mode */
target->period = 0;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit: set async");
return;
}
/*
* Search config entry number matched in sync_table from given
* target and speed period value. If failed to search, return negative value.
*/
static int nsp32_search_period_entry(nsp32_hw_data *data,
nsp32_target *target,
unsigned char period)
{
int i;
if (target->limit_entry >= data->syncnum) {
nsp32_msg(KERN_ERR, "limit_entry exceeds syncnum!");
target->limit_entry = 0;
}
for (i = target->limit_entry; i < data->syncnum; i++) {
if (period >= data->synct[i].start_period &&
period <= data->synct[i].end_period) {
break;
}
}
/*
* Check given period value is over the sync_table value.
* If so, return max value.
*/
if (i == data->syncnum) {
i = -1;
}
return i;
}
/*
* target <-> initiator use ASYNC transfer
*/
static void nsp32_set_async(nsp32_hw_data *data, nsp32_target *target)
{
unsigned char period = data->synct[target->limit_entry].period_num;
target->offset = ASYNC_OFFSET;
target->period = 0;
target->syncreg = TO_SYNCREG(period, ASYNC_OFFSET);
target->ackwidth = 0;
target->sample_reg = 0;
nsp32_dbg(NSP32_DEBUG_SYNC, "set async");
}
/*
* target <-> initiator use maximum SYNC transfer
*/
static void nsp32_set_max_sync(nsp32_hw_data *data,
nsp32_target *target,
unsigned char *period,
unsigned char *offset)
{
unsigned char period_num, ackwidth;
period_num = data->synct[target->limit_entry].period_num;
*period = data->synct[target->limit_entry].start_period;
ackwidth = data->synct[target->limit_entry].ackwidth;
*offset = SYNC_OFFSET;
target->syncreg = TO_SYNCREG(period_num, *offset);
target->ackwidth = ackwidth;
target->offset = *offset;
target->sample_reg = 0; /* disable SREQ sampling */
}
/*
* target <-> initiator use entry number speed
*/
static void nsp32_set_sync_entry(nsp32_hw_data *data,
nsp32_target *target,
int entry,
unsigned char offset)
{
unsigned char period, ackwidth, sample_rate;
period = data->synct[entry].period_num;
ackwidth = data->synct[entry].ackwidth;
offset = offset;
sample_rate = data->synct[entry].sample_rate;
target->syncreg = TO_SYNCREG(period, offset);
target->ackwidth = ackwidth;
target->offset = offset;
target->sample_reg = sample_rate | SAMPLING_ENABLE;
nsp32_dbg(NSP32_DEBUG_SYNC, "set sync");
}
/*
* It waits until SCSI REQ becomes assertion or negation state.
*
* Note: If nsp32_msgin_occur is called, we asserts SCSI ACK. Then
* connected target responds SCSI REQ negation. We have to wait
* SCSI REQ becomes negation in order to negate SCSI ACK signal for
* REQ-ACK handshake.
*/
static void nsp32_wait_req(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus, req_bit;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
/* REQ is BIT(5) */
req_bit = (state == ASSERT ? BUSMON_REQ : 0);
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_REQ) == req_bit) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait REQ timeout, req_bit: 0x%x", req_bit);
}
/*
* It waits until SCSI SACK becomes assertion or negation state.
*/
static void nsp32_wait_sack(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus, ack_bit;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
/* ACK is BIT(4) */
ack_bit = (state == ASSERT ? BUSMON_ACK : 0);
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_ACK) == ack_bit) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait SACK timeout, ack_bit: 0x%x", ack_bit);
}
/*
* assert SCSI ACK
*
* Note: SCSI ACK assertion needs with ACKENB=1, AUTODIRECTION=1.
