2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/drivers/serial/ucc_uart.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1536 lines
41 KiB
C

/*
* Freescale QUICC Engine UART device driver
*
* Author: Timur Tabi <timur@freescale.com>
*
* Copyright 2007 Freescale Semiconductor, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
* This driver adds support for UART devices via Freescale's QUICC Engine
* found on some Freescale SOCs.
*
* If Soft-UART support is needed but not already present, then this driver
* will request and upload the "Soft-UART" microcode upon probe. The
* filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
* is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
* (e.g. "11" for 1.1).
*/
#include <linux/module.h>
#include <linux/serial.h>
#include <linux/slab.h>
#include <linux/serial_core.h>
#include <linux/io.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/fs_uart_pd.h>
#include <asm/ucc_slow.h>
#include <linux/firmware.h>
#include <asm/reg.h>
/*
* The GUMR flag for Soft UART. This would normally be defined in qe.h,
* but Soft-UART is a hack and we want to keep everything related to it in
* this file.
*/
#define UCC_SLOW_GUMR_H_SUART 0x00004000 /* Soft-UART */
/*
* soft_uart is 1 if we need to use Soft-UART mode
*/
static int soft_uart;
/*
* firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
*/
static int firmware_loaded;
/* Enable this macro to configure all serial ports in internal loopback
mode */
/* #define LOOPBACK */
/* The major and minor device numbers are defined in
* http://www.lanana.org/docs/device-list/devices-2.6+.txt. For the QE
* UART, we have major number 204 and minor numbers 46 - 49, which are the
* same as for the CPM2. This decision was made because no Freescale part
* has both a CPM and a QE.
*/
#define SERIAL_QE_MAJOR 204
#define SERIAL_QE_MINOR 46
/* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
#define UCC_MAX_UART 4
/* The number of buffer descriptors for receiving characters. */
#define RX_NUM_FIFO 4
/* The number of buffer descriptors for transmitting characters. */
#define TX_NUM_FIFO 4
/* The maximum size of the character buffer for a single RX BD. */
#define RX_BUF_SIZE 32
/* The maximum size of the character buffer for a single TX BD. */
#define TX_BUF_SIZE 32
/*
* The number of jiffies to wait after receiving a close command before the
* device is actually closed. This allows the last few characters to be
* sent over the wire.
*/
#define UCC_WAIT_CLOSING 100
struct ucc_uart_pram {
struct ucc_slow_pram common;
u8 res1[8]; /* reserved */
__be16 maxidl; /* Maximum idle chars */
__be16 idlc; /* temp idle counter */
__be16 brkcr; /* Break count register */
__be16 parec; /* receive parity error counter */
__be16 frmec; /* receive framing error counter */
__be16 nosec; /* receive noise counter */
__be16 brkec; /* receive break condition counter */
__be16 brkln; /* last received break length */
__be16 uaddr[2]; /* UART address character 1 & 2 */
__be16 rtemp; /* Temp storage */
__be16 toseq; /* Transmit out of sequence char */
__be16 cchars[8]; /* control characters 1-8 */
__be16 rccm; /* receive control character mask */
__be16 rccr; /* receive control character register */
__be16 rlbc; /* receive last break character */
__be16 res2; /* reserved */
__be32 res3; /* reserved, should be cleared */
u8 res4; /* reserved, should be cleared */
u8 res5[3]; /* reserved, should be cleared */
__be32 res6; /* reserved, should be cleared */
__be32 res7; /* reserved, should be cleared */
__be32 res8; /* reserved, should be cleared */
__be32 res9; /* reserved, should be cleared */
__be32 res10; /* reserved, should be cleared */
__be32 res11; /* reserved, should be cleared */
__be32 res12; /* reserved, should be cleared */
__be32 res13; /* reserved, should be cleared */
/* The rest is for Soft-UART only */
__be16 supsmr; /* 0x90, Shadow UPSMR */
__be16 res92; /* 0x92, reserved, initialize to 0 */
__be32 rx_state; /* 0x94, RX state, initialize to 0 */
__be32 rx_cnt; /* 0x98, RX count, initialize to 0 */
u8 rx_length; /* 0x9C, Char length, set to 1+CL+PEN+1+SL */
u8 rx_bitmark; /* 0x9D, reserved, initialize to 0 */
u8 rx_temp_dlst_qe; /* 0x9E, reserved, initialize to 0 */
u8 res14[0xBC - 0x9F]; /* reserved */
__be32 dump_ptr; /* 0xBC, Dump pointer */
__be32 rx_frame_rem; /* 0xC0, reserved, initialize to 0 */
u8 rx_frame_rem_size; /* 0xC4, reserved, initialize to 0 */
u8 tx_mode; /* 0xC5, mode, 0=AHDLC, 1=UART */
