mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-08 21:53:54 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
612 lines
19 KiB
C
612 lines
19 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_DCACHE_H
|
|
#define __LINUX_DCACHE_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/list.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rculist_bl.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/seqlock.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/lockref.h>
|
|
#include <linux/stringhash.h>
|
|
#include <linux/wait.h>
|
|
|
|
struct path;
|
|
struct vfsmount;
|
|
|
|
/*
|
|
* linux/include/linux/dcache.h
|
|
*
|
|
* Dirent cache data structures
|
|
*
|
|
* (C) Copyright 1997 Thomas Schoebel-Theuer,
|
|
* with heavy changes by Linus Torvalds
|
|
*/
|
|
|
|
#define IS_ROOT(x) ((x) == (x)->d_parent)
|
|
|
|
/* The hash is always the low bits of hash_len */
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define HASH_LEN_DECLARE u32 hash; u32 len
|
|
#define bytemask_from_count(cnt) (~(~0ul << (cnt)*8))
|
|
#else
|
|
#define HASH_LEN_DECLARE u32 len; u32 hash
|
|
#define bytemask_from_count(cnt) (~(~0ul >> (cnt)*8))
|
|
#endif
|
|
|
|
/*
|
|
* "quick string" -- eases parameter passing, but more importantly
|
|
* saves "metadata" about the string (ie length and the hash).
|
|
*
|
|
* hash comes first so it snuggles against d_parent in the
|
|
* dentry.
|
|
*/
|
|
struct qstr {
|
|
union {
|
|
struct {
|
|
HASH_LEN_DECLARE;
|
|
};
|
|
u64 hash_len;
|
|
};
|
|
const unsigned char *name;
|
|
};
|
|
|
|
#define QSTR_INIT(n,l) { { { .len = l } }, .name = n }
|
|
|
|
extern const char empty_string[];
|
|
extern const struct qstr empty_name;
|
|
extern const char slash_string[];
|
|
extern const struct qstr slash_name;
|
|
|
|
struct dentry_stat_t {
|
|
long nr_dentry;
|
|
long nr_unused;
|
|
long age_limit; /* age in seconds */
|
|
long want_pages; /* pages requested by system */
|
|
long dummy[2];
|
|
};
|
|
extern struct dentry_stat_t dentry_stat;
|
|
|
|
/*
|
|
* Try to keep struct dentry aligned on 64 byte cachelines (this will
|
|
* give reasonable cacheline footprint with larger lines without the
|
|
* large memory footprint increase).
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
# define DNAME_INLINE_LEN 32 /* 192 bytes */
|
|
#else
|
|
# ifdef CONFIG_SMP
|
|
# define DNAME_INLINE_LEN 36 /* 128 bytes */
|
|
# else
|
|
# define DNAME_INLINE_LEN 40 /* 128 bytes */
|
|
# endif
|
|
#endif
|
|
|
|
#define d_lock d_lockref.lock
|
|
|
|
struct dentry {
|
|
/* RCU lookup touched fields */
|
|
unsigned int d_flags; /* protected by d_lock */
|
|
seqcount_t d_seq; /* per dentry seqlock */
|
|
struct hlist_bl_node d_hash; /* lookup hash list */
|
|
struct dentry *d_parent; /* parent directory */
|
|
struct qstr d_name;
|
|
struct inode *d_inode; /* Where the name belongs to - NULL is
|
|
* negative */
|
|
unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */
|
|
|
|
/* Ref lookup also touches following */
|
|
struct lockref d_lockref; /* per-dentry lock and refcount */
|
|
const struct dentry_operations *d_op;
|
|
struct super_block *d_sb; /* The root of the dentry tree */
|
|
unsigned long d_time; /* used by d_revalidate */
|
|
void *d_fsdata; /* fs-specific data */
|
|
|
|
union {
|
|
struct list_head d_lru; /* LRU list */
|
|
wait_queue_head_t *d_wait; /* in-lookup ones only */