*/
static void nsp32_sack_assert(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned char busctrl;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl |= (BUSCTL_ACK | AUTODIRECTION | ACKENB);
nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}
/*
* negate SCSI ACK
*/
static void nsp32_sack_negate(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned char busctrl;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl &= ~BUSCTL_ACK;
nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}
/*
* Note: n_io_port is defined as 0x7f because I/O register port is
* assigned as:
* 0x800-0x8ff: memory mapped I/O port
* 0x900-0xbff: (map same 0x800-0x8ff I/O port image repeatedly)
* 0xc00-0xfff: CardBus status registers
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
#define DETECT_OK 0
#define DETECT_NG 1
#define PCIDEV pdev
static int nsp32_detect(struct pci_dev *pdev)
#else
#define DETECT_OK 1
#define DETECT_NG 0
#define PCIDEV (data->Pci)
static int nsp32_detect(struct scsi_host_template *sht)
#endif
{
struct Scsi_Host *host; /* registered host structure */
struct resource *res;
nsp32_hw_data *data;
int ret;
int i, j;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
/*
* register this HBA as SCSI device
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
host = scsi_host_alloc(&nsp32_template, sizeof(nsp32_hw_data));
#else
host = scsi_register(sht, sizeof(nsp32_hw_data));
#endif
if (host == NULL) {
nsp32_msg (KERN_ERR, "failed to scsi register");
goto err;
}
/*
* set nsp32_hw_data
*/
data = (nsp32_hw_data *)host->hostdata;
memcpy(data, &nsp32_data_base, sizeof(nsp32_hw_data));
host->irq = data->IrqNumber;
host->io_port = data->BaseAddress;
host->unique_id = data->BaseAddress;
host->n_io_port = data->NumAddress;
host->base = (unsigned long)data->MmioAddress;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,5,63))
scsi_set_pci_device(host, PCIDEV);
#endif
data->Host = host;
spin_lock_init(&(data->Lock));
data->cur_lunt = NULL;
data->cur_target = NULL;
/*
* Bus master transfer mode is supported currently.
*/
data->trans_method = NSP32_TRANSFER_BUSMASTER;
/*
* Set clock div, CLOCK_4 (HBA has own external clock, and
* dividing * 100ns/4).
* Currently CLOCK_4 has only tested, not for CLOCK_2/PCICLK yet.
*/
data->clock = CLOCK_4;
/*
* Select appropriate nsp32_sync_table and set I_CLOCKDIV.
*/
switch (data->clock) {
case CLOCK_4:
/* If data->clock is CLOCK_4, then select 40M sync table. */
data->synct = nsp32_sync_table_40M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
break;
case CLOCK_2:
/* If data->clock is CLOCK_2, then select 20M sync table. */
data->synct = nsp32_sync_table_20M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_20M);
break;
case PCICLK:
/* If data->clock is PCICLK, then select pci sync table. */
data->synct = nsp32_sync_table_pci;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_pci);
break;
default:
nsp32_msg(KERN_WARNING,
"Invalid clock div is selected, set CLOCK_4.");
/* Use default value CLOCK_4 */
data->clock = CLOCK_4;
data->synct = nsp32_sync_table_40M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
}
/*
* setup nsp32_lunt
*/
/*
* setup DMA
*/
if (pci_set_dma_mask(PCIDEV, DMA_32BIT_MASK) != 0) {
nsp32_msg (KERN_ERR, "failed to set PCI DMA mask");
goto scsi_unregister;
}
/*
* allocate autoparam DMA resource.
*/
data->autoparam = pci_alloc_consistent(PCIDEV, sizeof(nsp32_autoparam), &(data->auto_paddr));
if (data->autoparam == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto scsi_unregister;
}
/*
* allocate scatter-gather DMA resource.
*/
data->sg_list = pci_alloc_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
&(data->sg_paddr));
if (data->sg_list == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto free_autoparam;
}
for (i = 0; i < ARRAY_SIZE(data->lunt); i++) {
for (j = 0; j < ARRAY_SIZE(data->lunt[0]); j++) {
int offset = i * ARRAY_SIZE(data->lunt[0]) + j;
nsp32_lunt tmp = {
.SCpnt = NULL,
.save_datp = 0,
.msgin03 = FALSE,
.sg_num = 0,
.cur_entry = 0,
.sglun = &(data->sg_list[offset]),
.sglun_paddr = data->sg_paddr + (offset * sizeof(nsp32_sglun)),
};
data->lunt[i][j] = tmp;
}
}
/*
* setup target
*/
for (i = 0; i < ARRAY_SIZE(data->target); i++) {
nsp32_target *target = &(data->target[i]);
target->limit_entry = 0;
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* EEPROM check
*/
ret = nsp32_getprom_param(data);
if (ret == FALSE) {
data->resettime = 3; /* default 3 */
}
/*
* setup HBA
*/
nsp32hw_init(data);
snprintf(data->info_str, sizeof(data->info_str),
"NinjaSCSI-32Bi/UDE: irq %d, io 0x%lx+0x%x",
host->irq, host->io_port, host->n_io_port);
/*
* SCSI bus reset
*
* Note: It's important to reset SCSI bus in initialization phase.