__be16 tx_state; /* 0xC6, TX state */
u8 res15[0xD0 - 0xC8]; /* reserved */
__be32 resD0; /* 0xD0, reserved, initialize to 0 */
u8 resD4; /* 0xD4, reserved, initialize to 0 */
__be16 resD5; /* 0xD5, reserved, initialize to 0 */
} __attribute__ ((packed));
/* SUPSMR definitions, for Soft-UART only */
#define UCC_UART_SUPSMR_SL 0x8000
#define UCC_UART_SUPSMR_RPM_MASK 0x6000
#define UCC_UART_SUPSMR_RPM_ODD 0x0000
#define UCC_UART_SUPSMR_RPM_LOW 0x2000
#define UCC_UART_SUPSMR_RPM_EVEN 0x4000
#define UCC_UART_SUPSMR_RPM_HIGH 0x6000
#define UCC_UART_SUPSMR_PEN 0x1000
#define UCC_UART_SUPSMR_TPM_MASK 0x0C00
#define UCC_UART_SUPSMR_TPM_ODD 0x0000
#define UCC_UART_SUPSMR_TPM_LOW 0x0400
#define UCC_UART_SUPSMR_TPM_EVEN 0x0800
#define UCC_UART_SUPSMR_TPM_HIGH 0x0C00
#define UCC_UART_SUPSMR_FRZ 0x0100
#define UCC_UART_SUPSMR_UM_MASK 0x00c0
#define UCC_UART_SUPSMR_UM_NORMAL 0x0000
#define UCC_UART_SUPSMR_UM_MAN_MULTI 0x0040
#define UCC_UART_SUPSMR_UM_AUTO_MULTI 0x00c0
#define UCC_UART_SUPSMR_CL_MASK 0x0030
#define UCC_UART_SUPSMR_CL_8 0x0030
#define UCC_UART_SUPSMR_CL_7 0x0020
#define UCC_UART_SUPSMR_CL_6 0x0010
#define UCC_UART_SUPSMR_CL_5 0x0000
#define UCC_UART_TX_STATE_AHDLC 0x00
#define UCC_UART_TX_STATE_UART 0x01
#define UCC_UART_TX_STATE_X1 0x00
#define UCC_UART_TX_STATE_X16 0x80
#define UCC_UART_PRAM_ALIGNMENT 0x100
#define UCC_UART_SIZE_OF_BD UCC_SLOW_SIZE_OF_BD
#define NUM_CONTROL_CHARS 8
/* Private per-port data structure */
struct uart_qe_port {
struct uart_port port;
struct ucc_slow __iomem *uccp;
struct ucc_uart_pram __iomem *uccup;
struct ucc_slow_info us_info;
struct ucc_slow_private *us_private;
struct device_node *np;
unsigned int ucc_num; /* First ucc is 0, not 1 */
u16 rx_nrfifos;
u16 rx_fifosize;
u16 tx_nrfifos;
u16 tx_fifosize;
int wait_closing;
u32 flags;
struct qe_bd *rx_bd_base;
struct qe_bd *rx_cur;
struct qe_bd *tx_bd_base;
struct qe_bd *tx_cur;
unsigned char *tx_buf;
unsigned char *rx_buf;
void *bd_virt; /* virtual address of the BD buffers */
dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
unsigned int bd_size; /* size of BD buffer space */
};
static struct uart_driver ucc_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "ucc_uart",
.dev_name = "ttyQE",
.major = SERIAL_QE_MAJOR,
.minor = SERIAL_QE_MINOR,
.nr = UCC_MAX_UART,
};
/*
* Virtual to physical address translation.
*
* Given the virtual address for a character buffer, this function returns
* the physical (DMA) equivalent.
*/
static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
{
if (likely((addr >= qe_port->bd_virt)) &&
(addr < (qe_port->bd_virt + qe_port->bd_size)))
return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
/* something nasty happened */
printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
BUG();
return 0;
}
/*
* Physical to virtual address translation.
*
* Given the physical (DMA) address for a character buffer, this function
* returns the virtual equivalent.
*/
static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
{
/* sanity check */
if (likely((addr >= qe_port->bd_dma_addr) &&
(addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
/* something nasty happened */
printk(KERN_ERR "%s: addr=%x\n", __func__, addr);
BUG();
return NULL;
}
/*
* Return 1 if the QE is done transmitting all buffers for this port
*
* This function scans each BD in sequence. If we find a BD that is not
* ready (READY=1), then we return 0 indicating that the QE is still sending
* data. If we reach the last BD (WRAP=1), then we know we've scanned
* the entire list, and all BDs are done.
*/
static unsigned int qe_uart_tx_empty(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
struct qe_bd *bdp = qe_port->tx_bd_base;
while (1) {
if (in_be16(&bdp->status) & BD_SC_READY)
/* This BD is not done, so return "not done" */
return 0;
if (in_be16(&bdp->status) & BD_SC_WRAP)
/*
* This BD is done and it's the last one, so return
* "done"
*/
return 1;
bdp++;
};
}
/*
* Set the modem control lines
*
* Although the QE can control the modem control lines (e.g. CTS), we
* don't need that support. This function must exist, however, otherwise
* the kernel will panic.
*/
void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
/*
* Get the current modem control line status
*
* Although the QE can control the modem control lines (e.g. CTS), this
* driver currently doesn't support that, so we always return Carrier
* Detect, Data Set Ready, and Clear To Send.
