mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 22:24:09 +08:00
ca5d1b3524
This patch extends the regulator helpers to account for device that use multiple bits for control when using regmap enable/disable/bypass ops. The actual regulator helpers wrongly assume that the regulator control is always performed using single bits, using in the regulator_desc struct only two parameters *_reg and *_mask defining register and mask for control. This patch extends this struct and introduces the helpers to take into account devices where control is performed using multiple bits and specific multi-bit values are used for enabling/disabling/bypassing the regulator. Signed-off-by: Carlo Caione <carlo@caione.org> Signed-off-by: Mark Brown <broonie@linaro.org>
400 lines
14 KiB
C
400 lines
14 KiB
C
/*
|
|
* driver.h -- SoC Regulator driver support.
|
|
*
|
|
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
|
|
*
|
|
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Regulator Driver Interface.
|
|
*/
|
|
|
|
#ifndef __LINUX_REGULATOR_DRIVER_H_
|
|
#define __LINUX_REGULATOR_DRIVER_H_
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
struct regmap;
|
|
struct regulator_dev;
|
|
struct regulator_init_data;
|
|
struct regulator_enable_gpio;
|
|
|
|
enum regulator_status {
|
|
REGULATOR_STATUS_OFF,
|
|
REGULATOR_STATUS_ON,
|
|
REGULATOR_STATUS_ERROR,
|
|
/* fast/normal/idle/standby are flavors of "on" */
|
|
REGULATOR_STATUS_FAST,
|
|
REGULATOR_STATUS_NORMAL,
|
|
REGULATOR_STATUS_IDLE,
|
|
REGULATOR_STATUS_STANDBY,
|
|
/* The regulator is enabled but not regulating */
|
|
REGULATOR_STATUS_BYPASS,
|
|
/* in case that any other status doesn't apply */
|
|
REGULATOR_STATUS_UNDEFINED,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_linear_range - specify linear voltage ranges
|
|
*
|
|
* Specify a range of voltages for regulator_map_linar_range() and
|
|
* regulator_list_linear_range().
|
|
*
|
|
* @min_uV: Lowest voltage in range
|
|
* @min_sel: Lowest selector for range
|
|
* @max_sel: Highest selector for range
|
|
* @uV_step: Step size
|
|
*/
|
|
struct regulator_linear_range {
|
|
unsigned int min_uV;
|
|
unsigned int min_sel;
|
|
unsigned int max_sel;
|
|
unsigned int uV_step;
|
|
};
|
|
|
|
/* Initialize struct regulator_linear_range */
|
|
#define REGULATOR_LINEAR_RANGE(_min_uV, _min_sel, _max_sel, _step_uV) \
|
|
{ \
|
|
.min_uV = _min_uV, \
|
|
.min_sel = _min_sel, \
|
|
.max_sel = _max_sel, \
|
|
.uV_step = _step_uV, \
|
|
}
|
|
|
|
/**
|
|
* struct regulator_ops - regulator operations.
|
|
*
|
|
* @enable: Configure the regulator as enabled.
|
|
* @disable: Configure the regulator as disabled.
|
|
* @is_enabled: Return 1 if the regulator is enabled, 0 if not.
|
|
* May also return negative errno.
|
|
*
|
|
* @set_voltage: Set the voltage for the regulator within the range specified.
|
|
* The driver should select the voltage closest to min_uV.
|
|
* @set_voltage_sel: Set the voltage for the regulator using the specified
|
|
* selector.
|
|
* @map_voltage: Convert a voltage into a selector
|
|
* @get_voltage: Return the currently configured voltage for the regulator.
|
|
* @get_voltage_sel: Return the currently configured voltage selector for the
|
|
* regulator.
|
|
* @list_voltage: Return one of the supported voltages, in microvolts; zero
|
|
* if the selector indicates a voltage that is unusable on this system;
|
|
* or negative errno. Selectors range from zero to one less than
|
|
* regulator_desc.n_voltages. Voltages may be reported in any order.
