mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-06 04:33:58 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
693 lines
18 KiB
C
693 lines
18 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_IA64_PROCESSOR_H
|
|
#define _ASM_IA64_PROCESSOR_H
|
|
|
|
/*
|
|
* Copyright (C) 1998-2004 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
|
|
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
|
|
*
|
|
* 11/24/98 S.Eranian added ia64_set_iva()
|
|
* 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
|
|
* 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
|
|
*/
|
|
|
|
|
|
#include <asm/intrinsics.h>
|
|
#include <asm/kregs.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/ustack.h>
|
|
|
|
#define IA64_NUM_PHYS_STACK_REG 96
|
|
#define IA64_NUM_DBG_REGS 8
|
|
|
|
#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
|
|
#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
|
|
|
|
/*
|
|
* TASK_SIZE really is a mis-named. It really is the maximum user
|
|
* space address (plus one). On IA-64, there are five regions of 2TB
|
|
* each (assuming 8KB page size), for a total of 8TB of user virtual
|
|
* address space.
|
|
*/
|
|
#define TASK_SIZE DEFAULT_TASK_SIZE
|
|
|
|
/*
|
|
* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define TASK_UNMAPPED_BASE (current->thread.map_base)
|
|
|
|
#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
|
|
#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
|
|
#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
|
|
#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
|
|
#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
|
|
#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
|
|
sync at ctx sw */
|
|
#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
|
|
#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
|
|
|
|
#define IA64_THREAD_UAC_SHIFT 3
|
|
#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
|
|
#define IA64_THREAD_FPEMU_SHIFT 6
|
|
#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
|
|
|
|
|
|
/*
|
|
* This shift should be large enough to be able to represent 1000000000/itc_freq with good
|
|
* accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
|
|
* (this will give enough slack to represent 10 seconds worth of time as a scaled number).
|
|
*/
|
|
#define IA64_NSEC_PER_CYC_SHIFT 30
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/fpu.h>
|
|
#include <asm/page.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/rse.h>
|
|
#include <asm/unwind.h>
|
|
#include <linux/atomic.h>
|
|
#ifdef CONFIG_NUMA
|
|
#include <asm/nodedata.h>
|
|
#endif
|
|
|
|
/* like above but expressed as bitfields for more efficient access: */
|
|
struct ia64_psr {
|
|
__u64 reserved0 : 1;
|
|
__u64 be : 1;
|
|
__u64 up : 1;
|
|
__u64 ac : 1;
|
|
__u64 mfl : 1;
|
|
__u64 mfh : 1;
|
|
__u64 reserved1 : 7;
|
|
__u64 ic : 1;
|
|
__u64 i : 1;
|
|
__u64 pk : 1;
|
|
__u64 reserved2 : 1;
|
|
__u64 dt : 1;
|
|
__u64 dfl : 1;
|
|
__u64 dfh : 1;
|
|
__u64 sp : 1;
|
|
__u64 pp : 1;
|
|
__u64 di : 1;
|
|
__u64 si : 1;
|
|
__u64 db : 1;
|
|
__u64 lp : 1;
|
|
__u64 tb : 1;
|
|
__u64 rt : 1;
|
|
__u64 reserved3 : 4;
|
|
__u64 cpl : 2;
|
|
__u64 is : 1;
|
|
__u64 mc : 1;
|
|
__u64 it : 1;
|
|
__u64 id : 1;
|
|
__u64 da : 1;
|
|