*/
static unsigned int qe_uart_get_mctrl(struct uart_port *port)
{
return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
}
/*
* Disable the transmit interrupt.
*
* Although this function is called "stop_tx", it does not actually stop
* transmission of data. Instead, it tells the QE to not generate an
* interrupt when the UCC is finished sending characters.
*/
static void qe_uart_stop_tx(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
}
/*
* Transmit as many characters to the HW as possible.
*
* This function will attempt to stuff of all the characters from the
* kernel's transmit buffer into TX BDs.
*
* A return value of non-zero indicates that it successfully stuffed all
* characters from the kernel buffer.
*
* A return value of zero indicates that there are still characters in the
* kernel's buffer that have not been transmitted, but there are no more BDs
* available. This function should be called again after a BD has been made
* available.
*/
static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
{
struct qe_bd *bdp;
unsigned char *p;
unsigned int count;
struct uart_port *port = &qe_port->port;
struct circ_buf *xmit = &port->state->xmit;
bdp = qe_port->rx_cur;
/* Handle xon/xoff */
if (port->x_char) {
/* Pick next descriptor and fill from buffer */
bdp = qe_port->tx_cur;
p = qe2cpu_addr(bdp->buf, qe_port);
*p++ = port->x_char;
out_be16(&bdp->length, 1);
setbits16(&bdp->status, BD_SC_READY);
/* Get next BD. */
if (in_be16(&bdp->status) & BD_SC_WRAP)
bdp = qe_port->tx_bd_base;
else
bdp++;
qe_port->tx_cur = bdp;
port->icount.tx++;
port->x_char = 0;
return 1;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
qe_uart_stop_tx(port);
return 0;
}
/* Pick next descriptor and fill from buffer */
bdp = qe_port->tx_cur;
while (!(in_be16(&bdp->status) & BD_SC_READY) &&
(xmit->tail != xmit->head)) {
count = 0;
p = qe2cpu_addr(bdp->buf, qe_port);
while (count < qe_port->tx_fifosize) {
*p++ = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
count++;
if (xmit->head == xmit->tail)
break;
}
out_be16(&bdp->length, count);
setbits16(&bdp->status, BD_SC_READY);
/* Get next BD. */
if (in_be16(&bdp->status) & BD_SC_WRAP)
bdp = qe_port->tx_bd_base;
else
bdp++;
}
qe_port->tx_cur = bdp;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit)) {
/* The kernel buffer is empty, so turn off TX interrupts. We
don't need to be told when the QE is finished transmitting
the data. */
qe_uart_stop_tx(port);
return 0;
}
return 1;
}
/*
* Start transmitting data
*
* This function will start transmitting any available data, if the port
* isn't already transmitting data.
*/
static void qe_uart_start_tx(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
/* If we currently are transmitting, then just return */
if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
return;
/* Otherwise, pump the port and start transmission */
if (qe_uart_tx_pump(qe_port))
setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
}
/*
* Stop transmitting data
*/
static void qe_uart_stop_rx(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
}
/*
* Enable status change interrupts
*
* We don't support status change interrupts, but we need to define this
* function otherwise the kernel will panic.
*/
static void qe_uart_enable_ms(struct uart_port *port)
{
}
/* Start or stop sending break signal
*
* This function controls the sending of a break signal. If break_state=1,
* then we start sending a break signal. If break_state=0, then we stop
* sending the break signal.
*/
static void qe_uart_break_ctl(struct uart_port *port, int break_state)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
if (break_state)
ucc_slow_stop_tx(qe_port->us_private);
else
ucc_slow_restart_tx(qe_port->us_private);
}
/* ISR helper function for receiving character.
*
* This function is called by the ISR to handling receiving characters
*/
static void qe_uart_int_rx(struct uart_qe_port *qe_port)
{
int i;
unsigned char ch, *cp;
struct uart_port *port = &qe_port->port;
struct tty_struct *tty = port->state->port.tty;
struct qe_bd *bdp;
u16 status;
unsigned int flg;
/* Just loop through the closed BDs and copy the characters into
* the buffer.
*/
bdp = qe_port->rx_cur;
while (1) {
status = in_be16(&bdp->status);
/* If this one is empty, then we assume we've read them all */
if (status & BD_SC_EMPTY)
break;
/* get number of characters, and check space in RX buffer */
i = in_be16(&bdp->length);
/* If we don't have enough room in RX buffer for the entire BD,
* then we try later, which will be the next RX interrupt.
