2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 13:13:57 +08:00
linux-next/drivers/iio/adc/twl6030-gpadc.c
Luis de Bethencourt 0df5a5488b iio: adc: twl6030-gpadc: Fix module autoload for OF platform driver
This platform driver has a OF device ID table but the OF module
alias information is not created so module autoloading won't work.

Signed-off-by: Luis de Bethencourt <luisbg@osg.samsung.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2015-09-23 20:23:24 +01:00

1011 lines
25 KiB
C

/*
* TWL6030 GPADC module driver
*
* Copyright (C) 2009-2013 Texas Instruments Inc.
* Nishant Kamat <nskamat@ti.com>
* Balaji T K <balajitk@ti.com>
* Graeme Gregory <gg@slimlogic.co.uk>
* Girish S Ghongdemath <girishsg@ti.com>
* Ambresh K <ambresh@ti.com>
* Oleksandr Kozaruk <oleksandr.kozaruk@ti.com
*
* Based on twl4030-madc.c
* Copyright (C) 2008 Nokia Corporation
* Mikko Ylinen <mikko.k.ylinen@nokia.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/i2c/twl.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define DRIVER_NAME "twl6030_gpadc"
/*
* twl6030 per TRM has 17 channels, and twl6032 has 19 channels
* 2 test network channels are not used,
* 2 die temperature channels are not used either, as it is not
* defined how to convert ADC value to temperature
*/
#define TWL6030_GPADC_USED_CHANNELS 13
#define TWL6030_GPADC_MAX_CHANNELS 15
#define TWL6032_GPADC_USED_CHANNELS 15
#define TWL6032_GPADC_MAX_CHANNELS 19
#define TWL6030_GPADC_NUM_TRIM_REGS 16
#define TWL6030_GPADC_CTRL_P1 0x05
#define TWL6032_GPADC_GPSELECT_ISB 0x07
#define TWL6032_GPADC_CTRL_P1 0x08
#define TWL6032_GPADC_GPCH0_LSB 0x0d
#define TWL6032_GPADC_GPCH0_MSB 0x0e
#define TWL6030_GPADC_CTRL_P1_SP1 BIT(3)
#define TWL6030_GPADC_GPCH0_LSB (0x29)
#define TWL6030_GPADC_RT_SW1_EOC_MASK BIT(5)
#define TWL6030_GPADC_TRIM1 0xCD
#define TWL6030_REG_TOGGLE1 0x90
#define TWL6030_GPADCS BIT(1)
#define TWL6030_GPADCR BIT(0)
/**
* struct twl6030_chnl_calib - channel calibration
* @gain: slope coefficient for ideal curve
* @gain_error: gain error
* @offset_error: offset of the real curve
*/
struct twl6030_chnl_calib {
s32 gain;
s32 gain_error;
s32 offset_error;
};
/**
* struct twl6030_ideal_code - GPADC calibration parameters
* GPADC is calibrated in two points: close to the beginning and
* to the and of the measurable input range
*
* @channel: channel number
* @code1: ideal code for the input at the beginning
* @code2: ideal code for at the end of the range
* @volt1: voltage input at the beginning(low voltage)
* @volt2: voltage input at the end(high voltage)
*/
struct twl6030_ideal_code {
int channel;
u16 code1;
u16 code2;
u16 volt1;
u16 volt2;
};
struct twl6030_gpadc_data;
/**
* struct twl6030_gpadc_platform_data - platform specific data
* @nchannels: number of GPADC channels
* @iio_channels: iio channels
* @twl6030_ideal: pointer to calibration parameters
* @start_conversion: pointer to ADC start conversion function
* @channel_to_reg pointer to ADC function to convert channel to
* register address for reading conversion result
* @calibrate: pointer to calibration function
*/
struct twl6030_gpadc_platform_data {
const int nchannels;
const struct iio_chan_spec *iio_channels;
const struct twl6030_ideal_code *ideal;
int (*start_conversion)(int channel);
u8 (*channel_to_reg)(int channel);
int (*calibrate)(struct twl6030_gpadc_data *gpadc);
};
/**
* struct twl6030_gpadc_data - GPADC data
* @dev: device pointer
* @lock: mutual exclusion lock for the structure
* @irq_complete: completion to signal end of conversion
* @twl6030_cal_tbl: pointer to calibration data for each
* channel with gain error and offset
* @pdata: pointer to device specific data
*/
struct twl6030_gpadc_data {
struct device *dev;
struct mutex lock;
struct completion irq_complete;
struct twl6030_chnl_calib *twl6030_cal_tbl;
const struct twl6030_gpadc_platform_data *pdata;
};
/*
* channels 11, 12, 13, 15 and 16 have no calibration data
* calibration offset is same for channels 1, 3, 4, 5
*
* The data is taken from GPADC_TRIM registers description.
