2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/arch/arm/crypto/sha256-armv4.pl
Ard Biesheuvel 69216a545c crypto: sha256/arm - fix crash bug in Thumb2 build
The SHA256 code we adopted from the OpenSSL project uses a rather
peculiar way to take the address of the round constant table: it
takes the address of the sha256_block_data_order() routine, and
substracts a constant known quantity to arrive at the base of the
table, which is emitted by the same assembler code right before
the routine's entry point.

However, recent versions of binutils have helpfully changed the
behavior of references emitted via an ADR instruction when running
in Thumb2 mode: it now takes the Thumb execution mode bit into
account, which is bit 0 af the address. This means the produced
table address also has bit 0 set, and so we end up with an address
value pointing 1 byte past the start of the table, which results
in crashes such as

  Unable to handle kernel paging request at virtual address bf825000
  pgd = 42f44b11
  [bf825000] *pgd=80000040206003, *pmd=5f1bd003, *pte=00000000
  Internal error: Oops: 207 [#1] PREEMPT SMP THUMB2
  Modules linked in: sha256_arm(+) sha1_arm_ce sha1_arm ...
  CPU: 7 PID: 396 Comm: cryptomgr_test Not tainted 5.0.0-rc6+ #144
  Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
  PC is at sha256_block_data_order+0xaaa/0xb30 [sha256_arm]
  LR is at __this_module+0x17fd/0xffffe800 [sha256_arm]
  pc : [<bf820bca>]    lr : [<bf824ffd>]    psr: 800b0033
  sp : ebc8bbe8  ip : faaabe1c  fp : 2fdd3433
  r10: 4c5f1692  r9 : e43037df  r8 : b04b0a5a
  r7 : c369d722  r6 : 39c3693e  r5 : 7a013189  r4 : 1580d26b
  r3 : 8762a9b0  r2 : eea9c2cd  r1 : 3e9ab536  r0 : 1dea4ae7
  Flags: Nzcv  IRQs on  FIQs on  Mode SVC_32  ISA Thumb  Segment user
  Control: 70c5383d  Table: 6b8467c0  DAC: dbadc0de
  Process cryptomgr_test (pid: 396, stack limit = 0x69e1fe23)
  Stack: (0xebc8bbe8 to 0xebc8c000)
  ...
  unwind: Unknown symbol address bf820bca
  unwind: Index not found bf820bca
  Code: 441a ea80 40f9 440a (f85e) 3b04
  ---[ end trace e560cce92700ef8a ]---

Given that this affects older kernels as well, in case they are built
with a recent toolchain, apply a minimal backportable fix, which is
to emit another non-code label at the start of the routine, and
reference that instead. (This is similar to the current upstream state
of this file in OpenSSL)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-02-22 12:40:56 +08:00

725 lines
18 KiB
Prolog

#!/usr/bin/env perl
# SPDX-License-Identifier: GPL-2.0
# This code is taken from the OpenSSL project but the author (Andy Polyakov)
# has relicensed it under the GPLv2. Therefore this program is free software;
# you can redistribute it and/or modify it under the terms of the GNU General
# Public License version 2 as published by the Free Software Foundation.
#
# The original headers, including the original license headers, are
# included below for completeness.
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# SHA256 block procedure for ARMv4. May 2007.