__u64 dd : 1;
|
|
__u64 ss : 1;
|
|
__u64 ri : 2;
|
|
__u64 ed : 1;
|
|
__u64 bn : 1;
|
|
__u64 reserved4 : 19;
|
|
};
|
|
|
|
union ia64_isr {
|
|
__u64 val;
|
|
struct {
|
|
__u64 code : 16;
|
|
__u64 vector : 8;
|
|
__u64 reserved1 : 8;
|
|
__u64 x : 1;
|
|
__u64 w : 1;
|
|
__u64 r : 1;
|
|
__u64 na : 1;
|
|
__u64 sp : 1;
|
|
__u64 rs : 1;
|
|
__u64 ir : 1;
|
|
__u64 ni : 1;
|
|
__u64 so : 1;
|
|
__u64 ei : 2;
|
|
__u64 ed : 1;
|
|
__u64 reserved2 : 20;
|
|
};
|
|
};
|
|
|
|
union ia64_lid {
|
|
__u64 val;
|
|
struct {
|
|
__u64 rv : 16;
|
|
__u64 eid : 8;
|
|
__u64 id : 8;
|
|
__u64 ig : 32;
|
|
};
|
|
};
|
|
|
|
union ia64_tpr {
|
|
__u64 val;
|
|
struct {
|
|
__u64 ig0 : 4;
|
|
__u64 mic : 4;
|
|
__u64 rsv : 8;
|
|
__u64 mmi : 1;
|
|
__u64 ig1 : 47;
|
|
};
|
|
};
|
|
|
|
union ia64_itir {
|
|
__u64 val;
|
|
struct {
|
|
__u64 rv3 : 2; /* 0-1 */
|
|
__u64 ps : 6; /* 2-7 */
|
|
__u64 key : 24; /* 8-31 */
|
|
__u64 rv4 : 32; /* 32-63 */
|
|
};
|
|
};
|
|
|
|
union ia64_rr {
|
|
__u64 val;
|
|
struct {
|
|
__u64 ve : 1; /* enable hw walker */
|
|
__u64 reserved0: 1; /* reserved */
|
|
__u64 ps : 6; /* log page size */
|
|
__u64 rid : 24; /* region id */
|
|
__u64 reserved1: 32; /* reserved */
|
|
};
|
|
};
|
|
|
|
/*
|
|
* CPU type, hardware bug flags, and per-CPU state. Frequently used
|
|
* state comes earlier:
|
|
*/
|
|
struct cpuinfo_ia64 {
|
|
unsigned int softirq_pending;
|
|
unsigned long itm_delta; /* # of clock cycles between clock ticks */
|
|
unsigned long itm_next; /* interval timer mask value to use for next clock tick */
|
|
unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
|
|
unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
|
|
unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
|
|
unsigned long itc_freq; /* frequency of ITC counter */
|
|
unsigned long proc_freq; /* frequency of processor */
|
|
unsigned long cyc_per_usec; /* itc_freq/1000000 */
|
|
unsigned long ptce_base;
|
|
unsigned int ptce_count[2];
|
|
unsigned int ptce_stride[2];
|
|
struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long loops_per_jiffy;
|
|
int cpu;
|
|
unsigned int socket_id; /* physical processor socket id */
|
|
unsigned short core_id; /* core id */
|
|
unsigned short thread_id; /* thread id */
|
|
unsigned short num_log; /* Total number of logical processors on
|
|
* this socket that were successfully booted */
|
|
unsigned char cores_per_socket; /* Cores per processor socket */
|
|
unsigned char threads_per_core; /* Threads per core */
|
|
#endif
|
|
|
|
/* CPUID-derived information: */
|
|
unsigned long ppn;
|
|
unsigned long features;
|
|
unsigned char number;
|
|
unsigned char revision;
|
|
unsigned char model;
|
|
unsigned char family;
|
|
unsigned char archrev;
|
|
char vendor[16];
|
|
char *model_name;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
struct ia64_node_data *node_data;
|
|
#endif
|
|
};
|
|
|
|
DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
|
|
|
|
/*
|
|
* The "local" data variable. It refers to the per-CPU data of the currently executing
|
|
* CPU, much like "current" points to the per-task data of the currently executing task.
|
|
* Do not use the address of local_cpu_data, since it will be different from
|
|
* cpu_data(smp_processor_id())!