* GPADC_TRIM registers keep difference between the code measured
* at volt1 and volt2 input voltages and corresponding code1 and code2
*/
static const struct twl6030_ideal_code
twl6030_ideal[TWL6030_GPADC_USED_CHANNELS] = {
[0] = { /* ch 0, external, battery type, resistor value */
.channel = 0,
.code1 = 116,
.code2 = 745,
.volt1 = 141,
.volt2 = 910,
},
[1] = { /* ch 1, external, battery temperature, NTC resistor value */
.channel = 1,
.code1 = 82,
.code2 = 900,
.volt1 = 100,
.volt2 = 1100,
},
[2] = { /* ch 2, external, audio accessory/general purpose */
.channel = 2,
.code1 = 55,
.code2 = 818,
.volt1 = 101,
.volt2 = 1499,
},
[3] = { /* ch 3, external, general purpose */
.channel = 3,
.code1 = 82,
.code2 = 900,
.volt1 = 100,
.volt2 = 1100,
},
[4] = { /* ch 4, external, temperature measurement/general purpose */
.channel = 4,
.code1 = 82,
.code2 = 900,
.volt1 = 100,
.volt2 = 1100,
},
[5] = { /* ch 5, external, general purpose */
.channel = 5,
.code1 = 82,
.code2 = 900,
.volt1 = 100,
.volt2 = 1100,
},
[6] = { /* ch 6, external, general purpose */
.channel = 6,
.code1 = 82,
.code2 = 900,
.volt1 = 100,
.volt2 = 1100,
},
[7] = { /* ch 7, internal, main battery */
.channel = 7,
.code1 = 614,
.code2 = 941,
.volt1 = 3001,
.volt2 = 4599,
},
[8] = { /* ch 8, internal, backup battery */
.channel = 8,
.code1 = 82,
.code2 = 688,
.volt1 = 501,
.volt2 = 4203,
},
[9] = { /* ch 9, internal, external charger input */
.channel = 9,
.code1 = 182,
.code2 = 818,
.volt1 = 2001,
.volt2 = 8996,
},
[10] = { /* ch 10, internal, VBUS */
.channel = 10,
.code1 = 149,
.code2 = 818,
.volt1 = 1001,
.volt2 = 5497,
},
[11] = { /* ch 11, internal, VBUS charging current */
.channel = 11,
},
/* ch 12, internal, Die temperature */
/* ch 13, internal, Die temperature */
[12] = { /* ch 14, internal, USB ID line */
.channel = 14,
.code1 = 48,
.code2 = 714,
.volt1 = 323,
.volt2 = 4800,
},
};
static const struct twl6030_ideal_code
twl6032_ideal[TWL6032_GPADC_USED_CHANNELS] = {
[0] = { /* ch 0, external, battery type, resistor value */
.channel = 0,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[1] = { /* ch 1, external, battery temperature, NTC resistor value */
.channel = 1,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[2] = { /* ch 2, external, audio accessory/general purpose */
.channel = 2,
.code1 = 1441,
.code2 = 3276,
.volt1 = 660,
.volt2 = 1500,
},
[3] = { /* ch 3, external, temperature with external diode/general
purpose */
.channel = 3,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[4] = { /* ch 4, external, temperature measurement/general purpose */
.channel = 4,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[5] = { /* ch 5, external, general purpose */