*/
if (tty_buffer_request_room(tty, i) < i) {
dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
return;
}
/* get pointer */
cp = qe2cpu_addr(bdp->buf, qe_port);
/* loop through the buffer */
while (i-- > 0) {
ch = *cp++;
port->icount.rx++;
flg = TTY_NORMAL;
if (!i && status &
(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
goto handle_error;
if (uart_handle_sysrq_char(port, ch))
continue;
error_return:
tty_insert_flip_char(tty, ch, flg);
}
/* This BD is ready to be used again. Clear status. get next */
clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR |
BD_SC_OV | BD_SC_ID, BD_SC_EMPTY);
if (in_be16(&bdp->status) & BD_SC_WRAP)
bdp = qe_port->rx_bd_base;
else
bdp++;
}
/* Write back buffer pointer */
qe_port->rx_cur = bdp;
/* Activate BH processing */
tty_flip_buffer_push(tty);
return;
/* Error processing */
handle_error:
/* Statistics */
if (status & BD_SC_BR)
port->icount.brk++;
if (status & BD_SC_PR)
port->icount.parity++;
if (status & BD_SC_FR)
port->icount.frame++;
if (status & BD_SC_OV)
port->icount.overrun++;
/* Mask out ignored conditions */
status &= port->read_status_mask;
/* Handle the remaining ones */
if (status & BD_SC_BR)
flg = TTY_BREAK;
else if (status & BD_SC_PR)
flg = TTY_PARITY;
else if (status & BD_SC_FR)
flg = TTY_FRAME;
/* Overrun does not affect the current character ! */
if (status & BD_SC_OV)
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
#ifdef SUPPORT_SYSRQ
port->sysrq = 0;
#endif
goto error_return;
}
/* Interrupt handler
*
* This interrupt handler is called after a BD is processed.
*/
static irqreturn_t qe_uart_int(int irq, void *data)
{
struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
struct ucc_slow __iomem *uccp = qe_port->uccp;
u16 events;
/* Clear the interrupts */
events = in_be16(&uccp->ucce);
out_be16(&uccp->ucce, events);
if (events & UCC_UART_UCCE_BRKE)
uart_handle_break(&qe_port->port);
if (events & UCC_UART_UCCE_RX)
qe_uart_int_rx(qe_port);
if (events & UCC_UART_UCCE_TX)
qe_uart_tx_pump(qe_port);
return events ? IRQ_HANDLED : IRQ_NONE;
}
/* Initialize buffer descriptors
*
* This function initializes all of the RX and TX buffer descriptors.
*/
static void qe_uart_initbd(struct uart_qe_port *qe_port)
{
int i;
void *bd_virt;
struct qe_bd *bdp;
/* Set the physical address of the host memory buffers in the buffer
* descriptors, and the virtual address for us to work with.
*/
bd_virt = qe_port->bd_virt;
bdp = qe_port->rx_bd_base;
qe_port->rx_cur = qe_port->rx_bd_base;
for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT);
out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
out_be16(&bdp->length, 0);
bd_virt += qe_port->rx_fifosize;
bdp++;
}
/* */
out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT);
out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
out_be16(&bdp->length, 0);
/* Set the physical address of the host memory
* buffers in the buffer descriptors, and the
* virtual address for us to work with.
*/
bd_virt = qe_port->bd_virt +
L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
qe_port->tx_cur = qe_port->tx_bd_base;
bdp = qe_port->tx_bd_base;
for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
out_be16(&bdp->status, BD_SC_INTRPT);
out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
out_be16(&bdp->length, 0);
bd_virt += qe_port->tx_fifosize;
bdp++;
}
/* Loopback requires the preamble bit to be set on the first TX BD */
#ifdef LOOPBACK
setbits16(&qe_port->tx_cur->status, BD_SC_P);
#endif
out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT);
out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
out_be16(&bdp->length, 0);
}
/*
* Initialize a UCC for UART.
*
* This function configures a given UCC to be used as a UART device. Basic
* UCC initialization is handled in qe_uart_request_port(). This function
* does all the UART-specific stuff.
*/
static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
{
u32 cecr_subblock;
struct ucc_slow __iomem *uccp = qe_port->uccp;
struct ucc_uart_pram *uccup = qe_port->uccup;
unsigned int i;
/* First, disable TX and RX in the UCC */
ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
/* Program the UCC UART parameter RAM */
out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
out_be16(&uccup->common.mrblr, qe_port->rx_fifosize);
out_be16(&uccup->maxidl, 0x10);
out_be16(&uccup->brkcr, 1);
out_be16(&uccup->parec, 0);
out_be16(&uccup->frmec, 0);
out_be16(&uccup->nosec, 0);
out_be16(&uccup->brkec, 0);
out_be16(&uccup->uaddr[0], 0);
out_be16(&uccup->uaddr[1], 0);
out_be16(&uccup->toseq, 0);
for (i = 0; i < 8; i++)
out_be16(&uccup->cchars[i], 0xC000);
out_be16(&uccup->rccm, 0xc0ff);
/* Configure the GUMR registers for UART */
if (soft_uart) {
/* Soft-UART requires a 1X multiplier for TX */
clrsetbits_be32(&uccp->gumr_l,
UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
UCC_SLOW_GUMR_L_RDCR_MASK,
UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 |
UCC_SLOW_GUMR_L_RDCR_16);
clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
} else {
clrsetbits_be32(&uccp->gumr_l,
UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
UCC_SLOW_GUMR_L_RDCR_MASK,
UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 |
UCC_SLOW_GUMR_L_RDCR_16);
clrsetbits_be32(&uccp->gumr_h,
UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
UCC_SLOW_GUMR_H_RFW);
}
#ifdef LOOPBACK
clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
UCC_SLOW_GUMR_L_DIAG_LOOP);
clrsetbits_be32(&uccp->gumr_h,
UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
UCC_SLOW_GUMR_H_CDS);
#endif
/* Disable rx interrupts and clear all pending events. */
out_be16(&uccp->uccm, 0);
out_be16(&uccp->ucce, 0xffff);
out_be16(&uccp->udsr, 0x7e7e);
/* Initialize UPSMR */
out_be16(&uccp->upsmr, 0);
if (soft_uart) {
out_be16(&uccup->supsmr, 0x30);
out_be16(&uccup->res92, 0);
out_be32(&uccup->rx_state, 0);
out_be32(&uccup->rx_cnt, 0);
out_8(&uccup->rx_bitmark, 0);
out_8(&uccup->rx_length, 10);
out_be32(&uccup->dump_ptr, 0x4000);
out_8(&uccup->rx_temp_dlst_qe, 0);
out_be32(&uccup->rx_frame_rem, 0);
out_8(&uccup->rx_frame_rem_size, 0);
/* Soft-UART requires TX to be 1X */
out_8(&uccup->tx_mode,
UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1);
out_be16(&uccup->tx_state, 0);
out_8(&uccup->resD4, 0);
out_be16(&uccup->resD5, 0);
/* Set UART mode.