|
|
*/
|
|
#define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
|
|
#define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
|
|
|
|
extern void print_cpu_info (struct cpuinfo_ia64 *);
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
#define SET_UNALIGN_CTL(task,value) \
|
|
({ \
|
|
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
|
|
| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
|
|
0; \
|
|
})
|
|
#define GET_UNALIGN_CTL(task,addr) \
|
|
({ \
|
|
put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
|
|
(int __user *) (addr)); \
|
|
})
|
|
|
|
#define SET_FPEMU_CTL(task,value) \
|
|
({ \
|
|
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
|
|
| (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
|
|
0; \
|
|
})
|
|
#define GET_FPEMU_CTL(task,addr) \
|
|
({ \
|
|
put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
|
|
(int __user *) (addr)); \
|
|
})
|
|
|
|
struct thread_struct {
|
|
__u32 flags; /* various thread flags (see IA64_THREAD_*) */
|
|
/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
|
|
__u8 on_ustack; /* executing on user-stacks? */
|
|
__u8 pad[3];
|
|
__u64 ksp; /* kernel stack pointer */
|
|
__u64 map_base; /* base address for get_unmapped_area() */
|
|
__u64 rbs_bot; /* the base address for the RBS */
|
|
int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
void *pfm_context; /* pointer to detailed PMU context */
|
|
unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
|
|
# define INIT_THREAD_PM .pfm_context = NULL, \
|
|
.pfm_needs_checking = 0UL,
|
|
#else
|
|
# define INIT_THREAD_PM
|
|
#endif
|
|
unsigned long dbr[IA64_NUM_DBG_REGS];
|
|
unsigned long ibr[IA64_NUM_DBG_REGS];
|
|
struct ia64_fpreg fph[96]; /* saved/loaded on demand */
|
|
};
|
|
|
|
#define INIT_THREAD { \
|
|
.flags = 0, \
|
|
.on_ustack = 0, \
|
|
.ksp = 0, \
|
|
.map_base = DEFAULT_MAP_BASE, \
|
|
.rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
|
|
.last_fph_cpu = -1, \
|
|
INIT_THREAD_PM \
|
|
.dbr = {0, }, \
|
|
.ibr = {0, }, \
|
|
.fph = {{{{0}}}, } \
|
|
}
|
|
|
|
#define start_thread(regs,new_ip,new_sp) do { \
|
|
regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
|
|
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
|
|
regs->cr_iip = new_ip; \
|
|
regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
|
|
regs->ar_rnat = 0; \
|
|
regs->ar_bspstore = current->thread.rbs_bot; \
|
|
regs->ar_fpsr = FPSR_DEFAULT; \
|
|
regs->loadrs = 0; \
|
|
regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
|
|
regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
|
|
if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \
|
|
/* \
|
|
* Zap scratch regs to avoid leaking bits between processes with different \
|
|
* uid/privileges. \
|
|
*/ \
|
|
regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
|
|
regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Forward declarations, a strange C thing... */
|
|
struct mm_struct;
|
|
struct task_struct;
|
|
|
|
/*
|
|
* Free all resources held by a thread. This is called after the
|
|
* parent of DEAD_TASK has collected the exit status of the task via
|
|
* wait().
|
|
*/
|
|
#define release_thread(dead_task)
|
|
|
|
/* Get wait channel for task P. */
|
|
extern unsigned long get_wchan (struct task_struct *p);
|
|
|
|
/* Return instruction pointer of blocked task TSK. */
|
|
#define KSTK_EIP(tsk) \
|
|
({ \
|
|
struct pt_regs *_regs = task_pt_regs(tsk); \
|
|
_regs->cr_iip + ia64_psr(_regs)->ri; \
|
|
})
|
|
|
|
/* Return stack pointer of blocked task TSK. */
|
|
#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
|
|
|
|
extern void ia64_getreg_unknown_kr (void);
|
|
extern void ia64_setreg_unknown_kr (void);
|
|
|
|
#define ia64_get_kr(regnum) \
|
|
({ \
|
|
unsigned long r = 0; \
|
|
\
|
|
switch (regnum) { \
|
|
case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
|
|
case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
|
|
case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
|
|
case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
|
|
case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
|
|
case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
|
|
case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
|
|
case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
|
|
default: ia64_getreg_unknown_kr(); break; \
|
|
} \
|
|
r; \
|
|
})
|
|
|
|
#define ia64_set_kr(regnum, r) \
|
|
({ \
|
|
switch (regnum) { \
|
|
case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
|
|
case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
|
|
case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
|
|
case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
|
|
case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
|
|
case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
|
|
case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
|
|
case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
|
|
default: ia64_setreg_unknown_kr(); break; \
|
|
} \
|
|
})
|
|
|
|
/*
|
|
* The following three macros can't be inline functions because we don't have struct
|
|
* task_struct at this point.
|
|
*/
|
|
|
|
/*
|
|
* Return TRUE if task T owns the fph partition of the CPU we're running on.
|
|
* Must be called from code that has preemption disabled.
|
|
*/
|
|
#define ia64_is_local_fpu_owner(t) \
|
|
({ \
|
|
struct task_struct *__ia64_islfo_task = (t); \
|
|
(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
|
|
&& __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
|
|
})
|
|
|
|
/*
|
|
* Mark task T as owning the fph partition of the CPU we're running on.
|
|
* Must be called from code that has preemption disabled.