.channel = 5,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[6] = { /* ch 6, external, general purpose */
.channel = 6,
.code1 = 1441,
.code2 = 3276,
.volt1 = 440,
.volt2 = 1000,
},
[7] = { /* ch7, internal, system supply */
.channel = 7,
.code1 = 1441,
.code2 = 3276,
.volt1 = 2200,
.volt2 = 5000,
},
[8] = { /* ch8, internal, backup battery */
.channel = 8,
.code1 = 1441,
.code2 = 3276,
.volt1 = 2200,
.volt2 = 5000,
},
[9] = { /* ch 9, internal, external charger input */
.channel = 9,
.code1 = 1441,
.code2 = 3276,
.volt1 = 3960,
.volt2 = 9000,
},
[10] = { /* ch10, internal, VBUS */
.channel = 10,
.code1 = 150,
.code2 = 751,
.volt1 = 1000,
.volt2 = 5000,
},
[11] = { /* ch 11, internal, VBUS DC-DC output current */
.channel = 11,
.code1 = 1441,
.code2 = 3276,
.volt1 = 660,
.volt2 = 1500,
},
/* ch 12, internal, Die temperature */
/* ch 13, internal, Die temperature */
[12] = { /* ch 14, internal, USB ID line */
.channel = 14,
.code1 = 1441,
.code2 = 3276,
.volt1 = 2420,
.volt2 = 5500,
},
/* ch 15, internal, test network */
/* ch 16, internal, test network */
[13] = { /* ch 17, internal, battery charging current */
.channel = 17,
},
[14] = { /* ch 18, internal, battery voltage */
.channel = 18,
.code1 = 1441,
.code2 = 3276,
.volt1 = 2200,
.volt2 = 5000,
},
};
static inline int twl6030_gpadc_write(u8 reg, u8 val)
{
return twl_i2c_write_u8(TWL6030_MODULE_GPADC, val, reg);
}
static inline int twl6030_gpadc_read(u8 reg, u8 *val)
{
return twl_i2c_read(TWL6030_MODULE_GPADC, val, reg, 2);
}
static int twl6030_gpadc_enable_irq(u8 mask)
{
int ret;
ret = twl6030_interrupt_unmask(mask, REG_INT_MSK_LINE_B);
if (ret < 0)
return ret;
ret = twl6030_interrupt_unmask(mask, REG_INT_MSK_STS_B);
return ret;
}
static void twl6030_gpadc_disable_irq(u8 mask)
{
twl6030_interrupt_mask(mask, REG_INT_MSK_LINE_B);
twl6030_interrupt_mask(mask, REG_INT_MSK_STS_B);
}
static irqreturn_t twl6030_gpadc_irq_handler(int irq, void *indio_dev)
{
struct twl6030_gpadc_data *gpadc = iio_priv(indio_dev);
complete(&gpadc->irq_complete);
return IRQ_HANDLED;
}
static int twl6030_start_conversion(int channel)
{
return twl6030_gpadc_write(TWL6030_GPADC_CTRL_P1,
TWL6030_GPADC_CTRL_P1_SP1);
}
static int twl6032_start_conversion(int channel)
{
int ret;
ret = twl6030_gpadc_write(TWL6032_GPADC_GPSELECT_ISB, channel);
if (ret)
return ret;
return twl6030_gpadc_write(TWL6032_GPADC_CTRL_P1,
TWL6030_GPADC_CTRL_P1_SP1);
}
static u8 twl6030_channel_to_reg(int channel)
{
return TWL6030_GPADC_GPCH0_LSB + 2 * channel;
}
static u8 twl6032_channel_to_reg(int channel)
{
/*
* for any prior chosen channel, when the conversion is ready
* the result is avalable in GPCH0_LSB, GPCH0_MSB.