* NinjaSCSI-32Bi/UDE HBA EEPROM seems to exchange SDTR when
* system is coming up, so SCSI devices connected to HBA is set as
* un-asynchronous mode. It brings the merit that this HBA is
* ready to start synchronous transfer without any preparation,
* but we are difficult to control transfer speed. In addition,
* it prevents device transfer speed from effecting EEPROM start-up
* SDTR. NinjaSCSI-32Bi/UDE has the feature if EEPROM is set as
* Auto Mode, then FAST-10M is selected when SCSI devices are
* connected same or more than 4 devices. It should be avoided
* depending on this specification. Thus, resetting the SCSI bus
* restores all connected SCSI devices to asynchronous mode, then
* this driver set SDTR safely later, and we can control all SCSI
* device transfer mode.
*/
nsp32_do_bus_reset(data);
ret = request_irq(host->irq, do_nsp32_isr, IRQF_SHARED, "nsp32", data);
if (ret < 0) {
nsp32_msg(KERN_ERR, "Unable to allocate IRQ for NinjaSCSI32 "
"SCSI PCI controller. Interrupt: %d", host->irq);
goto free_sg_list;
}
/*
* PCI IO register
*/
res = request_region(host->io_port, host->n_io_port, "nsp32");
if (res == NULL) {
nsp32_msg(KERN_ERR,
"I/O region 0x%lx+0x%lx is already used",
data->BaseAddress, data->NumAddress);
goto free_irq;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
ret = scsi_add_host(host, &PCIDEV->dev);
if (ret) {
nsp32_msg(KERN_ERR, "failed to add scsi host");
goto free_region;
}
scsi_scan_host(host);
#endif
pci_set_drvdata(PCIDEV, host);
return DETECT_OK;
free_region:
release_region(host->io_port, host->n_io_port);
free_irq:
free_irq(host->irq, data);
free_sg_list:
pci_free_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
data->sg_list, data->sg_paddr);
free_autoparam:
pci_free_consistent(PCIDEV, sizeof(nsp32_autoparam),
data->autoparam, data->auto_paddr);
scsi_unregister:
scsi_host_put(host);
err:
return DETECT_NG;
}
#undef DETECT_OK
#undef DETECT_NG
#undef PCIDEV
static int nsp32_release(struct Scsi_Host *host)
{
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
if (data->autoparam) {
pci_free_consistent(data->Pci, sizeof(nsp32_autoparam),
data->autoparam, data->auto_paddr);
}
if (data->sg_list) {
pci_free_consistent(data->Pci, NSP32_SG_TABLE_SIZE,
data->sg_list, data->sg_paddr);
}
if (host->irq) {
free_irq(host->irq, data);
}
if (host->io_port && host->n_io_port) {
release_region(host->io_port, host->n_io_port);
}
if (data->MmioAddress) {
iounmap(data->MmioAddress);
}
return 0;
}
static const char *nsp32_info(struct Scsi_Host *shpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata;
return data->info_str;
}
/****************************************************************************
* error handler
*/
static int nsp32_eh_abort(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
nsp32_msg(KERN_WARNING, "abort");
if (data->cur_lunt->SCpnt == NULL) {
nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort failed");
return FAILED;
}
if (data->cur_target->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) {
/* reset SDTR negotiation */
data->cur_target->sync_flag = 0;
nsp32_set_async(data, data->cur_target);
}
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write2(base, BM_CNT, 0);
SCpnt->result = DID_ABORT << 16;
nsp32_scsi_done(SCpnt);
nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort success");
return SUCCESS;
}
static int nsp32_eh_bus_reset(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
spin_lock_irq(SCpnt->device->host->host_lock);
nsp32_msg(KERN_INFO, "Bus Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
spin_unlock_irq(SCpnt->device->host->host_lock);
return SUCCESS; /* SCSI bus reset is succeeded at any time. */
}
static void nsp32_do_bus_reset(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short intrdat;
int i;
nsp32_dbg(NSP32_DEBUG_BUSRESET, "in");