# Performance is ~2x better than gcc 3.4 generated code and in "abso-
# lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per
# byte [on single-issue Xscale PXA250 core].
# July 2010.
#
# Rescheduling for dual-issue pipeline resulted in 22% improvement on
# Cortex A8 core and ~20 cycles per processed byte.
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 16%
# improvement on Cortex A8 core and ~15.4 cycles per processed byte.
# September 2013.
#
# Add NEON implementation. On Cortex A8 it was measured to process one
# byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon
# S4 does it in 12.5 cycles too, but it's 50% faster than integer-only
# code (meaning that latter performs sub-optimally, nothing was done
# about it).
# May 2014.
#
# Add ARMv8 code path performing at 2.0 cpb on Apple A7.
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ctx="r0"; $t0="r0";
$inp="r1"; $t4="r1";
$len="r2"; $t1="r2";
$T1="r3"; $t3="r3";
$A="r4";
$B="r5";
$C="r6";
$D="r7";
$E="r8";
$F="r9";
$G="r10";
$H="r11";
@V=($A,$B,$C,$D,$E,$F,$G,$H);
$t2="r12";
$Ktbl="r14";
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 7,18, 3);
@sigma1=(17,19,10);
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___ if ($i<16);
#if __ARM_ARCH__>=7
@ ldr $t1,[$inp],#4 @ $i
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
# ifndef __ARMEB__
rev $t1,$t1
# endif
#else
@ ldrb $t1,[$inp,#3] @ $i
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
#endif
___
$code.=<<___;
ldr $t2,[$Ktbl],#4 @ *K256++
add $h,$h,$t1 @ h+=X[i]
str $t1,[sp,#`$i%16`*4]
eor $t1,$f,$g
add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e)
and $t1,$t1,$e
add $h,$h,$t2 @ h+=K256[i]
eor $t1,$t1,$g @ Ch(e,f,g)
eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]`
add $h,$h,$t1 @ h+=Ch(e,f,g)
#if $i==31
and $t2,$t2,#0xff
cmp $t2,#0xf2 @ done?
#endif
#if $i<15
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4 @ prefetch
# else
ldrb $t1,[$inp,#3]
# endif
eor $t2,$a,$b @ a^b, b^c in next round
#else
ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx
eor $t2,$a,$b @ a^b, b^c in next round
ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx
#endif
eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a)
and $t3,$t3,$t2 @ (b^c)&=(a^b)
add $d,$d,$h @ d+=h
eor $t3,$t3,$b @ Maj(a,b,c)
add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a)
@ add $h,$h,$t3 @ h+=Maj(a,b,c)
___
($t2,$t3)=($t3,$t2);
}
sub BODY_16_XX {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___;
@ ldr $t1,[sp,#`($i+1)%16`*4] @ $i
@ ldr $t4,[sp,#`($i+14)%16`*4]
mov $t0,$t1,ror#$sigma0[0]
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
mov $t2,$t4,ror#$sigma1[0]
eor $t0,$t0,$t1,ror#$sigma0[1]
eor $t2,$t2,$t4,ror#$sigma1[1]
eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1])
ldr $t1,[sp,#`($i+0)%16`*4]
eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14])
ldr $t4,[sp,#`($i+9)%16`*4]
add $t2,$t2,$t0
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15
add $t1,$t1,$t2
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
add $t1,$t1,$t4 @ X[i]
___
&BODY_00_15(@_);
}
$code=<<___;
#ifndef __KERNEL__
# include "arm_arch.h"
#else
# define __ARM_ARCH__ __LINUX_ARM_ARCH__
# define __ARM_MAX_ARCH__ 7
#endif
.text
#if __ARM_ARCH__<7
.code 32
#else
.syntax unified
# ifdef __thumb2__
# define adrl adr
.thumb
# else
.code 32
# endif
#endif
.type K256,%object
.align 5
K256:
.word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.size K256,.-K256
.word 0 @ terminator
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha256_block_data_order
#endif
.align 5
.global sha256_block_data_order
.type sha256_block_data_order,%function
sha256_block_data_order:
.Lsha256_block_data_order:
#if __ARM_ARCH__<7
sub r3,pc,#8 @ sha256_block_data_order
#else
adr r3,.Lsha256_block_data_order
#endif
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
tst r12,#ARMV8_SHA256
bne .LARMv8
tst r12,#ARMV7_NEON
bne .LNEON
#endif
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
stmdb sp!,{$ctx,$inp,$len,r4-r11,lr}
ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H}
sub $Ktbl,r3,#256+32 @ K256
sub sp,sp,#16*4 @ alloca(X[16])
.Loop:
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4
# else
ldrb $t1,[$inp,#3]
# endif
eor $t3,$B,$C @ magic
eor $t2,$t2,$t2
___
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
$code.=".Lrounds_16_xx:\n";
for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
#if __ARM_ARCH__>=7
ite eq @ Thumb2 thing, sanity check in ARM
#endif
ldreq $t3,[sp,#16*4] @ pull ctx
bne .Lrounds_16_xx
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t0,[$t3,#0]
ldr $t1,[$t3,#4]
ldr $t2,[$t3,#8]
add $A,$A,$t0
ldr $t0,[$t3,#12]
add $B,$B,$t1
ldr $t1,[$t3,#16]
add $C,$C,$t2
ldr $t2,[$t3,#20]
add $D,$D,$t0
ldr $t0,[$t3,#24]
add $E,$E,$t1
ldr $t1,[$t3,#28]
add $F,$F,$t2
ldr $inp,[sp,#17*4] @ pull inp
ldr $t2,[sp,#18*4] @ pull inp+len
add $G,$G,$t0
add $H,$H,$t1
stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H}
cmp $inp,$t2
sub $Ktbl,$Ktbl,#256 @ rewind Ktbl
bne .Loop
add sp,sp,#`16+3`*4 @ destroy frame
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r11,pc}
#else
ldmia sp!,{r4-r11,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha256_block_data_order,.-sha256_block_data_order
___
######################################################################
# NEON stuff
#
{{{
my @X=map("q$_",(0..3));
my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25");
my $Xfer=$t4;
my $j=0;
sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub Xupdate()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
&vext_8 ($T0,@X[0],@X[1],4); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vext_8 ($T1,@X[2],@X[3],4); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T2,$T0,$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12]
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T1,$T0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T2,$T0,32-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T3,$T0,$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T2);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T3,$T0,32-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T3); # sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
while($#insns>=2) { eval(shift(@insns)); }
&vst1_32 ("{$T0}","[$Xfer,:128]!");
eval(shift(@insns));
eval(shift(@insns));
push(@X,shift(@X)); # "rotate" X[]
}
sub Xpreload()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vrev32_8 (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
foreach (@insns) { eval; } # remaining instructions
&vst1_32 ("{$T0}","[$Xfer,:128]!");
push(@X,shift(@X)); # "rotate" X[]
}
sub body_00_15 () {
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
'&eor ($t1,$f,$g)',
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
'&and ($t1,$t1,$e)',
'&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
'&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
'&eor ($t1,$t1,$g)', # Ch(e,f,g)
'&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e)
'&eor ($t2,$a,$b)', # a^b, b^c in next round
'&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
'&ldr ($t1,"[sp,#64]") if ($j==31)',
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
'&add ($d,$d,$h)', # d+=h
'&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a)
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
)
}
$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.arch armv7-a
.fpu neon
.global sha256_block_data_order_neon
.type sha256_block_data_order_neon,%function
.align 4
sha256_block_data_order_neon:
.LNEON:
stmdb sp!,{r4-r12,lr}
sub $H,sp,#16*4+16
adrl $Ktbl,K256
bic $H,$H,#15 @ align for 128-bit stores
mov $t2,sp
mov sp,$H @ alloca
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
vld1.8 {@X[0]},[$inp]!
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
vld1.32 {$T0},[$Ktbl,:128]!
vld1.32 {$T1},[$Ktbl,:128]!
vld1.32 {$T2},[$Ktbl,:128]!
vld1.32 {$T3},[$Ktbl,:128]!
vrev32.8 @X[0],@X[0] @ yes, even on
str $ctx,[sp,#64]
vrev32.8 @X[1],@X[1] @ big-endian
str $inp,[sp,#68]
mov $Xfer,sp
vrev32.8 @X[2],@X[2]
str $len,[sp,#72]
vrev32.8 @X[3],@X[3]
str $t2,[sp,#76] @ save original sp
vadd.i32 $T0,$T0,@X[0]
vadd.i32 $T1,$T1,@X[1]
vst1.32 {$T0},[$Xfer,:128]!
vadd.i32 $T2,$T2,@X[2]
vst1.32 {$T1},[$Xfer,:128]!
vadd.i32 $T3,$T3,@X[3]
vst1.32 {$T2},[$Xfer,:128]!
vst1.32 {$T3},[$Xfer,:128]!