|
|
*
|
|
* @set_current_limit: Configure a limit for a current-limited regulator.
|
|
* The driver should select the current closest to max_uA.
|
|
* @get_current_limit: Get the configured limit for a current-limited regulator.
|
|
*
|
|
* @set_mode: Set the configured operating mode for the regulator.
|
|
* @get_mode: Get the configured operating mode for the regulator.
|
|
* @get_status: Return actual (not as-configured) status of regulator, as a
|
|
* REGULATOR_STATUS value (or negative errno)
|
|
* @get_optimum_mode: Get the most efficient operating mode for the regulator
|
|
* when running with the specified parameters.
|
|
*
|
|
* @set_bypass: Set the regulator in bypass mode.
|
|
* @get_bypass: Get the regulator bypass mode state.
|
|
*
|
|
* @enable_time: Time taken for the regulator voltage output voltage to
|
|
* stabilise after being enabled, in microseconds.
|
|
* @set_ramp_delay: Set the ramp delay for the regulator. The driver should
|
|
* select ramp delay equal to or less than(closest) ramp_delay.
|
|
* @set_voltage_time_sel: Time taken for the regulator voltage output voltage
|
|
* to stabilise after being set to a new value, in microseconds.
|
|
* The function provides the from and to voltage selector, the
|
|
* function should return the worst case.
|
|
*
|
|
* @set_suspend_voltage: Set the voltage for the regulator when the system
|
|
* is suspended.
|
|
* @set_suspend_enable: Mark the regulator as enabled when the system is
|
|
* suspended.
|
|
* @set_suspend_disable: Mark the regulator as disabled when the system is
|
|
* suspended.
|
|
* @set_suspend_mode: Set the operating mode for the regulator when the
|
|
* system is suspended.
|
|
*
|
|
* This struct describes regulator operations which can be implemented by
|
|
* regulator chip drivers.
|
|
*/
|
|
struct regulator_ops {
|
|
|
|
/* enumerate supported voltages */
|
|
int (*list_voltage) (struct regulator_dev *, unsigned selector);
|
|
|
|
/* get/set regulator voltage */
|
|
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV,
|
|
unsigned *selector);
|
|
int (*map_voltage)(struct regulator_dev *, int min_uV, int max_uV);
|
|
int (*set_voltage_sel) (struct regulator_dev *, unsigned selector);
|
|
int (*get_voltage) (struct regulator_dev *);
|
|
int (*get_voltage_sel) (struct regulator_dev *);
|
|
|
|
/* get/set regulator current */
|
|
int (*set_current_limit) (struct regulator_dev *,
|
|
int min_uA, int max_uA);
|
|
int (*get_current_limit) (struct regulator_dev *);
|
|
|
|
/* enable/disable regulator */
|
|
int (*enable) (struct regulator_dev *);
|
|
int (*disable) (struct regulator_dev *);
|
|
int (*is_enabled) (struct regulator_dev *);
|
|
|
|
/* get/set regulator operating mode (defined in consumer.h) */
|
|
int (*set_mode) (struct regulator_dev *, unsigned int mode);
|
|
unsigned int (*get_mode) (struct regulator_dev *);
|
|
|
|
/* Time taken to enable or set voltage on the regulator */
|
|
int (*enable_time) (struct regulator_dev *);
|
|
int (*set_ramp_delay) (struct regulator_dev *, int ramp_delay);
|
|
int (*set_voltage_time_sel) (struct regulator_dev *,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
|
|
/* report regulator status ... most other accessors report
|
|
* control inputs, this reports results of combining inputs
|
|
* from Linux (and other sources) with the actual load.
|
|
* returns REGULATOR_STATUS_* or negative errno.