/*
* stop all transfer
* clear TRANSFERCONTROL_BM_START
* clear counter
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* fall back to asynchronous transfer mode
* initialize SDTR negotiation flag
*/
for (i = 0; i < ARRAY_SIZE(data->target); i++) {
nsp32_target *target = &data->target[i];
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* reset SCSI bus
*/
nsp32_write1(base, SCSI_BUS_CONTROL, BUSCTL_RST);
udelay(RESET_HOLD_TIME);
nsp32_write1(base, SCSI_BUS_CONTROL, 0);
for(i = 0; i < 5; i++) {
intrdat = nsp32_read2(base, IRQ_STATUS); /* dummy read */
nsp32_dbg(NSP32_DEBUG_BUSRESET, "irq:1: 0x%x", intrdat);
}
data->CurrentSC = NULL;
}
static int nsp32_eh_host_reset(struct scsi_cmnd *SCpnt)
{
struct Scsi_Host *host = SCpnt->device->host;
unsigned int base = SCpnt->device->host->io_port;
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
nsp32_msg(KERN_INFO, "Host Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
spin_lock_irq(SCpnt->device->host->host_lock);
nsp32hw_init(data);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
spin_unlock_irq(SCpnt->device->host->host_lock);
return SUCCESS; /* Host reset is succeeded at any time. */
}
/**************************************************************************
* EEPROM handler
*/
/*
* getting EEPROM parameter
*/
static int nsp32_getprom_param(nsp32_hw_data *data)
{
int vendor = data->pci_devid->vendor;
int device = data->pci_devid->device;
int ret, val, i;
/*
* EEPROM checking.
*/
ret = nsp32_prom_read(data, 0x7e);
if (ret != 0x55) {
nsp32_msg(KERN_INFO, "No EEPROM detected: 0x%x", ret);
return FALSE;
}
ret = nsp32_prom_read(data, 0x7f);
if (ret != 0xaa) {
nsp32_msg(KERN_INFO, "Invalid number: 0x%x", ret);
return FALSE;
}
/*
* check EEPROM type
*/
if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_WORKBIT_STANDARD) {
ret = nsp32_getprom_c16(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC) {
ret = nsp32_getprom_at24(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO ) {
ret = nsp32_getprom_at24(data);
} else {
nsp32_msg(KERN_WARNING, "Unknown EEPROM");
ret = FALSE;
}
/* for debug : SPROM data full checking */
for (i = 0; i <= 0x1f; i++) {
val = nsp32_prom_read(data, i);
nsp32_dbg(NSP32_DEBUG_EEPROM,
"rom address 0x%x : 0x%x", i, val);
}
return ret;
}
/*
* AT24C01A (Logitec: LHA-600S), AT24C02 (Melco Buffalo: IFC-USLP) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: ASYNC, 0x0c: Ultra-20M, 0x19: Fast-10M
* 0x07 : HBA Synchronous Transfer Period
* Value 0: AutoSync, 1: Manual Setting
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Bus Termination
* Value 0: Auto[ON], 1: ON, 2: OFF
* 0x11 : Not Used? (0)
* 0x12 : Bus Reset Delay Time (0x03)
* 0x13 : Bootable CD Support
* Value 0: Disable, 1: Enable
* 0x14 : Device Scan
* Bit 7 6 5 4 3 2 1 0
* | <----------------->
* | SCSI ID: Value 0: Skip, 1: YES
* |-> Value 0: ALL scan, Value 1: Manual
* 0x15 - 0x1b : Not Used? (0)
* 0x1c : Constant? (0x01) (clock div?)
* 0x1d - 0x7c : Not Used (0xff)
* 0x7d : Not Used? (0xff)
* 0x7e : Constant (0x55), Validity signature
* 0x7f : Constant (0xaa), Validity signature
*/
static int nsp32_getprom_at24(nsp32_hw_data *data)
{
int ret, i;
int auto_sync;
nsp32_target *target;
int entry;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x12);
/*
* HBA Synchronous Transfer Period
*
* Note: auto_sync = 0: auto, 1: manual. Ninja SCSI HBA spec says
* that if auto_sync is 0 (auto), and connected SCSI devices are
* same or lower than 3, then transfer speed is set as ULTRA-20M.
* On the contrary if connected SCSI devices are same or higher
* than 4, then transfer speed is set as FAST-10M.
*
* I break this rule. The number of connected SCSI devices are
* only ignored. If auto_sync is 0 (auto), then transfer speed is
* forced as ULTRA-20M.
