mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-18 18:23:53 +08:00
453431a549
As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
664 lines
18 KiB
C
664 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/nospec.h>
|
|
#include "cc_driver.h"
|
|
#include "cc_buffer_mgr.h"
|
|
#include "cc_request_mgr.h"
|
|
#include "cc_pm.h"
|
|
|
|
#define CC_MAX_POLL_ITER 10
|
|
/* The highest descriptor count in used */
|
|
#define CC_MAX_DESC_SEQ_LEN 23
|
|
|
|
struct cc_req_mgr_handle {
|
|
/* Request manager resources */
|
|
unsigned int hw_queue_size; /* HW capability */
|
|
unsigned int min_free_hw_slots;
|
|
unsigned int max_used_sw_slots;
|
|
struct cc_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE];
|
|
u32 req_queue_head;
|
|
u32 req_queue_tail;
|
|
u32 axi_completed;
|
|
u32 q_free_slots;
|
|
/* This lock protects access to HW register
|
|
* that must be single request at a time
|
|
*/
|
|
spinlock_t hw_lock;
|
|
struct cc_hw_desc compl_desc;
|
|
u8 *dummy_comp_buff;
|
|
dma_addr_t dummy_comp_buff_dma;
|
|
|
|
/* backlog queue */
|
|
struct list_head backlog;
|
|
unsigned int bl_len;
|
|
spinlock_t bl_lock; /* protect backlog queue */
|
|
|
|
#ifdef COMP_IN_WQ
|
|
struct workqueue_struct *workq;
|
|
struct delayed_work compwork;
|
|
#else
|
|
struct tasklet_struct comptask;
|
|
#endif
|
|
};
|
|
|
|
struct cc_bl_item {
|
|
struct cc_crypto_req creq;
|
|
struct cc_hw_desc desc[CC_MAX_DESC_SEQ_LEN];
|
|
unsigned int len;
|
|
struct list_head list;
|
|
bool notif;
|
|
};
|
|
|
|
static const u32 cc_cpp_int_masks[CC_CPP_NUM_ALGS][CC_CPP_NUM_SLOTS] = {
|
|
{ BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_0_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_1_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_2_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_3_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_4_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_5_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_6_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_AES_7_INT_BIT_SHIFT) },
|
|
{ BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_0_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_1_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_2_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_3_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_4_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_5_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_6_INT_BIT_SHIFT),
|
|
BIT(CC_HOST_IRR_REE_OP_ABORTED_SM_7_INT_BIT_SHIFT) }
|
|
};
|
|
|
|
static void comp_handler(unsigned long devarg);
|
|
#ifdef COMP_IN_WQ
|
|
static void comp_work_handler(struct work_struct *work);
|
|
#endif
|
|
|
|
static inline u32 cc_cpp_int_mask(enum cc_cpp_alg alg, int slot)
|
|
{
|
|
alg = array_index_nospec(alg, CC_CPP_NUM_ALGS);
|
|
slot = array_index_nospec(slot, CC_CPP_NUM_SLOTS);
|
|
|
|
return cc_cpp_int_masks[alg][slot];
|
|
}
|
|
|
|
void cc_req_mgr_fini(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
if (!req_mgr_h)
|
|
return; /* Not allocated */
|
|
|
|
if (req_mgr_h->dummy_comp_buff_dma) {
|
|
dma_free_coherent(dev, sizeof(u32), req_mgr_h->dummy_comp_buff,
|
|
req_mgr_h->dummy_comp_buff_dma);
|
|
}
|
|
|
|
dev_dbg(dev, "max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size -
|
|
req_mgr_h->min_free_hw_slots));
|
|
dev_dbg(dev, "max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots);
|
|
|
|
#ifdef COMP_IN_WQ