* Enable receive and transmit.
*/
/* From the microcode errata:
* 1.GUMR_L register, set mode=0010 (QMC).
* 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
* 3.Set GUMR_H[19:20] (Transparent mode)
* 4.Clear GUMR_H[26] (RFW)
* ...
* 6.Receiver must use 16x over sampling
*/
clrsetbits_be32(&uccp->gumr_l,
UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
UCC_SLOW_GUMR_L_RDCR_MASK,
UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 |
UCC_SLOW_GUMR_L_RDCR_16);
clrsetbits_be32(&uccp->gumr_h,
UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX |
UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
#ifdef LOOPBACK
clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
UCC_SLOW_GUMR_L_DIAG_LOOP);
clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP |
UCC_SLOW_GUMR_H_CDS);
#endif
cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
} else {
cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
QE_CR_PROTOCOL_UART, 0);
}
}
/*
* Initialize the port.
*/
static int qe_uart_startup(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
int ret;
/*
* If we're using Soft-UART mode, then we need to make sure the
* firmware has been uploaded first.
*/
if (soft_uart && !firmware_loaded) {
dev_err(port->dev, "Soft-UART firmware not uploaded\n");
return -ENODEV;
}
qe_uart_initbd(qe_port);
qe_uart_init_ucc(qe_port);
/* Install interrupt handler. */
ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
qe_port);
if (ret) {
dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
return ret;
}
/* Startup rx-int */
setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
return 0;
}
/*
* Shutdown the port.
*/
static void qe_uart_shutdown(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
struct ucc_slow __iomem *uccp = qe_port->uccp;
unsigned int timeout = 20;
/* Disable RX and TX */
/* Wait for all the BDs marked sent */
while (!qe_uart_tx_empty(port)) {
if (!--timeout) {
dev_warn(port->dev, "shutdown timeout\n");
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(2);
}
if (qe_port->wait_closing) {
/* Wait a bit longer */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(qe_port->wait_closing);
}
/* Stop uarts */
ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
/* Shut them really down and reinit buffer descriptors */
ucc_slow_graceful_stop_tx(qe_port->us_private);
qe_uart_initbd(qe_port);
free_irq(port->irq, qe_port);
}
/*
* Set the serial port parameters.
*/
static void qe_uart_set_termios(struct uart_port *port,
struct ktermios *termios, struct ktermios *old)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
struct ucc_slow __iomem *uccp = qe_port->uccp;
unsigned int baud;
unsigned long flags;
u16 upsmr = in_be16(&uccp->upsmr);
struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
u16 supsmr = in_be16(&uccup->supsmr);
u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
/* Character length programmed into the mode register is the
* sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
* 1 or 2 stop bits, minus 1.
* The value 'bits' counts this for us.