*/
ret = nsp32_prom_read(data, 0x07);
switch (ret) {
case 0:
auto_sync = TRUE;
break;
case 1:
auto_sync = FALSE;
break;
default:
nsp32_msg(KERN_WARNING,
"Unsupported Auto Sync mode. Fall back to manual mode.");
auto_sync = TRUE;
}
if (trans_mode == ULTRA20M_MODE) {
auto_sync = TRUE;
}
/*
* each device Synchronous Transfer Period
*/
for (i = 0; i < NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
if (auto_sync == TRUE) {
target->limit_entry = 0; /* set as ULTRA20M */
} else {
ret = nsp32_prom_read(data, i);
entry = nsp32_search_period_entry(data, target, ret);
if (entry < 0) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
}
return TRUE;
}
/*
* C16 110 (I-O Data: SC-NBD) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: 20MB/S, 0x1: 10MB/S, 0x2: 5MB/S, 0x3: ASYNC
* 0x07 : 0 (HBA Synchronous Transfer Period: Auto Sync)
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Transfer Mode
* Value 0: PIO, 1: Busmater
* 0x11 : Bus Reset Delay Time (0x00-0x20)
* 0x12 : Bus Termination
* Value 0: Disable, 1: Enable
* 0x13 - 0x19 : Disconnection
* Value 0: Disable, 1: Enable
* 0x1a - 0x7c : Not Used? (0)
* 0x7d : Not Used? (0xf8)
* 0x7e : Constant (0x55), Validity signature
* 0x7f : Constant (0xaa), Validity signature
*/
static int nsp32_getprom_c16(nsp32_hw_data *data)
{
int ret, i;
nsp32_target *target;
int entry, val;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x11);
/*
* each device Synchronous Transfer Period
*/
for (i = 0; i < NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
ret = nsp32_prom_read(data, i);
switch (ret) {
case 0: /* 20MB/s */
val = 0x0c;
break;
case 1: /* 10MB/s */
val = 0x19;
break;
case 2: /* 5MB/s */
val = 0x32;
break;
case 3: /* ASYNC */
val = 0x00;
break;
default: /* default 20MB/s */
val = 0x0c;
break;
}
entry = nsp32_search_period_entry(data, target, val);
if (entry < 0 || trans_mode == ULTRA20M_MODE) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
return TRUE;
}
/*
* Atmel AT24C01A (drived in 5V) serial EEPROM routines
*/
static int nsp32_prom_read(nsp32_hw_data *data, int romaddr)
{
int i, val;
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */
/* R/W: W for dummy write */
nsp32_prom_write_bit(data, 0);
/* ack */
nsp32_prom_write_bit(data, 0);
/* word address */
for (i = 7; i >= 0; i--) {
nsp32_prom_write_bit(data, ((romaddr >> i) & 1));
}
/* ack */
nsp32_prom_write_bit(data, 0);
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */
/* R/W: R */
nsp32_prom_write_bit(data, 1);
/* ack */
nsp32_prom_write_bit(data, 0);
/* data... */
val = 0;
for (i = 7; i >= 0; i--) {
val += (nsp32_prom_read_bit(data) << i);
}
/* no ack */
nsp32_prom_write_bit(data, 1);
/* stop condition */
nsp32_prom_stop(data);
return val;
}
static void nsp32_prom_set(nsp32_hw_data *data, int bit, int val)
{
int base = data->BaseAddress;
int tmp;
tmp = nsp32_index_read1(base, SERIAL_ROM_CTL);
if (val == 0) {
tmp &= ~bit;
} else {
tmp |= bit;
}
nsp32_index_write1(base, SERIAL_ROM_CTL, tmp);
udelay(10);
}
static int nsp32_prom_get(nsp32_hw_data *data, int bit)
{
int base = data->BaseAddress;
int tmp, ret;
if (bit != SDA) {
nsp32_msg(KERN_ERR, "return value is not appropriate");
return 0;
}
tmp = nsp32_index_read1(base, SERIAL_ROM_CTL) & bit;
if (tmp == 0) {
ret = 0;
} else {
ret = 1;
}
udelay(10);
return ret;
}
static void nsp32_prom_start (nsp32_hw_data *data)
{
/* start condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 0); /* keeping SCL=1 and transiting
* SDA 1->0 is start condition */
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_stop (nsp32_hw_data *data)
{
/* stop condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_write_bit(nsp32_hw_data *data, int val)
{
/* write */
nsp32_prom_set(data, SDA, val);