|
|
flush_workqueue(req_mgr_h->workq);
|
|
destroy_workqueue(req_mgr_h->workq);
|
|
#else
|
|
/* Kill tasklet */
|
|
tasklet_kill(&req_mgr_h->comptask);
|
|
#endif
|
|
kfree_sensitive(req_mgr_h);
|
|
drvdata->request_mgr_handle = NULL;
|
|
}
|
|
|
|
int cc_req_mgr_init(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_req_mgr_handle *req_mgr_h;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
int rc = 0;
|
|
|
|
req_mgr_h = kzalloc(sizeof(*req_mgr_h), GFP_KERNEL);
|
|
if (!req_mgr_h) {
|
|
rc = -ENOMEM;
|
|
goto req_mgr_init_err;
|
|
}
|
|
|
|
drvdata->request_mgr_handle = req_mgr_h;
|
|
|
|
spin_lock_init(&req_mgr_h->hw_lock);
|
|
spin_lock_init(&req_mgr_h->bl_lock);
|
|
INIT_LIST_HEAD(&req_mgr_h->backlog);
|
|
|
|
#ifdef COMP_IN_WQ
|
|
dev_dbg(dev, "Initializing completion workqueue\n");
|
|
req_mgr_h->workq = create_singlethread_workqueue("ccree");
|
|
if (!req_mgr_h->workq) {
|
|
dev_err(dev, "Failed creating work queue\n");
|
|
rc = -ENOMEM;
|
|
goto req_mgr_init_err;
|
|
}
|
|
INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler);
|
|
#else
|
|
dev_dbg(dev, "Initializing completion tasklet\n");
|
|
tasklet_init(&req_mgr_h->comptask, comp_handler,
|
|
(unsigned long)drvdata);
|
|
#endif
|
|
req_mgr_h->hw_queue_size = cc_ioread(drvdata,
|
|
CC_REG(DSCRPTR_QUEUE_SRAM_SIZE));
|
|
dev_dbg(dev, "hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size);
|
|
if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) {
|
|
dev_err(dev, "Invalid HW queue size = %u (Min. required is %u)\n",
|
|
req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE);
|
|
rc = -ENOMEM;
|
|
goto req_mgr_init_err;
|
|
}
|
|
req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size;
|
|
req_mgr_h->max_used_sw_slots = 0;
|
|
|
|
/* Allocate DMA word for "dummy" completion descriptor use */
|
|
req_mgr_h->dummy_comp_buff =
|
|
dma_alloc_coherent(dev, sizeof(u32),
|
|
&req_mgr_h->dummy_comp_buff_dma,
|
|
GFP_KERNEL);
|
|
if (!req_mgr_h->dummy_comp_buff) {
|
|
dev_err(dev, "Not enough memory to allocate DMA (%zu) dropped buffer\n",
|
|
sizeof(u32));
|
|
rc = -ENOMEM;
|
|
goto req_mgr_init_err;
|
|
}
|
|
|
|
/* Init. "dummy" completion descriptor */
|
|
hw_desc_init(&req_mgr_h->compl_desc);
|
|
set_din_const(&req_mgr_h->compl_desc, 0, sizeof(u32));
|
|
set_dout_dlli(&req_mgr_h->compl_desc, req_mgr_h->dummy_comp_buff_dma,
|
|
sizeof(u32), NS_BIT, 1);
|
|
set_flow_mode(&req_mgr_h->compl_desc, BYPASS);
|
|
set_queue_last_ind(drvdata, &req_mgr_h->compl_desc);
|
|
|
|
return 0;
|
|
|
|
req_mgr_init_err:
|
|
cc_req_mgr_fini(drvdata);
|
|
return rc;
|
|
}
|
|
|
|
static void enqueue_seq(struct cc_drvdata *drvdata, struct cc_hw_desc seq[],
|
|
unsigned int seq_len)
|
|
{
|
|
int i, w;
|
|
void __iomem *reg = drvdata->cc_base + CC_REG(DSCRPTR_QUEUE_WORD0);
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
/*
|
|
* We do indeed write all 6 command words to the same
|
|
* register. The HW supports this.
|
|
*/
|
|
|
|
for (i = 0; i < seq_len; i++) {
|
|
for (w = 0; w <= 5; w++)
|
|
writel_relaxed(seq[i].word[w], reg);
|
|
|
|
if (cc_dump_desc)
|
|
dev_dbg(dev, "desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
|
|
i, seq[i].word[0], seq[i].word[1],
|
|
seq[i].word[2], seq[i].word[3],
|
|
seq[i].word[4], seq[i].word[5]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* request_mgr_complete() - Completion will take place if and only if user
|
|
* requested completion by cc_send_sync_request().