*/
return TWL6032_GPADC_GPCH0_LSB;
}
static int twl6030_gpadc_lookup(const struct twl6030_ideal_code *ideal,
int channel, int size)
{
int i;
for (i = 0; i < size; i++)
if (ideal[i].channel == channel)
break;
return i;
}
static int twl6030_channel_calibrated(const struct twl6030_gpadc_platform_data
*pdata, int channel)
{
const struct twl6030_ideal_code *ideal = pdata->ideal;
int i;
i = twl6030_gpadc_lookup(ideal, channel, pdata->nchannels);
/* not calibrated channels have 0 in all structure members */
return pdata->ideal[i].code2;
}
static int twl6030_gpadc_make_correction(struct twl6030_gpadc_data *gpadc,
int channel, int raw_code)
{
const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal;
int corrected_code;
int i;
i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels);
corrected_code = ((raw_code * 1000) -
gpadc->twl6030_cal_tbl[i].offset_error) /
gpadc->twl6030_cal_tbl[i].gain_error;
return corrected_code;
}
static int twl6030_gpadc_get_raw(struct twl6030_gpadc_data *gpadc,
int channel, int *res)
{
u8 reg = gpadc->pdata->channel_to_reg(channel);
__le16 val;
int raw_code;
int ret;
ret = twl6030_gpadc_read(reg, (u8 *)&val);
if (ret) {
dev_dbg(gpadc->dev, "unable to read register 0x%X\n", reg);
return ret;
}
raw_code = le16_to_cpu(val);
dev_dbg(gpadc->dev, "GPADC raw code: %d", raw_code);
if (twl6030_channel_calibrated(gpadc->pdata, channel))
*res = twl6030_gpadc_make_correction(gpadc, channel, raw_code);
else
*res = raw_code;
return ret;
}
static int twl6030_gpadc_get_processed(struct twl6030_gpadc_data *gpadc,
int channel, int *val)
{
const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal;
int corrected_code;
int channel_value;
int i;
int ret;
ret = twl6030_gpadc_get_raw(gpadc, channel, &corrected_code);
if (ret)
return ret;
i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels);
channel_value = corrected_code *
gpadc->twl6030_cal_tbl[i].gain;
/* Shift back into mV range */
channel_value /= 1000;
dev_dbg(gpadc->dev, "GPADC corrected code: %d", corrected_code);
dev_dbg(gpadc->dev, "GPADC value: %d", channel_value);
*val = channel_value;
return ret;
}
static int twl6030_gpadc_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long mask)
{
struct twl6030_gpadc_data *gpadc = iio_priv(indio_dev);
int ret;
long timeout;
mutex_lock(&gpadc->lock);
ret = gpadc->pdata->start_conversion(chan->channel);
if (ret) {
dev_err(gpadc->dev, "failed to start conversion\n");
goto err;
}
/* wait for conversion to complete */
timeout = wait_for_completion_interruptible_timeout(
&gpadc->irq_complete, msecs_to_jiffies(5000));
if (timeout == 0) {
ret = -ETIMEDOUT;
goto err;
} else if (timeout < 0) {
ret = -EINTR;
goto err;
}
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = twl6030_gpadc_get_raw(gpadc, chan->channel, val);
ret = ret ? -EIO : IIO_VAL_INT;
break;
case IIO_CHAN_INFO_PROCESSED:
ret = twl6030_gpadc_get_processed(gpadc, chan->channel, val);
ret = ret ? -EIO : IIO_VAL_INT;
break;
default:
break;
}
err:
mutex_unlock(&gpadc->lock);
return ret;
}
/*
* The GPADC channels are calibrated using a two point calibration method.
* The channels measured with two known values: volt1 and volt2, and
* ideal corresponding output codes are known: code1, code2.
* The difference(d1, d2) between ideal and measured codes stored in trim
* registers.
* The goal is to find offset and gain of the real curve for each calibrated
* channel.