|
|
*/
|
|
#define ia64_set_local_fpu_owner(t) do { \
|
|
struct task_struct *__ia64_slfo_task = (t); \
|
|
__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
|
|
ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
|
|
} while (0)
|
|
|
|
/* Mark the fph partition of task T as being invalid on all CPUs. */
|
|
#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
|
|
|
|
extern void __ia64_init_fpu (void);
|
|
extern void __ia64_save_fpu (struct ia64_fpreg *fph);
|
|
extern void __ia64_load_fpu (struct ia64_fpreg *fph);
|
|
extern void ia64_save_debug_regs (unsigned long *save_area);
|
|
extern void ia64_load_debug_regs (unsigned long *save_area);
|
|
|
|
#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
|
|
#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
|
|
|
|
/* load fp 0.0 into fph */
|
|
static inline void
|
|
ia64_init_fpu (void) {
|
|
ia64_fph_enable();
|
|
__ia64_init_fpu();
|
|
ia64_fph_disable();
|
|
}
|
|
|
|
/* save f32-f127 at FPH */
|
|
static inline void
|
|
ia64_save_fpu (struct ia64_fpreg *fph) {
|
|
ia64_fph_enable();
|
|
__ia64_save_fpu(fph);
|
|
ia64_fph_disable();
|
|
}
|
|
|
|
/* load f32-f127 from FPH */
|
|
static inline void
|
|
ia64_load_fpu (struct ia64_fpreg *fph) {
|
|
ia64_fph_enable();
|
|
__ia64_load_fpu(fph);
|
|
ia64_fph_disable();
|
|
}
|
|
|
|
static inline __u64
|
|
ia64_clear_ic (void)
|
|
{
|
|
__u64 psr;
|
|
psr = ia64_getreg(_IA64_REG_PSR);
|
|
ia64_stop();
|
|
ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
|
|
ia64_srlz_i();
|
|
return psr;
|
|
}
|
|
|
|
/*
|
|
* Restore the psr.
|
|
*/
|
|
static inline void
|
|
ia64_set_psr (__u64 psr)
|
|
{
|
|
ia64_stop();
|
|
ia64_setreg(_IA64_REG_PSR_L, psr);
|
|
ia64_srlz_i();
|
|
}
|
|
|
|
/*
|
|
* Insert a translation into an instruction and/or data translation
|
|
* register.
|
|
*/
|
|
static inline void
|
|
ia64_itr (__u64 target_mask, __u64 tr_num,
|
|
__u64 vmaddr, __u64 pte,
|
|
__u64 log_page_size)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
|
|
ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
|
|
ia64_stop();
|
|
if (target_mask & 0x1)
|
|
ia64_itri(tr_num, pte);
|
|
if (target_mask & 0x2)
|
|
ia64_itrd(tr_num, pte);
|
|
}
|
|
|
|
/*
|
|
* Insert a translation into the instruction and/or data translation
|
|
* cache.
|
|
*/
|
|
static inline void
|
|
ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
|
|
__u64 log_page_size)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
|
|
ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
|
|
ia64_stop();
|
|
/* as per EAS2.6, itc must be the last instruction in an instruction group */
|
|
if (target_mask & 0x1)
|
|
ia64_itci(pte);
|
|
if (target_mask & 0x2)
|
|
ia64_itcd(pte);
|
|
}
|
|
|
|
/*
|
|
* Purge a range of addresses from instruction and/or data translation
|
|
* register(s).