*/
/* byte size */
upsmr &= UCC_UART_UPSMR_CL_MASK;
supsmr &= UCC_UART_SUPSMR_CL_MASK;
switch (termios->c_cflag & CSIZE) {
case CS5:
upsmr |= UCC_UART_UPSMR_CL_5;
supsmr |= UCC_UART_SUPSMR_CL_5;
char_length += 5;
break;
case CS6:
upsmr |= UCC_UART_UPSMR_CL_6;
supsmr |= UCC_UART_SUPSMR_CL_6;
char_length += 6;
break;
case CS7:
upsmr |= UCC_UART_UPSMR_CL_7;
supsmr |= UCC_UART_SUPSMR_CL_7;
char_length += 7;
break;
default: /* case CS8 */
upsmr |= UCC_UART_UPSMR_CL_8;
supsmr |= UCC_UART_SUPSMR_CL_8;
char_length += 8;
break;
}
/* If CSTOPB is set, we want two stop bits */
if (termios->c_cflag & CSTOPB) {
upsmr |= UCC_UART_UPSMR_SL;
supsmr |= UCC_UART_SUPSMR_SL;
char_length++; /* + SL */
}
if (termios->c_cflag & PARENB) {
upsmr |= UCC_UART_UPSMR_PEN;
supsmr |= UCC_UART_SUPSMR_PEN;
char_length++; /* + PEN */
if (!(termios->c_cflag & PARODD)) {
upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
UCC_UART_UPSMR_TPM_MASK);
upsmr |= UCC_UART_UPSMR_RPM_EVEN |
UCC_UART_UPSMR_TPM_EVEN;
supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
UCC_UART_SUPSMR_TPM_MASK);
supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
UCC_UART_SUPSMR_TPM_EVEN;
}
}
/*
* Set up parity check flag
*/
port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
if (termios->c_iflag & INPCK)
port->read_status_mask |= BD_SC_FR | BD_SC_PR;
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= BD_SC_BR;
/*
* Characters to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= BD_SC_BR;
/*
* If we're ignore parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= BD_SC_OV;
}
/*
* !!! ignore all characters if CREAD is not set
*/
if ((termios->c_cflag & CREAD) == 0)
port->read_status_mask &= ~BD_SC_EMPTY;
baud = uart_get_baud_rate(port, termios, old, 0, 115200);
/* Do we really need a spinlock here? */
spin_lock_irqsave(&port->lock, flags);
out_be16(&uccp->upsmr, upsmr);
if (soft_uart) {
out_be16(&uccup->supsmr, supsmr);
out_8(&uccup->rx_length, char_length);
/* Soft-UART requires a 1X multiplier for TX */
qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
} else {
qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
}
spin_unlock_irqrestore(&port->lock, flags);
}
/*
* Return a pointer to a string that describes what kind of port this is.
*/
static const char *qe_uart_type(struct uart_port *port)
{
return "QE";
}
/*
* Allocate any memory and I/O resources required by the port.
*/
static int qe_uart_request_port(struct uart_port *port)
{
int ret;
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
struct ucc_slow_info *us_info = &qe_port->us_info;
struct ucc_slow_private *uccs;
unsigned int rx_size, tx_size;
void *bd_virt;
dma_addr_t bd_dma_addr = 0;
ret = ucc_slow_init(us_info, &uccs);
if (ret) {
dev_err(port->dev, "could not initialize UCC%u\n",
qe_port->ucc_num);
return ret;
}
qe_port->us_private = uccs;
qe_port->uccp = uccs->us_regs;
qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
qe_port->rx_bd_base = uccs->rx_bd;
qe_port->tx_bd_base = uccs->tx_bd;
/*
* Allocate the transmit and receive data buffers.
*/
rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
GFP_KERNEL);
if (!bd_virt) {
dev_err(port->dev, "could not allocate buffer descriptors\n");
return -ENOMEM;
}
qe_port->bd_virt = bd_virt;
qe_port->bd_dma_addr = bd_dma_addr;
qe_port->bd_size = rx_size + tx_size;
qe_port->rx_buf = bd_virt;
qe_port->tx_buf = qe_port->rx_buf + rx_size;
return 0;
}
/*
* Configure the port.
*
* We say we're a CPM-type port because that's mostly true. Once the device
* is configured, this driver operates almost identically to the CPM serial
* driver.
*/
static void qe_uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_CPM;
qe_uart_request_port(port);
}
}
/*
* Release any memory and I/O resources that were allocated in
* qe_uart_request_port().
*/
static void qe_uart_release_port(struct uart_port *port)
{
struct uart_qe_port *qe_port =
container_of(port, struct uart_qe_port, port);
struct ucc_slow_private *uccs = qe_port->us_private;
dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
qe_port->bd_dma_addr);
ucc_slow_free(uccs);
}
/*
* Verify that the data in serial_struct is suitable for this device.
*/
static int qe_uart_verify_port(struct uart_port *port,
struct serial_struct *ser)
{
if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
return -EINVAL;
if (ser->irq < 0 || ser->irq >= nr_irqs)
return -EINVAL;
if (ser->baud_base < 9600)
return -EINVAL;
return 0;
}
/* UART operations
*
* Details on these functions can be found in Documentation/serial/driver
*/
static struct uart_ops qe_uart_pops = {
.tx_empty = qe_uart_tx_empty,
.set_mctrl = qe_uart_set_mctrl,
.get_mctrl = qe_uart_get_mctrl,
.stop_tx = qe_uart_stop_tx,
.start_tx = qe_uart_start_tx,
.stop_rx = qe_uart_stop_rx,
.enable_ms = qe_uart_enable_ms,
.break_ctl = qe_uart_break_ctl,
.startup = qe_uart_startup,
.shutdown = qe_uart_shutdown,
.set_termios = qe_uart_set_termios,
.type = qe_uart_type,
.release_port = qe_uart_release_port,
.request_port = qe_uart_request_port,
.config_port = qe_uart_config_port,
.verify_port = qe_uart_verify_port,
};
/*
* Obtain the SOC model number and revision level
*
* This function parses the device tree to obtain the SOC model. It then
* reads the SVR register to the revision.
*
* The device tree stores the SOC model two different ways.
*
* The new way is:
*
* cpu@0 {
* compatible = "PowerPC,8323";
* device_type = "cpu";
* ...
