2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/drivers/net/atl1c/atl1c_hw.c
Jie Yang 43250ddd75 atl1c: Atheros L1C Gigabit Ethernet driver
Supporting AR8131, and AR8132.

Signed-off-by: Jie Yang <jie.yang@atheros.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-18 17:24:15 -08:00

528 lines
14 KiB
C

/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include "atl1c.h"
/*
* check_eeprom_exist
* return 1 if eeprom exist
*/
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
{
u32 data;
AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
if (data & TWSI_DEBUG_DEV_EXIST)
return 1;
return 0;
}
void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
{
u32 value;
/*
* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword
*/
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1])) ;
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* atl1c_get_permanent_address
* return 0 if get valid mac address,
*/
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
{
u32 addr[2];
u32 i;
u32 otp_ctrl_data;
u32 twsi_ctrl_data;
u8 eth_addr[ETH_ALEN];
/* init */
addr[0] = addr[1] = 0;
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
if (atl1c_check_eeprom_exist(hw)) {
/* Enable OTP CLK */
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
otp_ctrl_data |= OTP_CTRL_CLK_EN;
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
AT_WRITE_FLUSH(hw);
msleep(1);
}
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
msleep(10);
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
break;
}
if (i >= AT_TWSI_EEPROM_TIMEOUT)
return -1;
}
/* Disable OTP_CLK */
if (otp_ctrl_data & OTP_CTRL_CLK_EN) {
otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
AT_WRITE_FLUSH(hw);
msleep(1);
}
/* maybe MAC-address is from BIOS */
AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
*(u32 *) &eth_addr[2] = swab32(addr[0]);
*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
if (is_valid_ether_addr(eth_addr)) {
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
return 0;
}
return -1;
}
bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
{
int i;
int ret = false;
u32 otp_ctrl_data;
u32 control;
u32 data;
if (offset & 3)
return ret; /* address do not align */
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
AT_WRITE_REG(hw, REG_OTP_CTRL,
(otp_ctrl_data | OTP_CTRL_CLK_EN));
AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
for (i = 0; i < 10; i++) {
udelay(100);
AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
if (control & EEPROM_CTRL_RW)
break;
}
if (control & EEPROM_CTRL_RW) {
AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
data = data & 0xFFFF;
*p_value = swab32((data << 16) | (*p_value >> 16));
ret = true;
}
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
return ret;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
int atl1c_read_mac_addr(struct atl1c_hw *hw)
{
int err = 0;
err = atl1c_get_permanent_address(hw);
if (err)
random_ether_addr(hw->perm_mac_addr);
memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
return 0;
}
/*
* atl1c_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
{
u32 crc32;
u32 value = 0;
int i;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/*
* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper bit of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return -1;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return -1;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
{
u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK;
u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
~GIGA_CR_1000T_SPEED_MASK;
if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
mii_adv_data |= ADVERTISE_10HALF;
if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
mii_adv_data |= ADVERTISE_10FULL;
if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
mii_adv_data |= ADVERTISE_100HALF;
if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
mii_adv_data |= ADVERTISE_100FULL;
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL;
if (hw->ctrl_flags & ATL1C_LINK_CAP_1000M) {
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
mii_giga_ctrl_data |= ADVERTISE_1000HALF;
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
mii_giga_ctrl_data |= ADVERTISE_1000FULL;
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
mii_giga_ctrl_data |= ADVERTISE_1000HALF |
ADVERTISE_1000FULL;
}
if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0)
return -1;
return 0;
}
void atl1c_phy_disable(struct atl1c_hw *hw)
{
AT_WRITE_REGW(hw, REG_GPHY_CTRL,
GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
}
static void atl1c_phy_magic_data(struct atl1c_hw *hw)
{
u16 data;
data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
ANA_INTERVAL_SEL_TIMER_SHIFT);
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
ANA_SERDES_EN_LCKDT;
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
ANA_BP_SMALL_BW;
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
ANA_IECHO_ADJ_0_SHIFT);
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
return;
data &= ~ANA_TOP_PS_EN;
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
return;
data &= ~ANA_PS_HIB_EN;
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
}
}
int atl1c_phy_reset(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = hw->adapter;
struct pci_dev *pdev = adapter->pdev;
u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
int err;
if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
AT_WRITE_FLUSH(hw);
msleep(40);
phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
AT_WRITE_FLUSH(hw);
msleep(10);
/*Enable PHY LinkChange Interrupt */
err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
if (err) {
if (netif_msg_hw(adapter))
dev_err(&pdev->dev,
"Error enable PHY linkChange Interrupt\n");
return err;
}
if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
atl1c_phy_magic_data(hw);
return 0;
}
int atl1c_phy_init(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
struct pci_dev *pdev = adapter->pdev;
int ret_val;
u16 mii_bmcr_data = BMCR_RESET;
u16 phy_id1, phy_id2;
if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) ||
(atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) {
if (netif_msg_link(adapter))
dev_err(&pdev->dev, "Error get phy ID\n");
return -1;
}
switch (hw->media_type) {
case MEDIA_TYPE_AUTO_SENSOR:
ret_val = atl1c_phy_setup_adv(hw);
if (ret_val) {
if (netif_msg_link(adapter))
dev_err(&pdev->dev,
"Error Setting up Auto-Negotiation\n");
return ret_val;
}
mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
break;
case MEDIA_TYPE_100M_FULL:
mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX;
break;
case MEDIA_TYPE_100M_HALF:
mii_bmcr_data |= BMCR_SPEED_100;
break;
case MEDIA_TYPE_10M_FULL:
mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX;
break;
case MEDIA_TYPE_10M_HALF:
mii_bmcr_data |= BMCR_SPEED_10;
break;
default:
if (netif_msg_link(adapter))
dev_err(&pdev->dev, "Wrong Media type %d\n",
hw->media_type);
return -1;
break;
}
ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return 0;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
{
int err;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
if (err)
return err;
if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
return -1;
switch (phy_data & GIGA_PSSR_SPEED) {
case GIGA_PSSR_1000MBS:
*speed = SPEED_1000;
break;
case GIGA_PSSR_100MBS:
*speed = SPEED_100;
break;
case GIGA_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return -1;
break;
}
if (phy_data & GIGA_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
int atl1c_restart_autoneg(struct atl1c_hw *hw)
{
int err = 0;
u16 mii_bmcr_data = BMCR_RESET;
err = atl1c_phy_setup_adv(hw);
if (err)
return err;
mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
}