|
|
};
|
|
struct list_head d_child; /* child of parent list */
|
|
struct list_head d_subdirs; /* our children */
|
|
/*
|
|
* d_alias and d_rcu can share memory
|
|
*/
|
|
union {
|
|
struct hlist_node d_alias; /* inode alias list */
|
|
struct hlist_bl_node d_in_lookup_hash; /* only for in-lookup ones */
|
|
struct rcu_head d_rcu;
|
|
} d_u;
|
|
} __randomize_layout;
|
|
|
|
/*
|
|
* dentry->d_lock spinlock nesting subclasses:
|
|
*
|
|
* 0: normal
|
|
* 1: nested
|
|
*/
|
|
enum dentry_d_lock_class
|
|
{
|
|
DENTRY_D_LOCK_NORMAL, /* implicitly used by plain spin_lock() APIs. */
|
|
DENTRY_D_LOCK_NESTED
|
|
};
|
|
|
|
struct dentry_operations {
|
|
int (*d_revalidate)(struct dentry *, unsigned int);
|
|
int (*d_weak_revalidate)(struct dentry *, unsigned int);
|
|
int (*d_hash)(const struct dentry *, struct qstr *);
|
|
int (*d_compare)(const struct dentry *,
|
|
unsigned int, const char *, const struct qstr *);
|
|
int (*d_delete)(const struct dentry *);
|
|
int (*d_init)(struct dentry *);
|
|
void (*d_release)(struct dentry *);
|
|
void (*d_prune)(struct dentry *);
|
|
void (*d_iput)(struct dentry *, struct inode *);
|
|
char *(*d_dname)(struct dentry *, char *, int);
|
|
struct vfsmount *(*d_automount)(struct path *);
|
|
int (*d_manage)(const struct path *, bool);
|
|
struct dentry *(*d_real)(struct dentry *, const struct inode *,
|
|
unsigned int, unsigned int);
|
|
} ____cacheline_aligned;
|
|
|
|
/*
|
|
* Locking rules for dentry_operations callbacks are to be found in
|
|
* Documentation/filesystems/Locking. Keep it updated!
|
|
*
|
|
* FUrther descriptions are found in Documentation/filesystems/vfs.txt.
|
|
* Keep it updated too!
|
|
*/
|
|
|
|
/* d_flags entries */
|
|
#define DCACHE_OP_HASH 0x00000001
|
|
#define DCACHE_OP_COMPARE 0x00000002
|
|
#define DCACHE_OP_REVALIDATE 0x00000004
|
|
#define DCACHE_OP_DELETE 0x00000008
|
|
#define DCACHE_OP_PRUNE 0x00000010
|
|
|
|
#define DCACHE_DISCONNECTED 0x00000020
|
|
/* This dentry is possibly not currently connected to the dcache tree, in
|
|
* which case its parent will either be itself, or will have this flag as
|
|
* well. nfsd will not use a dentry with this bit set, but will first
|
|
* endeavour to clear the bit either by discovering that it is connected,
|
|
* or by performing lookup operations. Any filesystem which supports
|
|
* nfsd_operations MUST have a lookup function which, if it finds a
|
|
* directory inode with a DCACHE_DISCONNECTED dentry, will d_move that
|
|
* dentry into place and return that dentry rather than the passed one,
|
|
* typically using d_splice_alias. */
|
|
|
|
#define DCACHE_REFERENCED 0x00000040 /* Recently used, don't discard. */
|
|
#define DCACHE_RCUACCESS 0x00000080 /* Entry has ever been RCU-visible */
|
|
|
|
#define DCACHE_CANT_MOUNT 0x00000100
|
|
#define DCACHE_GENOCIDE 0x00000200
|
|
#define DCACHE_SHRINK_LIST 0x00000400
|
|
|
|
#define DCACHE_OP_WEAK_REVALIDATE 0x00000800
|
|
|
|
#define DCACHE_NFSFS_RENAMED 0x00001000
|
|
/* this dentry has been "silly renamed" and has to be deleted on the last
|
|
* dput() */
|
|
#define DCACHE_COOKIE 0x00002000 /* For use by dcookie subsystem */
|
|
#define DCACHE_FSNOTIFY_PARENT_WATCHED 0x00004000
|
|
/* Parent inode is watched by some fsnotify listener */
|
|
|
|
#define DCACHE_DENTRY_KILLED 0x00008000
|
|
|
|
