2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 20:53:54 +08:00
linux-next/drivers/gpu/drm/i915/i915_sysfs.c
Dave Airlie be51e4a781 Merge tag 'drm-intel-next-2013-10-18' of git://people.freedesktop.org/~danvet/drm-intel into drm-next
- CRC support from Damien and He Shuang. Long term this should allow us to
  test an awful lot modesetting corner cases automatically. So for me as
  the maintainer this is really big.
- HDMI audio fix from Jani.
- VLV dpll computation code refactoring from Ville.
- Fixups for the gpu booster from last time around (Chris).
- Some cleanups in the context code from Ben.
- More watermark work from Ville (we'll be getting there ...).
- vblank timestamp improvements from Ville.
- CONFIG_FB=n support, including drm core changes to make the fbdev
  helpers optional.
- DP link training improvements (Jani).
- mmio vtable from Ben, prep work for future hw.

* tag 'drm-intel-next-2013-10-18' of git://people.freedesktop.org/~danvet/drm-intel: (132 commits)
  drm/i915/dp: don't mention eDP bpp clamping if it doesn't affect bpp
  drm/i915: remove dead code in ironlake_crtc_mode_set
  drm/i915: crc support for hsw
  drm/i915: fix CRC debugfs setup
  drm/i915: wait one vblank when disabling CRCs
  drm/i915: use ->get_vblank_counter for the crc frame counter
  drm/i915: wire up CRC interrupt for ilk/snb
  drm/i915: add CRC #defines for ilk/snb
  drm/i915: extract display_pipe_crc_update
  drm/i915: don't Oops in debugfs for I915_FBDEV=n
  drm/i915: set HDMI pixel clock in audio configuration
  drm/i915: pass mode to ELD write vfuncs
  cpufreq: Add dummy cpufreq_cpu_get/put for CONFIG_CPU_FREQ=n
  drm/i915: check gem bo size when creating framebuffers
  drm/i915: Use unsigned long for obj->user_pin_count
  drm/i915: prevent tiling changes on framebuffer backing storage
  drm/i915: grab dev->struct_mutex around framebuffer_init
  drm/i915: vlv: fix VGA hotplug after modeset
  drm: add support for additional stereo 3D modes
  drm/i915: preserve dispaly init order on ByT
  ...
2013-10-25 09:35:04 +01:00

602 lines
17 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/stat.h>
#include <linux/sysfs.h>
#include "intel_drv.h"
#include "i915_drv.h"
#define dev_to_drm_minor(d) dev_get_drvdata((d))
#ifdef CONFIG_PM
static u32 calc_residency(struct drm_device *dev, const u32 reg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u64 raw_time; /* 32b value may overflow during fixed point math */
u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
if (!intel_enable_rc6(dev))
return 0;
/* On VLV, residency time is in CZ units rather than 1.28us */
if (IS_VALLEYVIEW(dev)) {
u32 clkctl2;
clkctl2 = I915_READ(VLV_CLK_CTL2) >>
CLK_CTL2_CZCOUNT_30NS_SHIFT;
if (!clkctl2) {
WARN(!clkctl2, "bogus CZ count value");
return 0;
}
units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
units <<= 8;
div = 1000000ULL * bias;
}
raw_time = I915_READ(reg) * units;
return DIV_ROUND_UP_ULL(raw_time, div);
}
static ssize_t
show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = dev_to_drm_minor(kdev);
return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
}
static ssize_t
show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = dev_get_drvdata(kdev);
u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
}
static ssize_t
show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = dev_to_drm_minor(kdev);
u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
if (IS_VALLEYVIEW(dminor->dev))
rc6p_residency = 0;
return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
}
static ssize_t
show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *dminor = dev_to_drm_minor(kdev);
u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
if (IS_VALLEYVIEW(dminor->dev))
rc6pp_residency = 0;
return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
}
static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
static struct attribute *rc6_attrs[] = {
&dev_attr_rc6_enable.attr,
&dev_attr_rc6_residency_ms.attr,
&dev_attr_rc6p_residency_ms.attr,
&dev_attr_rc6pp_residency_ms.attr,
NULL
};
static struct attribute_group rc6_attr_group = {
.name = power_group_name,
.attrs = rc6_attrs
};
#endif
static int l3_access_valid(struct drm_device *dev, loff_t offset)
{
if (!HAS_L3_DPF(dev))
return -EPERM;
if (offset % 4 != 0)
return -EINVAL;
if (offset >= GEN7_L3LOG_SIZE)