* gain: k = 1 + ((d2 - d1) / (x2 - x1))
* offset: b = d1 + (k - 1) * x1
*/
static void twl6030_calibrate_channel(struct twl6030_gpadc_data *gpadc,
int channel, int d1, int d2)
{
int b, k, gain, x1, x2, i;
const struct twl6030_ideal_code *ideal = gpadc->pdata->ideal;
i = twl6030_gpadc_lookup(ideal, channel, gpadc->pdata->nchannels);
/* Gain */
gain = ((ideal[i].volt2 - ideal[i].volt1) * 1000) /
(ideal[i].code2 - ideal[i].code1);
x1 = ideal[i].code1;
x2 = ideal[i].code2;
/* k - real curve gain */
k = 1000 + (((d2 - d1) * 1000) / (x2 - x1));
/* b - offset of the real curve gain */
b = (d1 * 1000) - (k - 1000) * x1;
gpadc->twl6030_cal_tbl[i].gain = gain;
gpadc->twl6030_cal_tbl[i].gain_error = k;
gpadc->twl6030_cal_tbl[i].offset_error = b;
dev_dbg(gpadc->dev, "GPADC d1 for Chn: %d = %d\n", channel, d1);
dev_dbg(gpadc->dev, "GPADC d2 for Chn: %d = %d\n", channel, d2);
dev_dbg(gpadc->dev, "GPADC x1 for Chn: %d = %d\n", channel, x1);
dev_dbg(gpadc->dev, "GPADC x2 for Chn: %d = %d\n", channel, x2);
dev_dbg(gpadc->dev, "GPADC Gain for Chn: %d = %d\n", channel, gain);
dev_dbg(gpadc->dev, "GPADC k for Chn: %d = %d\n", channel, k);
dev_dbg(gpadc->dev, "GPADC b for Chn: %d = %d\n", channel, b);
}
static inline int twl6030_gpadc_get_trim_offset(s8 d)
{
/*
* XXX NOTE!
* bit 0 - sign, bit 7 - reserved, 6..1 - trim value
* though, the documentation states that trim value
* is absolute value, the correct conversion results are
* obtained if the value is interpreted as 2's complement.
*/
__u32 temp = ((d & 0x7f) >> 1) | ((d & 1) << 6);
return sign_extend32(temp, 6);
}
static int twl6030_calibration(struct twl6030_gpadc_data *gpadc)
{
int ret;
int chn;
u8 trim_regs[TWL6030_GPADC_NUM_TRIM_REGS];
s8 d1, d2;
/*
* for calibration two measurements have been performed at
* factory, for some channels, during the production test and
* have been stored in registers. This two stored values are
* used to correct the measurements. The values represent
* offsets for the given input from the output on ideal curve.
*/
ret = twl_i2c_read(TWL6030_MODULE_ID2, trim_regs,
TWL6030_GPADC_TRIM1, TWL6030_GPADC_NUM_TRIM_REGS);
if (ret < 0) {
dev_err(gpadc->dev, "calibration failed\n");
return ret;
}
for (chn = 0; chn < TWL6030_GPADC_MAX_CHANNELS; chn++) {
switch (chn) {
case 0:
d1 = trim_regs[0];
d2 = trim_regs[1];
break;
case 1:
case 3:
case 4:
case 5:
case 6:
d1 = trim_regs[4];
d2 = trim_regs[5];
break;
case 2:
d1 = trim_regs[12];
d2 = trim_regs[13];
break;
case 7:
d1 = trim_regs[6];
d2 = trim_regs[7];
break;
case 8:
d1 = trim_regs[2];
d2 = trim_regs[3];
break;
case 9:
d1 = trim_regs[8];
d2 = trim_regs[9];
break;
case 10:
d1 = trim_regs[10];
d2 = trim_regs[11];
break;
case 14:
d1 = trim_regs[14];
d2 = trim_regs[15];
break;
default:
continue;
}
d1 = twl6030_gpadc_get_trim_offset(d1);
d2 = twl6030_gpadc_get_trim_offset(d2);
twl6030_calibrate_channel(gpadc, chn, d1, d2);
}
return 0;
}
static int twl6032_get_trim_value(u8 *trim_regs, unsigned int reg0,
unsigned int reg1, unsigned int mask0, unsigned int mask1,
unsigned int shift0)
{
int val;
val = (trim_regs[reg0] & mask0) << shift0;
val |= (trim_regs[reg1] & mask1) >> 1;
if (trim_regs[reg1] & 0x01)
val = -val;
return val;
}
static int twl6032_calibration(struct twl6030_gpadc_data *gpadc)
{
int chn, d1 = 0, d2 = 0, temp;
u8 trim_regs[TWL6030_GPADC_NUM_TRIM_REGS];
int ret;
ret = twl_i2c_read(TWL6030_MODULE_ID2, trim_regs,
TWL6030_GPADC_TRIM1, TWL6030_GPADC_NUM_TRIM_REGS);
if (ret < 0) {
dev_err(gpadc->dev, "calibration failed\n");
return ret;
}
/*
* Loop to calculate the value needed for returning voltages from
* GPADC not values.