#define DCACHE_MOUNTED 0x00010000 /* is a mountpoint */
|
|
#define DCACHE_NEED_AUTOMOUNT 0x00020000 /* handle automount on this dir */
|
|
#define DCACHE_MANAGE_TRANSIT 0x00040000 /* manage transit from this dirent */
|
|
#define DCACHE_MANAGED_DENTRY \
|
|
(DCACHE_MOUNTED|DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT)
|
|
|
|
#define DCACHE_LRU_LIST 0x00080000
|
|
|
|
#define DCACHE_ENTRY_TYPE 0x00700000
|
|
#define DCACHE_MISS_TYPE 0x00000000 /* Negative dentry (maybe fallthru to nowhere) */
|
|
#define DCACHE_WHITEOUT_TYPE 0x00100000 /* Whiteout dentry (stop pathwalk) */
|
|
#define DCACHE_DIRECTORY_TYPE 0x00200000 /* Normal directory */
|
|
#define DCACHE_AUTODIR_TYPE 0x00300000 /* Lookupless directory (presumed automount) */
|
|
#define DCACHE_REGULAR_TYPE 0x00400000 /* Regular file type (or fallthru to such) */
|
|
#define DCACHE_SPECIAL_TYPE 0x00500000 /* Other file type (or fallthru to such) */
|
|
#define DCACHE_SYMLINK_TYPE 0x00600000 /* Symlink (or fallthru to such) */
|
|
|
|
#define DCACHE_MAY_FREE 0x00800000
|
|
#define DCACHE_FALLTHRU 0x01000000 /* Fall through to lower layer */
|
|
#define DCACHE_ENCRYPTED_WITH_KEY 0x02000000 /* dir is encrypted with a valid key */
|
|
#define DCACHE_OP_REAL 0x04000000
|
|
|
|
#define DCACHE_PAR_LOOKUP 0x10000000 /* being looked up (with parent locked shared) */
|
|
#define DCACHE_DENTRY_CURSOR 0x20000000
|
|
|
|
extern seqlock_t rename_lock;
|
|
|
|
/*
|
|
* These are the low-level FS interfaces to the dcache..
|
|
*/
|
|
extern void d_instantiate(struct dentry *, struct inode *);
|
|
extern struct dentry * d_instantiate_unique(struct dentry *, struct inode *);
|
|
extern int d_instantiate_no_diralias(struct dentry *, struct inode *);
|
|
extern void __d_drop(struct dentry *dentry);
|
|
extern void d_drop(struct dentry *dentry);
|
|
extern void d_delete(struct dentry *);
|
|
extern void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op);
|
|
|
|
/* allocate/de-allocate */
|
|
extern struct dentry * d_alloc(struct dentry *, const struct qstr *);
|
|
extern struct dentry * d_alloc_pseudo(struct super_block *, const struct qstr *);
|
|
extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *,
|
|
wait_queue_head_t *);
|
|
extern struct dentry * d_splice_alias(struct inode *, struct dentry *);
|
|
extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *);
|
|
extern struct dentry * d_exact_alias(struct dentry *, struct inode *);
|
|
extern struct dentry *d_find_any_alias(struct inode *inode);
|
|
extern struct dentry * d_obtain_alias(struct inode *);
|
|
extern struct dentry * d_obtain_root(struct inode *);
|
|
extern void shrink_dcache_sb(struct super_block *);
|
|
extern void shrink_dcache_parent(struct dentry *);
|
|
extern void shrink_dcache_for_umount(struct super_block *);
|
|
extern void d_invalidate(struct dentry *);
|
|
|
|
/* only used at mount-time */
|
|
extern struct dentry * d_make_root(struct inode *);
|
|
|
|
/* <clickety>-<click> the ramfs-type tree */
|
|
extern void d_genocide(struct dentry *);
|
|
|
|
extern void d_tmpfile(struct dentry *, struct inode *);
|
|
|
|
extern struct dentry *d_find_alias(struct inode *);
|
|
extern void d_prune_aliases(struct inode *);
|
|
|
|
/* test whether we have any submounts in a subdir tree */
|
|
extern int path_has_submounts(const struct path *);
|
|
|
|
/*
|
|
* This adds the entry to the hash queues.