*
*
* The old way is:
* PowerPC,8323@0 {
* device_type = "cpu";
* ...
*
* This code first checks the new way, and then the old way.
*/
static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
{
struct device_node *np;
const char *soc_string;
unsigned int svr;
unsigned int soc;
/* Find the CPU node */
np = of_find_node_by_type(NULL, "cpu");
if (!np)
return 0;
/* Find the compatible property */
soc_string = of_get_property(np, "compatible", NULL);
if (!soc_string)
/* No compatible property, so try the name. */
soc_string = np->name;
/* Extract the SOC number from the "PowerPC," string */
if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
return 0;
/* Get the revision from the SVR */
svr = mfspr(SPRN_SVR);
*rev_h = (svr >> 4) & 0xf;
*rev_l = svr & 0xf;
return soc;
}
/*
* requst_firmware_nowait() callback function
*
* This function is called by the kernel when a firmware is made available,
* or if it times out waiting for the firmware.
*/
static void uart_firmware_cont(const struct firmware *fw, void *context)
{
struct qe_firmware *firmware;
struct device *dev = context;
int ret;
if (!fw) {
dev_err(dev, "firmware not found\n");
return;
}
firmware = (struct qe_firmware *) fw->data;
if (firmware->header.length != fw->size) {
dev_err(dev, "invalid firmware\n");
goto out;
}
ret = qe_upload_firmware(firmware);
if (ret) {
dev_err(dev, "could not load firmware\n");
goto out;
}
firmware_loaded = 1;
out:
release_firmware(fw);
}
static int ucc_uart_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
struct device_node *np = ofdev->node;
const unsigned int *iprop; /* Integer OF properties */
const char *sprop; /* String OF properties */
struct uart_qe_port *qe_port = NULL;
struct resource res;
int ret;
/*
* Determine if we need Soft-UART mode
*/
if (of_find_property(np, "soft-uart", NULL)) {
dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
soft_uart = 1;
}
/*
* If we are using Soft-UART, determine if we need to upload the
* firmware, too.
*/
if (soft_uart) {
struct qe_firmware_info *qe_fw_info;
qe_fw_info = qe_get_firmware_info();
/* Check if the firmware has been uploaded. */
if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
firmware_loaded = 1;
} else {
char filename[32];
unsigned int soc;
unsigned int rev_h;
unsigned int rev_l;
soc = soc_info(&rev_h, &rev_l);
if (!soc) {
dev_err(&ofdev->dev, "unknown CPU model\n");
return -ENXIO;
}
sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
soc, rev_h, rev_l);
dev_info(&ofdev->dev, "waiting for firmware %s\n",
filename);
/*
* We call request_firmware_nowait instead of
* request_firmware so that the driver can load and
* initialize the ports without holding up the rest of
* the kernel. If hotplug support is enabled in the
* kernel, then we use it.
*/
ret = request_firmware_nowait(THIS_MODULE,
FW_ACTION_HOTPLUG, filename, &ofdev->dev,
GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
if (ret) {
dev_err(&ofdev->dev,
"could not load firmware %s\n",
filename);
return ret;
}
}
}
qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
if (!qe_port) {
dev_err(&ofdev->dev, "can't allocate QE port structure\n");
return -ENOMEM;
}
/* Search for IRQ and mapbase */
ret = of_address_to_resource(np, 0, &res);
if (ret) {
dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
kfree(qe_port);
return ret;
}
if (!res.start) {
dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
kfree(qe_port);
return -EINVAL;
}
qe_port->port.mapbase = res.start;
/* Get the UCC number (device ID) */
/* UCCs are numbered 1-7 */
iprop = of_get_property(np, "cell-index", NULL);
if (!iprop) {
iprop = of_get_property(np, "device-id", NULL);
if (!iprop) {
kfree(qe_port);
dev_err(&ofdev->dev, "UCC is unspecified in "
"device tree\n");
return -EINVAL;
}
}
if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) {
dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop);
kfree(qe_port);
return -ENODEV;
}
qe_port->ucc_num = *iprop - 1;
/*
* In the future, we should not require the BRG to be specified in the
* device tree. If no clock-source is specified, then just pick a BRG
* to use. This requires a new QE library function that manages BRG
* assignments.