*
* gain is calculated to 3 decimal places fixed point.
*/
for (chn = 0; chn < TWL6032_GPADC_MAX_CHANNELS; chn++) {
switch (chn) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 11:
case 14:
d1 = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f,
0x06, 2);
d2 = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f,
0x06, 2);
break;
case 8:
temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f,
0x06, 2);
d1 = temp + twl6032_get_trim_value(trim_regs, 7, 6,
0x18, 0x1E, 1);
temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3F,
0x06, 2);
d2 = temp + twl6032_get_trim_value(trim_regs, 9, 7,
0x1F, 0x06, 2);
break;
case 9:
temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f,
0x06, 2);
d1 = temp + twl6032_get_trim_value(trim_regs, 13, 11,
0x18, 0x1E, 1);
temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f,
0x06, 2);
d2 = temp + twl6032_get_trim_value(trim_regs, 15, 13,
0x1F, 0x06, 1);
break;
case 10:
d1 = twl6032_get_trim_value(trim_regs, 10, 8, 0x0f,
0x0E, 3);
d2 = twl6032_get_trim_value(trim_regs, 14, 12, 0x0f,
0x0E, 3);
break;
case 7:
case 18:
temp = twl6032_get_trim_value(trim_regs, 2, 0, 0x1f,
0x06, 2);
d1 = (trim_regs[4] & 0x7E) >> 1;
if (trim_regs[4] & 0x01)
d1 = -d1;
d1 += temp;
temp = twl6032_get_trim_value(trim_regs, 3, 1, 0x3f,
0x06, 2);
d2 = (trim_regs[5] & 0xFE) >> 1;
if (trim_regs[5] & 0x01)
d2 = -d2;
d2 += temp;
break;
default:
/* No data for other channels */
continue;
}
twl6030_calibrate_channel(gpadc, chn, d1, d2);
}
return 0;
}
#define TWL6030_GPADC_CHAN(chn, _type, chan_info) { \
.type = _type, \
.channel = chn, \
.info_mask_separate = BIT(chan_info), \
.indexed = 1, \
}
static const struct iio_chan_spec twl6030_gpadc_iio_channels[] = {
TWL6030_GPADC_CHAN(0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(1, IIO_TEMP, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(3, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(4, IIO_TEMP, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(11, IIO_VOLTAGE, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
};
static const struct iio_chan_spec twl6032_gpadc_iio_channels[] = {
TWL6030_GPADC_CHAN(0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(1, IIO_TEMP, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(3, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(4, IIO_TEMP, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(11, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
TWL6030_GPADC_CHAN(17, IIO_VOLTAGE, IIO_CHAN_INFO_RAW),
TWL6030_GPADC_CHAN(18, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED),
};
static const struct iio_info twl6030_gpadc_iio_info = {
.read_raw = &twl6030_gpadc_read_raw,
.driver_module = THIS_MODULE,
};
static const struct twl6030_gpadc_platform_data twl6030_pdata = {
.iio_channels = twl6030_gpadc_iio_channels,
.nchannels = TWL6030_GPADC_USED_CHANNELS,
.ideal = twl6030_ideal,
.start_conversion = twl6030_start_conversion,
.channel_to_reg = twl6030_channel_to_reg,
.calibrate = twl6030_calibration,
};
static const struct twl6030_gpadc_platform_data twl6032_pdata = {
.iio_channels = twl6032_gpadc_iio_channels,
.nchannels = TWL6032_GPADC_USED_CHANNELS,
.ideal = twl6032_ideal,
.start_conversion = twl6032_start_conversion,