|
|
*/
|
|
extern void d_rehash(struct dentry *);
|
|
|
|
extern void d_add(struct dentry *, struct inode *);
|
|
|
|
extern void dentry_update_name_case(struct dentry *, const struct qstr *);
|
|
|
|
/* used for rename() and baskets */
|
|
extern void d_move(struct dentry *, struct dentry *);
|
|
extern void d_exchange(struct dentry *, struct dentry *);
|
|
extern struct dentry *d_ancestor(struct dentry *, struct dentry *);
|
|
|
|
/* appendix may either be NULL or be used for transname suffixes */
|
|
extern struct dentry *d_lookup(const struct dentry *, const struct qstr *);
|
|
extern struct dentry *d_hash_and_lookup(struct dentry *, struct qstr *);
|
|
extern struct dentry *__d_lookup(const struct dentry *, const struct qstr *);
|
|
extern struct dentry *__d_lookup_rcu(const struct dentry *parent,
|
|
const struct qstr *name, unsigned *seq);
|
|
|
|
static inline unsigned d_count(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_lockref.count;
|
|
}
|
|
|
|
/*
|
|
* helper function for dentry_operations.d_dname() members
|
|
*/
|
|
extern __printf(4, 5)
|
|
char *dynamic_dname(struct dentry *, char *, int, const char *, ...);
|
|
extern char *simple_dname(struct dentry *, char *, int);
|
|
|
|
extern char *__d_path(const struct path *, const struct path *, char *, int);
|
|
extern char *d_absolute_path(const struct path *, char *, int);
|
|
extern char *d_path(const struct path *, char *, int);
|
|
extern char *dentry_path_raw(struct dentry *, char *, int);
|
|
extern char *dentry_path(struct dentry *, char *, int);
|
|
|
|
/* Allocation counts.. */
|
|
|
|
/**
|
|
* dget, dget_dlock - get a reference to a dentry
|
|
* @dentry: dentry to get a reference to
|
|
*
|
|
* Given a dentry or %NULL pointer increment the reference count
|
|
* if appropriate and return the dentry. A dentry will not be
|
|
* destroyed when it has references.
|
|
*/
|
|
static inline struct dentry *dget_dlock(struct dentry *dentry)
|
|
{
|
|
if (dentry)
|
|
dentry->d_lockref.count++;
|
|
return dentry;
|
|
}
|
|
|
|
static inline struct dentry *dget(struct dentry *dentry)
|
|
{
|
|
if (dentry)
|
|
lockref_get(&dentry->d_lockref);
|
|
return dentry;
|
|
}
|
|
|
|
extern struct dentry *dget_parent(struct dentry *dentry);
|
|
|
|
/**
|
|
* d_unhashed - is dentry hashed
|
|
* @dentry: entry to check
|
|
*
|
|
* Returns true if the dentry passed is not currently hashed.
|
|
*/
|
|
|
|
static inline int d_unhashed(const struct dentry *dentry)
|
|
{
|
|
return hlist_bl_unhashed(&dentry->d_hash);
|
|
}
|
|
|
|
static inline int d_unlinked(const struct dentry *dentry)
|
|
{
|
|
return d_unhashed(dentry) && !IS_ROOT(dentry);
|
|
}
|
|
|
|
static inline int cant_mount(const struct dentry *dentry)
|
|
{
|
|
return (dentry->d_flags & DCACHE_CANT_MOUNT);
|
|
}
|
|
|
|
static inline void dont_mount(struct dentry *dentry)
|
|
{
|
|
spin_lock(&dentry->d_lock);
|
|
dentry->d_flags |= DCACHE_CANT_MOUNT;
|
|
spin_unlock(&dentry->d_lock);
|
|
}
|
|
|
|
extern void __d_lookup_done(struct dentry *);
|
|
|
|
static inline int d_in_lookup(struct dentry *dentry)
|
|
{
|
|
return dentry->d_flags & DCACHE_PAR_LOOKUP;
|
|
}
|
|
|
|
static inline void d_lookup_done(struct dentry *dentry)
|
|
{
|
|
if (unlikely(d_in_lookup(dentry))) {
|
|
spin_lock(&dentry->d_lock);
|
|
__d_lookup_done(dentry);
|
|
spin_unlock(&dentry->d_lock);
|
|
}
|
|
}
|
|
|
|
extern void dput(struct dentry *);
|
|
|
|
static inline bool d_managed(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_flags & DCACHE_MANAGED_DENTRY;
|
|
}
|
|
|
|
static inline bool d_mountpoint(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_flags & DCACHE_MOUNTED;
|
|
}
|
|
|
|
/*
|
|
* Directory cache entry type accessor functions.