|
|
*/
|
|
int (*get_status)(struct regulator_dev *);
|
|
|
|
/* get most efficient regulator operating mode for load */
|
|
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,
|
|
int output_uV, int load_uA);
|
|
|
|
/* control and report on bypass mode */
|
|
int (*set_bypass)(struct regulator_dev *dev, bool enable);
|
|
int (*get_bypass)(struct regulator_dev *dev, bool *enable);
|
|
|
|
/* the operations below are for configuration of regulator state when
|
|
* its parent PMIC enters a global STANDBY/HIBERNATE state */
|
|
|
|
/* set regulator suspend voltage */
|
|
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
|
|
|
|
/* enable/disable regulator in suspend state */
|
|
int (*set_suspend_enable) (struct regulator_dev *);
|
|
int (*set_suspend_disable) (struct regulator_dev *);
|
|
|
|
/* set regulator suspend operating mode (defined in consumer.h) */
|
|
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
|
|
};
|
|
|
|
/*
|
|
* Regulators can either control voltage or current.
|
|
*/
|
|
enum regulator_type {
|
|
REGULATOR_VOLTAGE,
|
|
REGULATOR_CURRENT,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_desc - Static regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_config. This
|
|
* structure contains the non-varying parts of the regulator
|
|
* description.
|
|
*
|
|
* @name: Identifying name for the regulator.
|
|
* @supply_name: Identifying the regulator supply
|
|
* @id: Numerical identifier for the regulator.
|
|
* @ops: Regulator operations table.
|
|
* @irq: Interrupt number for the regulator.
|
|
* @type: Indicates if the regulator is a voltage or current regulator.
|
|
* @owner: Module providing the regulator, used for refcounting.
|
|
*
|
|
* @continuous_voltage_range: Indicates if the regulator can set any
|
|
* voltage within constrains range.
|
|
* @n_voltages: Number of selectors available for ops.list_voltage().
|
|
*
|
|
* @min_uV: Voltage given by the lowest selector (if linear mapping)
|
|
* @uV_step: Voltage increase with each selector (if linear mapping)
|
|
* @linear_min_sel: Minimal selector for starting linear mapping
|
|
* @fixed_uV: Fixed voltage of rails.
|
|
* @ramp_delay: Time to settle down after voltage change (unit: uV/us)
|
|
* @volt_table: Voltage mapping table (if table based mapping)
|
|
*
|
|
* @vsel_reg: Register for selector when using regulator_regmap_X_voltage_
|
|
* @vsel_mask: Mask for register bitfield used for selector
|
|
* @apply_reg: Register for initiate voltage change on the output when
|
|
* using regulator_set_voltage_sel_regmap
|
|
* @apply_bit: Register bitfield used for initiate voltage change on the
|
|
* output when using regulator_set_voltage_sel_regmap
|
|
* @enable_reg: Register for control when using regmap enable/disable ops
|
|
* @enable_mask: Mask for control when using regmap enable/disable ops
|
|
* @enable_val: Enabling value for control when using regmap enable/disable ops
|
|
* @disable_val: Disabling value for control when using regmap enable/disable ops
|
|
* @enable_is_inverted: A flag to indicate set enable_mask bits to disable
|
|
* when using regulator_enable_regmap and friends APIs.
|
|
* @bypass_reg: Register for control when using regmap set_bypass
|
|
* @bypass_mask: Mask for control when using regmap set_bypass
|
|
* @bypass_val_on: Enabling value for control when using regmap set_bypass
|
|
* @bypass_val_off: Disabling value for control when using regmap set_bypass
|
|
*
|
|
* @enable_time: Time taken for initial enable of regulator (in uS).