.channel_to_reg = twl6032_channel_to_reg,
.calibrate = twl6032_calibration,
};
static const struct of_device_id of_twl6030_match_tbl[] = {
{
.compatible = "ti,twl6030-gpadc",
.data = &twl6030_pdata,
},
{
.compatible = "ti,twl6032-gpadc",
.data = &twl6032_pdata,
},
{ /* end */ }
};
MODULE_DEVICE_TABLE(of, of_twl6030_match_tbl);
static int twl6030_gpadc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct twl6030_gpadc_data *gpadc;
const struct twl6030_gpadc_platform_data *pdata;
const struct of_device_id *match;
struct iio_dev *indio_dev;
int irq;
int ret;
match = of_match_device(of_twl6030_match_tbl, dev);
if (!match)
return -EINVAL;
pdata = match->data;
indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc));
if (!indio_dev)
return -ENOMEM;
gpadc = iio_priv(indio_dev);
gpadc->twl6030_cal_tbl = devm_kzalloc(dev,
sizeof(*gpadc->twl6030_cal_tbl) *
pdata->nchannels, GFP_KERNEL);
if (!gpadc->twl6030_cal_tbl)
return -ENOMEM;
gpadc->dev = dev;
gpadc->pdata = pdata;
platform_set_drvdata(pdev, indio_dev);
mutex_init(&gpadc->lock);
init_completion(&gpadc->irq_complete);
ret = pdata->calibrate(gpadc);
if (ret < 0) {
dev_err(&pdev->dev, "failed to read calibration registers\n");
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get irq\n");
return irq;
}
ret = devm_request_threaded_irq(dev, irq, NULL,
twl6030_gpadc_irq_handler,
IRQF_ONESHOT, "twl6030_gpadc", indio_dev);
ret = twl6030_gpadc_enable_irq(TWL6030_GPADC_RT_SW1_EOC_MASK);
if (ret < 0) {
dev_err(&pdev->dev, "failed to enable GPADC interrupt\n");
return ret;
}
ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCS,
TWL6030_REG_TOGGLE1);
if (ret < 0) {
dev_err(&pdev->dev, "failed to enable GPADC module\n");
return ret;
}
indio_dev->name = DRIVER_NAME;
indio_dev->dev.parent = dev;
indio_dev->info = &twl6030_gpadc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = pdata->iio_channels;
indio_dev->num_channels = pdata->nchannels;
return iio_device_register(indio_dev);
}
static int twl6030_gpadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
twl6030_gpadc_disable_irq(TWL6030_GPADC_RT_SW1_EOC_MASK);
iio_device_unregister(indio_dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int twl6030_gpadc_suspend(struct device *pdev)
{
int ret;
ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCR,
TWL6030_REG_TOGGLE1);
if (ret)
dev_err(pdev, "error resetting GPADC (%d)!\n", ret);
return 0;
};
static int twl6030_gpadc_resume(struct device *pdev)
{
int ret;
ret = twl_i2c_write_u8(TWL6030_MODULE_ID1, TWL6030_GPADCS,
TWL6030_REG_TOGGLE1);
if (ret)
dev_err(pdev, "error setting GPADC (%d)!\n", ret);
return 0;
};
#endif
static SIMPLE_DEV_PM_OPS(twl6030_gpadc_pm_ops, twl6030_gpadc_suspend,
twl6030_gpadc_resume);
static struct platform_driver twl6030_gpadc_driver = {
.probe = twl6030_gpadc_probe,
.remove = twl6030_gpadc_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &twl6030_gpadc_pm_ops,
.of_match_table = of_twl6030_match_tbl,
},
};
module_platform_driver(twl6030_gpadc_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Balaji T K <balajitk@ti.com>");
MODULE_AUTHOR("Graeme Gregory <gg@slimlogic.co.uk>");
MODULE_AUTHOR("Oleksandr Kozaruk <oleksandr.kozaruk@ti.com");
MODULE_DESCRIPTION("twl6030 ADC driver");
MODULE_LICENSE("GPL");