*/
sprop = of_get_property(np, "rx-clock-name", NULL);
if (!sprop) {
dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
kfree(qe_port);
return -ENODEV;
}
qe_port->us_info.rx_clock = qe_clock_source(sprop);
if ((qe_port->us_info.rx_clock < QE_BRG1) ||
(qe_port->us_info.rx_clock > QE_BRG16)) {
dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
kfree(qe_port);
return -ENODEV;
}
#ifdef LOOPBACK
/* In internal loopback mode, TX and RX must use the same clock */
qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
#else
sprop = of_get_property(np, "tx-clock-name", NULL);
if (!sprop) {
dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
kfree(qe_port);
return -ENODEV;
}
qe_port->us_info.tx_clock = qe_clock_source(sprop);
#endif
if ((qe_port->us_info.tx_clock < QE_BRG1) ||
(qe_port->us_info.tx_clock > QE_BRG16)) {
dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
kfree(qe_port);
return -ENODEV;
}
/* Get the port number, numbered 0-3 */
iprop = of_get_property(np, "port-number", NULL);
if (!iprop) {
dev_err(&ofdev->dev, "missing port-number in device tree\n");
kfree(qe_port);
return -EINVAL;
}
qe_port->port.line = *iprop;
if (qe_port->port.line >= UCC_MAX_UART) {
dev_err(&ofdev->dev, "port-number must be 0-%u\n",
UCC_MAX_UART - 1);
kfree(qe_port);
return -EINVAL;
}
qe_port->port.irq = irq_of_parse_and_map(np, 0);
if (qe_port->port.irq == NO_IRQ) {
dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
qe_port->ucc_num + 1);
kfree(qe_port);
return -EINVAL;
}
/*
* Newer device trees have an "fsl,qe" compatible property for the QE
* node, but we still need to support older device trees.
*/
np = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!np) {
np = of_find_node_by_type(NULL, "qe");
if (!np) {
dev_err(&ofdev->dev, "could not find 'qe' node\n");
kfree(qe_port);
return -EINVAL;
}
}
iprop = of_get_property(np, "brg-frequency", NULL);
if (!iprop) {
dev_err(&ofdev->dev,
"missing brg-frequency in device tree\n");
kfree(qe_port);
return -EINVAL;
}
if (*iprop)
qe_port->port.uartclk = *iprop;
else {
/*
* Older versions of U-Boot do not initialize the brg-frequency
* property, so in this case we assume the BRG frequency is
* half the QE bus frequency.
*/
iprop = of_get_property(np, "bus-frequency", NULL);
if (!iprop) {
dev_err(&ofdev->dev,
"missing QE bus-frequency in device tree\n");
kfree(qe_port);
return -EINVAL;
}
if (*iprop)
qe_port->port.uartclk = *iprop / 2;
else {
dev_err(&ofdev->dev,
"invalid QE bus-frequency in device tree\n");
kfree(qe_port);
return -EINVAL;
}
}
spin_lock_init(&qe_port->port.lock);
qe_port->np = np;
qe_port->port.dev = &ofdev->dev;
qe_port->port.ops = &qe_uart_pops;
qe_port->port.iotype = UPIO_MEM;
qe_port->tx_nrfifos = TX_NUM_FIFO;
qe_port->tx_fifosize = TX_BUF_SIZE;
qe_port->rx_nrfifos = RX_NUM_FIFO;
qe_port->rx_fifosize = RX_BUF_SIZE;
qe_port->wait_closing = UCC_WAIT_CLOSING;
qe_port->port.fifosize = 512;
qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
qe_port->us_info.ucc_num = qe_port->ucc_num;
qe_port->us_info.regs = (phys_addr_t) res.start;
qe_port->us_info.irq = qe_port->port.irq;
qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
/* Make sure ucc_slow_init() initializes both TX and RX */
qe_port->us_info.init_tx = 1;
qe_port->us_info.init_rx = 1;
/* Add the port to the uart sub-system. This will cause
* qe_uart_config_port() to be called, so the us_info structure must
* be initialized.
*/
ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
if (ret) {
dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
qe_port->port.line);
kfree(qe_port);
return ret;
}
dev_set_drvdata(&ofdev->dev, qe_port);
dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
qe_port->ucc_num + 1, qe_port->port.line);
/* Display the mknod command for this device */
dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
qe_port->port.line, SERIAL_QE_MAJOR,
SERIAL_QE_MINOR + qe_port->port.line);
return 0;
}
static int ucc_uart_remove(struct of_device *ofdev)
{
struct uart_qe_port *qe_port = dev_get_drvdata(&ofdev->dev);
dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
dev_set_drvdata(&ofdev->dev, NULL);
kfree(qe_port);
return 0;
}
static struct of_device_id ucc_uart_match[] = {
{
.type = "serial",
.compatible = "ucc_uart",
},
{},
};
MODULE_DEVICE_TABLE(of, ucc_uart_match);
static struct of_platform_driver ucc_uart_of_driver = {
.owner = THIS_MODULE,
.name = "ucc_uart",
.match_table = ucc_uart_match,
.probe = ucc_uart_probe,
.remove = ucc_uart_remove,
};
static int __init ucc_uart_init(void)
{
int ret;
printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
#ifdef LOOPBACK
printk(KERN_INFO "ucc-uart: Using loopback mode\n");
#endif
ret = uart_register_driver(&ucc_uart_driver);
if (ret) {
printk(KERN_ERR "ucc-uart: could not register UART driver\n");
return ret;
}
ret = of_register_platform_driver(&ucc_uart_of_driver);
if (ret)
printk(KERN_ERR
"ucc-uart: could not register platform driver\n");
return ret;
}
static void __exit ucc_uart_exit(void)
{
printk(KERN_INFO
"Freescale QUICC Engine UART device driver unloading\n");
of_unregister_platform_driver(&ucc_uart_of_driver);
uart_unregister_driver(&ucc_uart_driver);
}
module_init(ucc_uart_init);
module_exit(ucc_uart_exit);
MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);