|
|
*
|
|
* @dev: Device pointer
|
|
* @dx_compl_h: The completion event to signal
|
|
* @dummy: unused error code
|
|
*/
|
|
static void request_mgr_complete(struct device *dev, void *dx_compl_h,
|
|
int dummy)
|
|
{
|
|
struct completion *this_compl = dx_compl_h;
|
|
|
|
complete(this_compl);
|
|
}
|
|
|
|
static int cc_queues_status(struct cc_drvdata *drvdata,
|
|
struct cc_req_mgr_handle *req_mgr_h,
|
|
unsigned int total_seq_len)
|
|
{
|
|
unsigned long poll_queue;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
/* SW queue is checked only once as it will not
|
|
* be changed during the poll because the spinlock_bh
|
|
* is held by the thread
|
|
*/
|
|
if (((req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1)) ==
|
|
req_mgr_h->req_queue_tail) {
|
|
dev_err(dev, "SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n",
|
|
req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (req_mgr_h->q_free_slots >= total_seq_len)
|
|
return 0;
|
|
|
|
/* Wait for space in HW queue. Poll constant num of iterations. */
|
|
for (poll_queue = 0; poll_queue < CC_MAX_POLL_ITER ; poll_queue++) {
|
|
req_mgr_h->q_free_slots =
|
|
cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT));
|
|
if (req_mgr_h->q_free_slots < req_mgr_h->min_free_hw_slots)
|
|
req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots;
|
|
|
|
if (req_mgr_h->q_free_slots >= total_seq_len) {
|
|
/* If there is enough place return */
|
|
return 0;
|
|
}
|
|
|
|
dev_dbg(dev, "HW FIFO is full. q_free_slots=%d total_seq_len=%d\n",
|
|
req_mgr_h->q_free_slots, total_seq_len);
|
|
}
|
|
/* No room in the HW queue try again later */
|
|
dev_dbg(dev, "HW FIFO full, timeout. req_queue_head=%d sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n",
|
|
req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE,
|
|
req_mgr_h->q_free_slots, total_seq_len);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/**
|
|
* cc_do_send_request() - Enqueue caller request to crypto hardware.
|
|
* Need to be called with HW lock held and PM running
|
|
*
|
|
* @drvdata: Associated device driver context
|
|
* @cc_req: The request to enqueue
|
|
* @desc: The crypto sequence
|
|
* @len: The crypto sequence length
|
|
* @add_comp: If "true": add an artificial dout DMA to mark completion
|
|
*
|
|
*/
|
|
static void cc_do_send_request(struct cc_drvdata *drvdata,
|
|
struct cc_crypto_req *cc_req,
|
|
struct cc_hw_desc *desc, unsigned int len,
|
|
bool add_comp)
|
|
{
|
|
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
|
|
unsigned int used_sw_slots;
|
|
unsigned int total_seq_len = len; /*initial sequence length*/
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
used_sw_slots = ((req_mgr_h->req_queue_head -
|
|
req_mgr_h->req_queue_tail) &
|
|
(MAX_REQUEST_QUEUE_SIZE - 1));
|
|
if (used_sw_slots > req_mgr_h->max_used_sw_slots)
|
|
req_mgr_h->max_used_sw_slots = used_sw_slots;
|
|
|
|
/* Enqueue request - must be locked with HW lock*/
|
|
req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *cc_req;
|
|
req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) &
|
|
(MAX_REQUEST_QUEUE_SIZE - 1);
|
|
|
|
dev_dbg(dev, "Enqueue request head=%u\n", req_mgr_h->req_queue_head);
|
|
|
|
/*
|
|
* We are about to push command to the HW via the command registers
|
|
* that may reference host memory. We need to issue a memory barrier
|
|
* to make sure there are no outstanding memory writes
|
|
*/
|
|
wmb();
|
|
|
|
/* STAT_PHASE_4: Push sequence */
|
|
|
|
enqueue_seq(drvdata, desc, len);
|
|
|
|
if (add_comp) {
|
|
enqueue_seq(drvdata, &req_mgr_h->compl_desc, 1);
|
|
total_seq_len++;
|
|
}
|
|
|
|
if (req_mgr_h->q_free_slots < total_seq_len) {
|
|
/* This situation should never occur. Maybe indicating problem
|
|
* with resuming power. Set the free slot count to 0 and hope
|
|
* for the best.