nsp32_prom_set(data, SCL, 1 );
nsp32_prom_set(data, SCL, 0 );
}
static int nsp32_prom_read_bit(nsp32_hw_data *data)
{
int val;
/* read */
nsp32_prom_set(data, ENA, 0); /* input mode */
nsp32_prom_set(data, SCL, 1);
val = nsp32_prom_get(data, SDA);
nsp32_prom_set(data, SCL, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
return val;
}
/**************************************************************************
* Power Management
*/
#ifdef CONFIG_PM
/* Device suspended */
static int nsp32_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_msg(KERN_INFO, "pci-suspend: pdev=0x%p, state=%ld, slot=%s, host=0x%p", pdev, state, pci_name(pdev), host);
pci_save_state (pdev);
pci_disable_device (pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
/* Device woken up */
static int nsp32_resume(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
unsigned short reg;
nsp32_msg(KERN_INFO, "pci-resume: pdev=0x%p, slot=%s, host=0x%p", pdev, pci_name(pdev), host);
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake (pdev, PCI_D0, 0);
pci_restore_state (pdev);
reg = nsp32_read2(data->BaseAddress, INDEX_REG);
nsp32_msg(KERN_INFO, "io=0x%x reg=0x%x", data->BaseAddress, reg);
if (reg == 0xffff) {
nsp32_msg(KERN_INFO, "missing device. abort resume.");
return 0;
}
nsp32hw_init (data);
nsp32_do_bus_reset(data);
nsp32_msg(KERN_INFO, "resume success");
return 0;
}
/* Enable wake event */
static int nsp32_enable_wake(struct pci_dev *pdev, pci_power_t state, int enable)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_msg(KERN_INFO, "pci-enable_wake: stub, pdev=0x%p, enable=%d, slot=%s, host=0x%p", pdev, enable, pci_name(pdev), host);
return 0;
}
#endif
/************************************************************************
* PCI/Cardbus probe/remove routine
*/
static int __devinit nsp32_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int ret;
nsp32_hw_data *data = &nsp32_data_base;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
ret = pci_enable_device(pdev);
if (ret) {
nsp32_msg(KERN_ERR, "failed to enable pci device");
return ret;
}
data->Pci = pdev;
data->pci_devid = id;
data->IrqNumber = pdev->irq;
data->BaseAddress = pci_resource_start(pdev, 0);
data->NumAddress = pci_resource_len (pdev, 0);
data->MmioAddress = ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len (pdev, 1));
data->MmioLength = pci_resource_len (pdev, 1);
pci_set_master(pdev);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
ret = nsp32_detect(pdev);
#else
ret = scsi_register_host(&nsp32_template);
#endif
nsp32_msg(KERN_INFO, "irq: %i mmio: %p+0x%lx slot: %s model: %s",
pdev->irq,
data->MmioAddress, data->MmioLength,
pci_name(pdev),
nsp32_model[id->driver_data]);
nsp32_dbg(NSP32_DEBUG_REGISTER, "exit %d", ret);
return ret;
}
static void __devexit nsp32_remove(struct pci_dev *pdev)
{
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
struct Scsi_Host *host = pci_get_drvdata(pdev);
#endif
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
scsi_remove_host(host);
nsp32_release(host);
scsi_host_put(host);
#else
scsi_unregister_host(&nsp32_template);
#endif
}
static struct pci_driver nsp32_driver = {
.name = "nsp32",
.id_table = nsp32_pci_table,
.probe = nsp32_probe,
.remove = __devexit_p(nsp32_remove),
#ifdef CONFIG_PM
.suspend = nsp32_suspend,
.resume = nsp32_resume,
.enable_wake = nsp32_enable_wake,
#endif
};
/*********************************************************************
* Moule entry point
*/
static int __init init_nsp32(void) {
nsp32_msg(KERN_INFO, "loading...");
return pci_module_init(&nsp32_driver);
}
static void __exit exit_nsp32(void) {
nsp32_msg(KERN_INFO, "unloading...");
pci_unregister_driver(&nsp32_driver);
}
module_init(init_nsp32);
module_exit(exit_nsp32);
/* end */