|
|
*/
|
|
struct regulator_desc {
|
|
const char *name;
|
|
const char *supply_name;
|
|
int id;
|
|
bool continuous_voltage_range;
|
|
unsigned n_voltages;
|
|
struct regulator_ops *ops;
|
|
int irq;
|
|
enum regulator_type type;
|
|
struct module *owner;
|
|
|
|
unsigned int min_uV;
|
|
unsigned int uV_step;
|
|
unsigned int linear_min_sel;
|
|
int fixed_uV;
|
|
unsigned int ramp_delay;
|
|
|
|
const struct regulator_linear_range *linear_ranges;
|
|
int n_linear_ranges;
|
|
|
|
const unsigned int *volt_table;
|
|
|
|
unsigned int vsel_reg;
|
|
unsigned int vsel_mask;
|
|
unsigned int apply_reg;
|
|
unsigned int apply_bit;
|
|
unsigned int enable_reg;
|
|
unsigned int enable_mask;
|
|
unsigned int enable_val;
|
|
unsigned int disable_val;
|
|
bool enable_is_inverted;
|
|
unsigned int bypass_reg;
|
|
unsigned int bypass_mask;
|
|
unsigned int bypass_val_on;
|
|
unsigned int bypass_val_off;
|
|
|
|
unsigned int enable_time;
|
|
};
|
|
|
|
/**
|
|
* struct regulator_config - Dynamic regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_desc. This structure
|
|
* contains the runtime variable parts of the regulator description.
|
|
*
|
|
* @dev: struct device for the regulator
|
|
* @init_data: platform provided init data, passed through by driver
|
|
* @driver_data: private regulator data
|
|
* @of_node: OpenFirmware node to parse for device tree bindings (may be
|
|
* NULL).
|
|
* @regmap: regmap to use for core regmap helpers if dev_get_regulator() is
|
|
* insufficient.
|
|
* @ena_gpio: GPIO controlling regulator enable.
|
|
* @ena_gpio_invert: Sense for GPIO enable control.
|
|
* @ena_gpio_flags: Flags to use when calling gpio_request_one()
|
|
*/
|
|
struct regulator_config {
|
|
struct device *dev;
|
|
const struct regulator_init_data *init_data;
|
|
void *driver_data;
|
|
struct device_node *of_node;
|
|
struct regmap *regmap;
|
|
|
|
int ena_gpio;
|
|
unsigned int ena_gpio_invert:1;
|
|
unsigned int ena_gpio_flags;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_dev
|
|
*
|
|
* Voltage / Current regulator class device. One for each
|
|
* regulator.
|
|
*
|
|
* This should *not* be used directly by anything except the regulator
|
|
* core and notification injection (which should take the mutex and do
|
|
* no other direct access).
|
|
*/
|
|
struct regulator_dev {
|
|
const struct regulator_desc *desc;
|
|
int exclusive;
|
|
u32 use_count;
|
|
u32 open_count;
|
|
u32 bypass_count;
|
|
|
|
/* lists we belong to */
|
|
struct list_head list; /* list of all regulators */
|
|
|
|
/* lists we own */
|
|
struct list_head consumer_list; /* consumers we supply */
|
|
|
|
struct blocking_notifier_head notifier;
|
|
struct mutex mutex; /* consumer lock */
|
|
struct module *owner;
|
|
struct device dev;
|
|
struct regulation_constraints *constraints;
|
|
struct regulator *supply; /* for tree */
|
|
struct regmap *regmap;
|
|
|
|
struct delayed_work disable_work;
|
|
int deferred_disables;
|
|
|
|
void *reg_data; /* regulator_dev data */
|
|
|
|
struct dentry *debugfs;
|
|
|
|
struct regulator_enable_gpio *ena_pin;
|
|
unsigned int ena_gpio_state:1;
|
|
};
|
|
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
struct regulator_dev *
|
|
devm_regulator_register(struct device *dev,
|
|
const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
void regulator_unregister(struct regulator_dev *rdev);
|
|
void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev);
|
|
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev);
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev);
|
|
int rdev_get_id(struct regulator_dev *rdev);
|
|
|
|
int regulator_mode_to_status(unsigned int);
|
|
|
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel);
|
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev);
|
|
int regulator_enable_regmap(struct regulator_dev *rdev);
|
|
int regulator_disable_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable);
|
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable);
|
|
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data);
|
|
|
|
#endif
|