|
|
*/
|
|
dev_err(dev, "HW free slot count mismatch.");
|
|
req_mgr_h->q_free_slots = 0;
|
|
} else {
|
|
/* Update the free slots in HW queue */
|
|
req_mgr_h->q_free_slots -= total_seq_len;
|
|
}
|
|
}
|
|
|
|
static void cc_enqueue_backlog(struct cc_drvdata *drvdata,
|
|
struct cc_bl_item *bli)
|
|
{
|
|
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
|
|
spin_lock_bh(&mgr->bl_lock);
|
|
list_add_tail(&bli->list, &mgr->backlog);
|
|
++mgr->bl_len;
|
|
dev_dbg(dev, "+++bl len: %d\n", mgr->bl_len);
|
|
spin_unlock_bh(&mgr->bl_lock);
|
|
tasklet_schedule(&mgr->comptask);
|
|
}
|
|
|
|
static void cc_proc_backlog(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
|
|
struct cc_bl_item *bli;
|
|
struct cc_crypto_req *creq;
|
|
void *req;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
int rc;
|
|
|
|
spin_lock(&mgr->bl_lock);
|
|
|
|
while (mgr->bl_len) {
|
|
bli = list_first_entry(&mgr->backlog, struct cc_bl_item, list);
|
|
dev_dbg(dev, "---bl len: %d\n", mgr->bl_len);
|
|
|
|
spin_unlock(&mgr->bl_lock);
|
|
|
|
|
|
creq = &bli->creq;
|
|
req = creq->user_arg;
|
|
|
|
/*
|
|
* Notify the request we're moving out of the backlog
|
|
* but only if we haven't done so already.
|
|
*/
|
|
if (!bli->notif) {
|
|
creq->user_cb(dev, req, -EINPROGRESS);
|
|
bli->notif = true;
|
|
}
|
|
|
|
spin_lock(&mgr->hw_lock);
|
|
|
|
rc = cc_queues_status(drvdata, mgr, bli->len);
|
|
if (rc) {
|
|
/*
|
|
* There is still no room in the FIFO for
|
|
* this request. Bail out. We'll return here
|
|
* on the next completion irq.
|
|
*/
|
|
spin_unlock(&mgr->hw_lock);
|
|
return;
|
|
}
|
|
|
|
cc_do_send_request(drvdata, &bli->creq, bli->desc, bli->len,
|
|
false);
|
|
spin_unlock(&mgr->hw_lock);
|
|
|
|
/* Remove ourselves from the backlog list */
|
|
spin_lock(&mgr->bl_lock);
|
|
list_del(&bli->list);
|
|
--mgr->bl_len;
|
|
kfree(bli);
|
|
}
|
|
|
|
spin_unlock(&mgr->bl_lock);
|
|
}
|
|
|
|
int cc_send_request(struct cc_drvdata *drvdata, struct cc_crypto_req *cc_req,
|
|
struct cc_hw_desc *desc, unsigned int len,
|
|
struct crypto_async_request *req)
|
|
{
|
|
int rc;
|
|
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
bool backlog_ok = req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG;
|
|
gfp_t flags = cc_gfp_flags(req);
|
|
struct cc_bl_item *bli;
|
|
|
|
rc = cc_pm_get(dev);
|
|
if (rc) {
|
|
dev_err(dev, "cc_pm_get returned %x\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
spin_lock_bh(&mgr->hw_lock);
|
|
rc = cc_queues_status(drvdata, mgr, len);
|
|
|
|
#ifdef CC_DEBUG_FORCE_BACKLOG
|
|
if (backlog_ok)
|
|
rc = -ENOSPC;
|
|
#endif /* CC_DEBUG_FORCE_BACKLOG */
|
|
|
|
if (rc == -ENOSPC && backlog_ok) {
|
|
spin_unlock_bh(&mgr->hw_lock);
|
|
|
|
bli = kmalloc(sizeof(*bli), flags);
|
|
if (!bli) {
|
|
cc_pm_put_suspend(dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(&bli->creq, cc_req, sizeof(*cc_req));
|
|
memcpy(&bli->desc, desc, len * sizeof(*desc));
|
|
bli->len = len;
|
|
bli->notif = false;
|
|
cc_enqueue_backlog(drvdata, bli);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!rc) {
|
|
cc_do_send_request(drvdata, cc_req, desc, len, false);
|
|
rc = -EINPROGRESS;
|
|
}
|
|
|
|
spin_unlock_bh(&mgr->hw_lock);
|
|
return rc;
|
|
}
|
|
|
|
int cc_send_sync_request(struct cc_drvdata *drvdata,
|
|
struct cc_crypto_req *cc_req, struct cc_hw_desc *desc,
|
|
unsigned int len)
|
|
{
|
|
int rc;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