return -ENXIO;
return 0;
}
static ssize_t
i915_l3_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct drm_minor *dminor = dev_to_drm_minor(dev);
struct drm_device *drm_dev = dminor->dev;
struct drm_i915_private *dev_priv = drm_dev->dev_private;
int slice = (int)(uintptr_t)attr->private;
int ret;
count = round_down(count, 4);
ret = l3_access_valid(drm_dev, offset);
if (ret)
return ret;
count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
ret = i915_mutex_lock_interruptible(drm_dev);
if (ret)
return ret;
if (dev_priv->l3_parity.remap_info[slice])
memcpy(buf,
dev_priv->l3_parity.remap_info[slice] + (offset/4),
count);
else
memset(buf, 0, count);
mutex_unlock(&drm_dev->struct_mutex);
return count;
}
static ssize_t
i915_l3_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t offset, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct drm_minor *dminor = dev_to_drm_minor(dev);
struct drm_device *drm_dev = dminor->dev;
struct drm_i915_private *dev_priv = drm_dev->dev_private;
struct i915_hw_context *ctx;
u32 *temp = NULL; /* Just here to make handling failures easy */
int slice = (int)(uintptr_t)attr->private;
int ret;
ret = l3_access_valid(drm_dev, offset);
if (ret)
return ret;
if (dev_priv->hw_contexts_disabled)
return -ENXIO;
ret = i915_mutex_lock_interruptible(drm_dev);
if (ret)
return ret;
if (!dev_priv->l3_parity.remap_info[slice]) {
temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
if (!temp) {
mutex_unlock(&drm_dev->struct_mutex);
return -ENOMEM;
}
}
ret = i915_gpu_idle(drm_dev);
if (ret) {
kfree(temp);
mutex_unlock(&drm_dev->struct_mutex);
return ret;
}
/* TODO: Ideally we really want a GPU reset here to make sure errors
* aren't propagated. Since I cannot find a stable way to reset the GPU
* at this point it is left as a TODO.
*/
if (temp)
dev_priv->l3_parity.remap_info[slice] = temp;
memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
/* NB: We defer the remapping until we switch to the context */
list_for_each_entry(ctx, &dev_priv->context_list, link)
ctx->remap_slice |= (1<<slice);
mutex_unlock(&drm_dev->struct_mutex);
return count;
}
static struct bin_attribute dpf_attrs = {
.attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
.size = GEN7_L3LOG_SIZE,
.read = i915_l3_read,
.write = i915_l3_write,
.mmap = NULL,
.private = (void *)0
};
static struct bin_attribute dpf_attrs_1 = {
.attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
.size = GEN7_L3LOG_SIZE,
.read = i915_l3_read,
.write = i915_l3_write,
.mmap = NULL,
.private = (void *)1
};
static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev)) {
u32 freq;
freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff);
} else {
ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
}
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
return snprintf(buf, PAGE_SIZE, "%d\n",
vlv_gpu_freq(dev_priv->mem_freq,
dev_priv->rps.rpe_delay));
}
static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev))
ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay);
else
ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t gt_max_freq_mhz_store(struct device *kdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
ssize_t ret;
ret = kstrtou32(buf, 0, &val);
if (ret)
return ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
non_oc_max = hw_max;
} else {
val /= GT_FREQUENCY_MULTIPLIER;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.hw_max;
non_oc_max = (rp_state_cap & 0xff);
hw_min = ((rp_state_cap & 0xff0000) >> 16);
}
if (val < hw_min || val > hw_max ||
val < dev_priv->rps.min_delay) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
if (val > non_oc_max)
DRM_DEBUG("User requested overclocking to %d\n",
val * GT_FREQUENCY_MULTIPLIER);
if (dev_priv->rps.cur_delay > val) {
if (IS_VALLEYVIEW(dev_priv->dev))
valleyview_set_rps(dev_priv->dev, val);
else
gen6_set_rps(dev_priv->dev, val);
}
dev_priv->rps.max_delay = val;
mutex_unlock(&dev_priv->rps.hw_lock);
return count;
}
static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev_priv->dev))
ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay);
else
ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return snprintf(buf, PAGE_SIZE, "%d\n", ret);
}
static ssize_t gt_min_freq_mhz_store(struct device *kdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap, hw_max, hw_min;
ssize_t ret;