|
|
*/
|
|
static inline void
|
|
ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
|
|
{
|
|
if (target_mask & 0x1)
|
|
ia64_ptri(vmaddr, (log_size << 2));
|
|
if (target_mask & 0x2)
|
|
ia64_ptrd(vmaddr, (log_size << 2));
|
|
}
|
|
|
|
/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
|
|
static inline void
|
|
ia64_set_iva (void *ivt_addr)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
|
|
ia64_srlz_i();
|
|
}
|
|
|
|
/* Set the page table address and control bits. */
|
|
static inline void
|
|
ia64_set_pta (__u64 pta)
|
|
{
|
|
/* Note: srlz.i implies srlz.d */
|
|
ia64_setreg(_IA64_REG_CR_PTA, pta);
|
|
ia64_srlz_i();
|
|
}
|
|
|
|
static inline void
|
|
ia64_eoi (void)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_EOI, 0);
|
|
ia64_srlz_d();
|
|
}
|
|
|
|
#define cpu_relax() ia64_hint(ia64_hint_pause)
|
|
|
|
static inline int
|
|
ia64_get_irr(unsigned int vector)
|
|
{
|
|
unsigned int reg = vector / 64;
|
|
unsigned int bit = vector % 64;
|
|
u64 irr;
|
|
|
|
switch (reg) {
|
|
case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
|
|
case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
|
|
case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
|
|
case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
|
|
}
|
|
|
|
return test_bit(bit, &irr);
|
|
}
|
|
|
|
static inline void
|
|
ia64_set_lrr0 (unsigned long val)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_LRR0, val);
|
|
ia64_srlz_d();
|
|
}
|
|
|
|
static inline void
|
|
ia64_set_lrr1 (unsigned long val)
|
|
{
|
|
ia64_setreg(_IA64_REG_CR_LRR1, val);
|
|
ia64_srlz_d();
|
|
}
|
|
|
|
|
|
/*
|
|
* Given the address to which a spill occurred, return the unat bit
|
|
* number that corresponds to this address.
|
|
*/
|
|
static inline __u64
|
|
ia64_unat_pos (void *spill_addr)
|
|
{
|
|
return ((__u64) spill_addr >> 3) & 0x3f;
|
|
}
|
|
|
|
/*
|
|
* Set the NaT bit of an integer register which was spilled at address
|
|
* SPILL_ADDR. UNAT is the mask to be updated.
|
|
*/
|
|
static inline void
|
|
ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
|
|
{
|
|
__u64 bit = ia64_unat_pos(spill_addr);
|
|
__u64 mask = 1UL << bit;
|
|
|
|
*unat = (*unat & ~mask) | (nat << bit);
|
|
}
|
|
|
|
/*
|
|
* Get the current instruction/program counter value.
|
|
*/
|
|
#define current_text_addr() \
|
|
({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
|
|
|
|
static inline __u64
|
|
ia64_get_ivr (void)
|
|
{
|
|
__u64 r;
|
|
ia64_srlz_d();
|
|
r = ia64_getreg(_IA64_REG_CR_IVR);
|
|
ia64_srlz_d();
|
|
return r;
|
|
}
|
|
|
|
static inline void
|
|
ia64_set_dbr (__u64 regnum, __u64 value)
|
|
{
|
|
__ia64_set_dbr(regnum, value);
|
|
#ifdef CONFIG_ITANIUM
|
|
ia64_srlz_d();
|
|
#endif
|
|
}
|
|
|
|
static inline __u64
|
|
ia64_get_dbr (__u64 regnum)
|
|
{
|
|
__u64 retval;
|
|
|
|
retval = __ia64_get_dbr(regnum);
|
|
#ifdef CONFIG_ITANIUM
|
|
ia64_srlz_d();
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
static inline __u64
|
|
ia64_rotr (__u64 w, __u64 n)
|
|
{
|
|
return (w >> n) | (w << (64 - n));
|
|
}
|
|
|
|
#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
|
|
|
|
/*
|
|
* Take a mapped kernel address and return the equivalent address
|
|
* in the region 7 identity mapped virtual area.
|
|
*/
|
|
static inline void *
|
|
ia64_imva (void *addr)
|
|
{
|
|
void *result;
|
|
result = (void *) ia64_tpa(addr);
|
|
return __va(result);
|
|
}
|
|
|
|
#define ARCH_HAS_PREFETCH
|
|
#define ARCH_HAS_PREFETCHW
|
|
#define ARCH_HAS_SPINLOCK_PREFETCH
|
|
#define PREFETCH_STRIDE L1_CACHE_BYTES
|
|
|
|
static inline void
|
|
prefetch (const void *x)
|
|
{
|
|
ia64_lfetch(ia64_lfhint_none, x);
|
|
}
|
|
|
|
static inline void
|
|
prefetchw (const void *x)
|
|
{
|
|
ia64_lfetch_excl(ia64_lfhint_none, x);
|
|
}
|
|
|
|
#define spin_lock_prefetch(x) prefetchw(x)
|
|
|
|
extern unsigned long boot_option_idle_override;
|
|
|
|
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
|
|
IDLE_NOMWAIT, IDLE_POLL};
|
|
|
|
void default_idle(void);
|
|
|
|
#define ia64_platform_is(x) (strcmp(x, ia64_platform_name) == 0)
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_IA64_PROCESSOR_H */
|