ldmia $ctx,{$A-$H}
sub $Xfer,$Xfer,#64
ldr $t1,[sp,#0]
eor $t2,$t2,$t2
eor $t3,$B,$C
b .L_00_48
.align 4
.L_00_48:
___
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
$code.=<<___;
teq $t1,#0 @ check for K256 terminator
ldr $t1,[sp,#0]
sub $Xfer,$Xfer,#64
bne .L_00_48
ldr $inp,[sp,#68]
ldr $t0,[sp,#72]
sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl
teq $inp,$t0
it eq
subeq $inp,$inp,#64 @ avoid SEGV
vld1.8 {@X[0]},[$inp]! @ load next input block
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
it ne
strne $inp,[sp,#68]
mov $Xfer,sp
___
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
$code.=<<___;
ldr $t0,[$t1,#0]
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t2,[$t1,#4]
ldr $t3,[$t1,#8]
ldr $t4,[$t1,#12]
add $A,$A,$t0 @ accumulate
ldr $t0,[$t1,#16]
add $B,$B,$t2
ldr $t2,[$t1,#20]
add $C,$C,$t3
ldr $t3,[$t1,#24]
add $D,$D,$t4
ldr $t4,[$t1,#28]
add $E,$E,$t0
str $A,[$t1],#4
add $F,$F,$t2
str $B,[$t1],#4
add $G,$G,$t3
str $C,[$t1],#4
add $H,$H,$t4
str $D,[$t1],#4
stmia $t1,{$E-$H}
ittte ne
movne $Xfer,sp
ldrne $t1,[sp,#0]
eorne $t2,$t2,$t2
ldreq sp,[sp,#76] @ restore original sp
itt ne
eorne $t3,$B,$C
bne .L_00_48
ldmia sp!,{r4-r12,pc}
.size sha256_block_data_order_neon,.-sha256_block_data_order_neon
#endif
___
}}}
######################################################################
# ARMv8 stuff
#
{{{
my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2));
my @MSG=map("q$_",(8..11));
my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15));
my $Ktbl="r3";
$code.=<<___;
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
# ifdef __thumb2__
# define INST(a,b,c,d) .byte c,d|0xc,a,b
# else
# define INST(a,b,c,d) .byte a,b,c,d
# endif
.type sha256_block_data_order_armv8,%function
.align 5
sha256_block_data_order_armv8:
.LARMv8:
vld1.32 {$ABCD,$EFGH},[$ctx]
# ifdef __thumb2__
adr $Ktbl,.LARMv8
sub $Ktbl,$Ktbl,#.LARMv8-K256
# else
adrl $Ktbl,K256
# endif
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
.Loop_v8:
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
vld1.32 {$W0},[$Ktbl]!
vrev32.8 @MSG[0],@MSG[0]
vrev32.8 @MSG[1],@MSG[1]
vrev32.8 @MSG[2],@MSG[2]
vrev32.8 @MSG[3],@MSG[3]
vmov $ABCD_SAVE,$ABCD @ offload
vmov $EFGH_SAVE,$EFGH
teq $inp,$len
___
for($i=0;$i<12;$i++) {
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
sha256su0 @MSG[0],@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
sha256su1 @MSG[0],@MSG[2],@MSG[3]
___
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
}
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vld1.32 {$W0},[$Ktbl]!
vadd.i32 $W1,$W1,@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vld1.32 {$W1},[$Ktbl]
vadd.i32 $W0,$W0,@MSG[2]
sub $Ktbl,$Ktbl,#256-16 @ rewind
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vadd.i32 $W1,$W1,@MSG[3]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
vadd.i32 $EFGH,$EFGH,$EFGH_SAVE
it ne
bne .Loop_v8
vst1.32 {$ABCD,$EFGH},[$ctx]
ret @ bx lr
.size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8
#endif
___
}}}
$code.=<<___;
.asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
#if __ARM_MAX_ARCH__>=7 && !defined(__KERNEL__)
.comm OPENSSL_armcap_P,4,4
#endif
___
open SELF,$0;
while(<SELF>) {
next if (/^#!/);
last if (!s/^#/@/ and !/^$/);
print;
}
close SELF;
{ my %opcode = (
"sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40,
"sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 );
sub unsha256 {
my ($mnemonic,$arg)=@_;
if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) {
my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2);
# since ARMv7 instructions are always encoded little-endian.
# correct solution is to use .inst directive, but older
# assemblers don't implement it:-(
sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s",
$word&0xff,($word>>8)&0xff,
($word>>16)&0xff,($word>>24)&0xff,
$mnemonic,$arg;
}
}
}
foreach (split($/,$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo;
s/\bret\b/bx lr/go or
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
print $_,"\n";
}
close STDOUT; # enforce flush