struct cc_req_mgr_handle *mgr = drvdata->request_mgr_handle;
|
|
|
|
init_completion(&cc_req->seq_compl);
|
|
cc_req->user_cb = request_mgr_complete;
|
|
cc_req->user_arg = &cc_req->seq_compl;
|
|
|
|
rc = cc_pm_get(dev);
|
|
if (rc) {
|
|
dev_err(dev, "cc_pm_get returned %x\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
while (true) {
|
|
spin_lock_bh(&mgr->hw_lock);
|
|
rc = cc_queues_status(drvdata, mgr, len + 1);
|
|
|
|
if (!rc)
|
|
break;
|
|
|
|
spin_unlock_bh(&mgr->hw_lock);
|
|
wait_for_completion_interruptible(&drvdata->hw_queue_avail);
|
|
reinit_completion(&drvdata->hw_queue_avail);
|
|
}
|
|
|
|
cc_do_send_request(drvdata, cc_req, desc, len, true);
|
|
spin_unlock_bh(&mgr->hw_lock);
|
|
wait_for_completion(&cc_req->seq_compl);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* send_request_init() - Enqueue caller request to crypto hardware during init
|
|
* process.
|
|
* Assume this function is not called in the middle of a flow,
|
|
* since we set QUEUE_LAST_IND flag in the last descriptor.
|
|
*
|
|
* @drvdata: Associated device driver context
|
|
* @desc: The crypto sequence
|
|
* @len: The crypto sequence length
|
|
*
|
|
* Return:
|
|
* Returns "0" upon success
|
|
*/
|
|
int send_request_init(struct cc_drvdata *drvdata, struct cc_hw_desc *desc,
|
|
unsigned int len)
|
|
{
|
|
struct cc_req_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
|
|
unsigned int total_seq_len = len; /*initial sequence length*/
|
|
int rc = 0;
|
|
|
|
/* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT.
|
|
*/
|
|
rc = cc_queues_status(drvdata, req_mgr_h, total_seq_len);
|
|
if (rc)
|
|
return rc;
|
|
|
|
set_queue_last_ind(drvdata, &desc[(len - 1)]);
|
|
|
|
/*
|
|
* We are about to push command to the HW via the command registers
|
|
* that may reference host memory. We need to issue a memory barrier
|
|
* to make sure there are no outstanding memory writes
|
|
*/
|
|
wmb();
|
|
enqueue_seq(drvdata, desc, len);
|
|
|
|
/* Update the free slots in HW queue */
|
|
req_mgr_h->q_free_slots =
|
|
cc_ioread(drvdata, CC_REG(DSCRPTR_QUEUE_CONTENT));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void complete_request(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_req_mgr_handle *request_mgr_handle =
|
|
drvdata->request_mgr_handle;
|
|
|
|
complete(&drvdata->hw_queue_avail);
|
|
#ifdef COMP_IN_WQ
|
|
queue_delayed_work(request_mgr_handle->workq,
|
|
&request_mgr_handle->compwork, 0);
|
|
#else
|
|
tasklet_schedule(&request_mgr_handle->comptask);
|
|
#endif
|
|
}
|
|
|
|
#ifdef COMP_IN_WQ
|
|
static void comp_work_handler(struct work_struct *work)
|
|
{
|
|
struct cc_drvdata *drvdata =
|
|
container_of(work, struct cc_drvdata, compwork.work);
|
|
|
|
comp_handler((unsigned long)drvdata);
|
|
}
|
|
#endif
|
|
|
|
static void proc_completions(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_crypto_req *cc_req;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
struct cc_req_mgr_handle *request_mgr_handle =
|
|
drvdata->request_mgr_handle;
|
|
unsigned int *tail = &request_mgr_handle->req_queue_tail;
|
|
unsigned int *head = &request_mgr_handle->req_queue_head;
|
|
int rc;
|
|
u32 mask;
|
|
|
|
while (request_mgr_handle->axi_completed) {
|
|
request_mgr_handle->axi_completed--;
|
|
|
|
/* Dequeue request */
|
|
if (*head == *tail) {
|
|
/* We are supposed to handle a completion but our
|
|
* queue is empty. This is not normal. Return and
|
|
* hope for the best.