|
|
*/
|
|
static inline unsigned __d_entry_type(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_flags & DCACHE_ENTRY_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_miss(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_MISS_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_whiteout(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_WHITEOUT_TYPE;
|
|
}
|
|
|
|
static inline bool d_can_lookup(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_DIRECTORY_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_autodir(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_AUTODIR_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_dir(const struct dentry *dentry)
|
|
{
|
|
return d_can_lookup(dentry) || d_is_autodir(dentry);
|
|
}
|
|
|
|
static inline bool d_is_symlink(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_SYMLINK_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_reg(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_REGULAR_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_special(const struct dentry *dentry)
|
|
{
|
|
return __d_entry_type(dentry) == DCACHE_SPECIAL_TYPE;
|
|
}
|
|
|
|
static inline bool d_is_file(const struct dentry *dentry)
|
|
{
|
|
return d_is_reg(dentry) || d_is_special(dentry);
|
|
}
|
|
|
|
static inline bool d_is_negative(const struct dentry *dentry)
|
|
{
|
|
// TODO: check d_is_whiteout(dentry) also.
|
|
return d_is_miss(dentry);
|
|
}
|
|
|
|
static inline bool d_is_positive(const struct dentry *dentry)
|
|
{
|
|
return !d_is_negative(dentry);
|
|
}
|
|
|
|
/**
|
|
* d_really_is_negative - Determine if a dentry is really negative (ignoring fallthroughs)
|
|
* @dentry: The dentry in question
|
|
*
|
|
* Returns true if the dentry represents either an absent name or a name that
|
|
* doesn't map to an inode (ie. ->d_inode is NULL). The dentry could represent
|
|
* a true miss, a whiteout that isn't represented by a 0,0 chardev or a
|
|
* fallthrough marker in an opaque directory.
|
|
*
|
|
* Note! (1) This should be used *only* by a filesystem to examine its own
|
|
* dentries. It should not be used to look at some other filesystem's
|
|
* dentries. (2) It should also be used in combination with d_inode() to get
|
|
* the inode. (3) The dentry may have something attached to ->d_lower and the
|
|
* type field of the flags may be set to something other than miss or whiteout.
|
|
*/
|
|
static inline bool d_really_is_negative(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_inode == NULL;
|
|
}
|
|
|
|
/**
|
|
* d_really_is_positive - Determine if a dentry is really positive (ignoring fallthroughs)
|
|
* @dentry: The dentry in question
|
|
*
|
|
* Returns true if the dentry represents a name that maps to an inode
|
|
* (ie. ->d_inode is not NULL). The dentry might still represent a whiteout if
|
|
* that is represented on medium as a 0,0 chardev.
|
|
*
|
|
* Note! (1) This should be used *only* by a filesystem to examine its own
|
|
* dentries. It should not be used to look at some other filesystem's
|
|
* dentries. (2) It should also be used in combination with d_inode() to get
|
|
* the inode.
|
|
*/
|
|
static inline bool d_really_is_positive(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_inode != NULL;
|
|
}
|
|
|
|
static inline int simple_positive(struct dentry *dentry)
|
|
{
|
|
return d_really_is_positive(dentry) && !d_unhashed(dentry);
|
|
}
|
|
|
|
extern void d_set_fallthru(struct dentry *dentry);
|
|
|
|
static inline bool d_is_fallthru(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_flags & DCACHE_FALLTHRU;
|
|
}
|
|
|
|
|
|
extern int sysctl_vfs_cache_pressure;
|
|
|
|
static inline unsigned long vfs_pressure_ratio(unsigned long val)
|
|
{
|
|
return mult_frac(val, sysctl_vfs_cache_pressure, 100);
|
|
}
|
|
|
|
/**
|
|
* d_inode - Get the actual inode of this dentry
|
|
* @dentry: The dentry to query
|
|
*
|
|
* This is the helper normal filesystems should use to get at their own inodes
|
|
* in their own dentries and ignore the layering superimposed upon them.