ret = kstrtou32(buf, 0, &val);
if (ret)
return ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
hw_max = valleyview_rps_max_freq(dev_priv);
hw_min = valleyview_rps_min_freq(dev_priv);
} else {
val /= GT_FREQUENCY_MULTIPLIER;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
hw_max = dev_priv->rps.hw_max;
hw_min = ((rp_state_cap & 0xff0000) >> 16);
}
if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
mutex_unlock(&dev_priv->rps.hw_lock);
return -EINVAL;
}
if (dev_priv->rps.cur_delay < val) {
if (IS_VALLEYVIEW(dev))
valleyview_set_rps(dev, val);
else
gen6_set_rps(dev_priv->dev, val);
}
dev_priv->rps.min_delay = val;
mutex_unlock(&dev_priv->rps.hw_lock);
return count;
}
static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
/* For now we have a static number of RP states */
static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
{
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, rp_state_cap;
ssize_t ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
mutex_unlock(&dev->struct_mutex);
if (attr == &dev_attr_gt_RP0_freq_mhz) {
val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
} else if (attr == &dev_attr_gt_RP1_freq_mhz) {
val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
} else if (attr == &dev_attr_gt_RPn_freq_mhz) {
val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
} else {
BUG();
}
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static const struct attribute *gen6_attrs[] = {
&dev_attr_gt_cur_freq_mhz.attr,
&dev_attr_gt_max_freq_mhz.attr,
&dev_attr_gt_min_freq_mhz.attr,
&dev_attr_gt_RP0_freq_mhz.attr,
&dev_attr_gt_RP1_freq_mhz.attr,
&dev_attr_gt_RPn_freq_mhz.attr,
NULL,
};
static const struct attribute *vlv_attrs[] = {
&dev_attr_gt_cur_freq_mhz.attr,
&dev_attr_gt_max_freq_mhz.attr,
&dev_attr_gt_min_freq_mhz.attr,
&dev_attr_vlv_rpe_freq_mhz.attr,
NULL,
};
static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
struct device *kdev = container_of(kobj, struct device, kobj);
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
struct i915_error_state_file_priv error_priv;
struct drm_i915_error_state_buf error_str;
ssize_t ret_count = 0;
int ret;
memset(&error_priv, 0, sizeof(error_priv));
ret = i915_error_state_buf_init(&error_str, count, off);
if (ret)
return ret;
error_priv.dev = dev;
i915_error_state_get(dev, &error_priv);
ret = i915_error_state_to_str(&error_str, &error_priv);
if (ret)
goto out;
ret_count = count < error_str.bytes ? count : error_str.bytes;
memcpy(buf, error_str.buf, ret_count);
out:
i915_error_state_put(&error_priv);
i915_error_state_buf_release(&error_str);
return ret ?: ret_count;
}
static ssize_t error_state_write(struct file *file, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t off, size_t count)
{
struct device *kdev = container_of(kobj, struct device, kobj);
struct drm_minor *minor = dev_to_drm_minor(kdev);
struct drm_device *dev = minor->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return count;
}
static struct bin_attribute error_state_attr = {
.attr.name = "error",
.attr.mode = S_IRUSR | S_IWUSR,
.size = 0,
.read = error_state_read,
.write = error_state_write,
};
void i915_setup_sysfs(struct drm_device *dev)
{
int ret;
#ifdef CONFIG_PM
if (INTEL_INFO(dev)->gen >= 6) {
ret = sysfs_merge_group(&dev->primary->kdev->kobj,
&rc6_attr_group);
if (ret)
DRM_ERROR("RC6 residency sysfs setup failed\n");
}
#endif
if (HAS_L3_DPF(dev)) {
ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
if (ret)
DRM_ERROR("l3 parity sysfs setup failed\n");
if (NUM_L3_SLICES(dev) > 1) {
ret = device_create_bin_file(dev->primary->kdev,
&dpf_attrs_1);
if (ret)
DRM_ERROR("l3 parity slice 1 setup failed\n");
}
}
ret = 0;
if (IS_VALLEYVIEW(dev))
ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
else if (INTEL_INFO(dev)->gen >= 6)
ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
if (ret)
DRM_ERROR("RPS sysfs setup failed\n");
ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
&error_state_attr);
if (ret)
DRM_ERROR("error_state sysfs setup failed\n");
}
void i915_teardown_sysfs(struct drm_device *dev)
{
sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
if (IS_VALLEYVIEW(dev))
sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
else
sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
#ifdef CONFIG_PM
sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
#endif
}