|
|
*/
|
|
dev_err(dev, "Request queue is empty head == tail %u\n",
|
|
*head);
|
|
break;
|
|
}
|
|
|
|
cc_req = &request_mgr_handle->req_queue[*tail];
|
|
|
|
if (cc_req->cpp.is_cpp) {
|
|
|
|
dev_dbg(dev, "CPP request completion slot: %d alg:%d\n",
|
|
cc_req->cpp.slot, cc_req->cpp.alg);
|
|
mask = cc_cpp_int_mask(cc_req->cpp.alg,
|
|
cc_req->cpp.slot);
|
|
rc = (drvdata->irq & mask ? -EPERM : 0);
|
|
dev_dbg(dev, "Got mask: %x irq: %x rc: %d\n", mask,
|
|
drvdata->irq, rc);
|
|
} else {
|
|
dev_dbg(dev, "None CPP request completion\n");
|
|
rc = 0;
|
|
}
|
|
|
|
if (cc_req->user_cb)
|
|
cc_req->user_cb(dev, cc_req->user_arg, rc);
|
|
*tail = (*tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
|
|
dev_dbg(dev, "Dequeue request tail=%u\n", *tail);
|
|
dev_dbg(dev, "Request completed. axi_completed=%d\n",
|
|
request_mgr_handle->axi_completed);
|
|
cc_pm_put_suspend(dev);
|
|
}
|
|
}
|
|
|
|
static inline u32 cc_axi_comp_count(struct cc_drvdata *drvdata)
|
|
{
|
|
return FIELD_GET(AXIM_MON_COMP_VALUE,
|
|
cc_ioread(drvdata, drvdata->axim_mon_offset));
|
|
}
|
|
|
|
/* Deferred service handler, run as interrupt-fired tasklet */
|
|
static void comp_handler(unsigned long devarg)
|
|
{
|
|
struct cc_drvdata *drvdata = (struct cc_drvdata *)devarg;
|
|
struct cc_req_mgr_handle *request_mgr_handle =
|
|
drvdata->request_mgr_handle;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
u32 irq;
|
|
|
|
dev_dbg(dev, "Completion handler called!\n");
|
|
irq = (drvdata->irq & drvdata->comp_mask);
|
|
|
|
/* To avoid the interrupt from firing as we unmask it,
|
|
* we clear it now
|
|
*/
|
|
cc_iowrite(drvdata, CC_REG(HOST_ICR), irq);
|
|
|
|
/* Avoid race with above clear: Test completion counter once more */
|
|
|
|
request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata);
|
|
|
|
dev_dbg(dev, "AXI completion after updated: %d\n",
|
|
request_mgr_handle->axi_completed);
|
|
|
|
while (request_mgr_handle->axi_completed) {
|
|
do {
|
|
drvdata->irq |= cc_ioread(drvdata, CC_REG(HOST_IRR));
|
|
irq = (drvdata->irq & drvdata->comp_mask);
|
|
proc_completions(drvdata);
|
|
|
|
/* At this point (after proc_completions()),
|
|
* request_mgr_handle->axi_completed is 0.
|
|
*/
|
|
request_mgr_handle->axi_completed +=
|
|
cc_axi_comp_count(drvdata);
|
|
} while (request_mgr_handle->axi_completed > 0);
|
|
|
|
cc_iowrite(drvdata, CC_REG(HOST_ICR), irq);
|
|
|
|
request_mgr_handle->axi_completed += cc_axi_comp_count(drvdata);
|
|
}
|
|
|
|
/* after verifying that there is nothing to do,
|
|
* unmask AXI completion interrupt
|
|
*/
|
|
cc_iowrite(drvdata, CC_REG(HOST_IMR),
|
|
cc_ioread(drvdata, CC_REG(HOST_IMR)) & ~drvdata->comp_mask);
|
|
|
|
cc_proc_backlog(drvdata);
|
|
dev_dbg(dev, "Comp. handler done.\n");
|
|
}
|