|
|
*/
|
|
static inline struct inode *d_inode(const struct dentry *dentry)
|
|
{
|
|
return dentry->d_inode;
|
|
}
|
|
|
|
/**
|
|
* d_inode_rcu - Get the actual inode of this dentry with ACCESS_ONCE()
|
|
* @dentry: The dentry to query
|
|
*
|
|
* This is the helper normal filesystems should use to get at their own inodes
|
|
* in their own dentries and ignore the layering superimposed upon them.
|
|
*/
|
|
static inline struct inode *d_inode_rcu(const struct dentry *dentry)
|
|
{
|
|
return ACCESS_ONCE(dentry->d_inode);
|
|
}
|
|
|
|
/**
|
|
* d_backing_inode - Get upper or lower inode we should be using
|
|
* @upper: The upper layer
|
|
*
|
|
* This is the helper that should be used to get at the inode that will be used
|
|
* if this dentry were to be opened as a file. The inode may be on the upper
|
|
* dentry or it may be on a lower dentry pinned by the upper.
|
|
*
|
|
* Normal filesystems should not use this to access their own inodes.
|
|
*/
|
|
static inline struct inode *d_backing_inode(const struct dentry *upper)
|
|
{
|
|
struct inode *inode = upper->d_inode;
|
|
|
|
return inode;
|
|
}
|
|
|
|
/**
|
|
* d_backing_dentry - Get upper or lower dentry we should be using
|
|
* @upper: The upper layer
|
|
*
|
|
* This is the helper that should be used to get the dentry of the inode that
|
|
* will be used if this dentry were opened as a file. It may be the upper
|
|
* dentry or it may be a lower dentry pinned by the upper.
|
|
*
|
|
* Normal filesystems should not use this to access their own dentries.
|
|
*/
|
|
static inline struct dentry *d_backing_dentry(struct dentry *upper)
|
|
{
|
|
return upper;
|
|
}
|
|
|
|
/* d_real() flags */
|
|
#define D_REAL_UPPER 0x2 /* return upper dentry or NULL if non-upper */
|
|
|
|
/**
|
|
* d_real - Return the real dentry
|
|
* @dentry: the dentry to query
|
|
* @inode: inode to select the dentry from multiple layers (can be NULL)
|
|
* @open_flags: open flags to control copy-up behavior
|
|
* @flags: flags to control what is returned by this function
|
|
*
|
|
* If dentry is on a union/overlay, then return the underlying, real dentry.
|
|
* Otherwise return the dentry itself.
|
|
*
|
|
* See also: Documentation/filesystems/vfs.txt
|
|
*/
|
|
static inline struct dentry *d_real(struct dentry *dentry,
|
|
const struct inode *inode,
|
|
unsigned int open_flags, unsigned int flags)
|
|
{
|
|
if (unlikely(dentry->d_flags & DCACHE_OP_REAL))
|
|
return dentry->d_op->d_real(dentry, inode, open_flags, flags);
|
|
else
|
|
return dentry;
|
|
}
|
|
|
|
/**
|
|
* d_real_inode - Return the real inode
|
|
* @dentry: The dentry to query
|
|
*
|
|
* If dentry is on a union/overlay, then return the underlying, real inode.
|
|
* Otherwise return d_inode().
|
|
*/
|
|
static inline struct inode *d_real_inode(const struct dentry *dentry)
|
|
{
|
|
/* This usage of d_real() results in const dentry */
|
|
return d_backing_inode(d_real((struct dentry *) dentry, NULL, 0, 0));
|
|
}
|
|
|
|
struct name_snapshot {
|
|
const unsigned char *name;
|
|
unsigned char inline_name[DNAME_INLINE_LEN];
|
|
};
|
|
void take_dentry_name_snapshot(struct name_snapshot *, struct dentry *);
|
|
void release_dentry_name_snapshot(struct name_snapshot *);
|
|
|
|
#endif /* __LINUX_DCACHE_H */
|