2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/drivers/media/dvb-frontends/stv0900_core.c
Max Kellermann bd336e6344 [media] dvb: make DVB frontend *_ops instances "const"
These are immutable.  Making them "const" allows the compiler to move
them to the "rodata" section.

Note that cxd2841er_t_c_ops cannot be made "const", because
cxd2841er_attach() modifies it.  Ouch!

[mchehab@s-opensource.com: fix merge conflicts]
Signed-off-by: Max Kellermann <max.kellermann@gmail.com>

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-11-18 15:00:22 -02:00

1982 lines
50 KiB
C

/*
* stv0900_core.c
*
* Driver for ST STV0900 satellite demodulator IC.
*
* Copyright (C) ST Microelectronics.
* Copyright (C) 2009 NetUP Inc.
* Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include "stv0900.h"
#include "stv0900_reg.h"
#include "stv0900_priv.h"
#include "stv0900_init.h"
int stvdebug = 1;
module_param_named(debug, stvdebug, int, 0644);
/* internal params node */
struct stv0900_inode {
/* pointer for internal params, one for each pair of demods */
struct stv0900_internal *internal;
struct stv0900_inode *next_inode;
};
/* first internal params */
static struct stv0900_inode *stv0900_first_inode;
/* find chip by i2c adapter and i2c address */
static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
u8 i2c_addr)
{
struct stv0900_inode *temp_chip = stv0900_first_inode;
if (temp_chip != NULL) {
/*
Search of the last stv0900 chip or
find it by i2c adapter and i2c address */
while ((temp_chip != NULL) &&
((temp_chip->internal->i2c_adap != i2c_adap) ||
(temp_chip->internal->i2c_addr != i2c_addr)))
temp_chip = temp_chip->next_inode;
}
return temp_chip;
}
/* deallocating chip */
static void remove_inode(struct stv0900_internal *internal)
{
struct stv0900_inode *prev_node = stv0900_first_inode;
struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
internal->i2c_addr);
if (del_node != NULL) {
if (del_node == stv0900_first_inode) {
stv0900_first_inode = del_node->next_inode;
} else {
while (prev_node->next_inode != del_node)
prev_node = prev_node->next_inode;
if (del_node->next_inode == NULL)
prev_node->next_inode = NULL;
else
prev_node->next_inode =
prev_node->next_inode->next_inode;
}
kfree(del_node);
}
}
/* allocating new chip */
static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
{
struct stv0900_inode *new_node = stv0900_first_inode;
if (new_node == NULL) {
new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
stv0900_first_inode = new_node;
} else {
while (new_node->next_inode != NULL)
new_node = new_node->next_inode;
new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
GFP_KERNEL);
if (new_node->next_inode != NULL)
new_node = new_node->next_inode;
else
new_node = NULL;
}
if (new_node != NULL) {
new_node->internal = internal;
new_node->next_inode = NULL;
}
return new_node;
}
s32 ge2comp(s32 a, s32 width)
{
if (width == 32)
return a;
else
return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
}
void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr,
u8 reg_data)
{
u8 data[3];
int ret;
struct i2c_msg i2cmsg = {
.addr = intp->i2c_addr,
.flags = 0,
.len = 3,
.buf = data,
};
data[0] = MSB(reg_addr);
data[1] = LSB(reg_addr);
data[2] = reg_data;
ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
if (ret != 1)
dprintk("%s: i2c error %d\n", __func__, ret);
}
u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg)
{
int ret;
u8 b0[] = { MSB(reg), LSB(reg) };
u8 buf = 0;
struct i2c_msg msg[] = {
{
.addr = intp->i2c_addr,
.flags = 0,
.buf = b0,
.len = 2,
}, {
.addr = intp->i2c_addr,
.flags = I2C_M_RD,
.buf = &buf,
.len = 1,
},
};
ret = i2c_transfer(intp->i2c_adap, msg, 2);
if (ret != 2)
dprintk("%s: i2c error %d, reg[0x%02x]\n",
__func__, ret, reg);
return buf;
}
static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
{
u8 position = 0, i = 0;
(*mask) = label & 0xff;
while ((position == 0) && (i < 8)) {
position = ((*mask) >> i) & 0x01;
i++;
}
(*pos) = (i - 1);
}
void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
{
u8 reg, mask, pos;
reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
extract_mask_pos(label, &mask, &pos);
val = mask & (val << pos);
reg = (reg & (~mask)) | val;
stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
}
u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label)
{
u8 val = 0xff;
u8 mask, pos;
extract_mask_pos(label, &mask, &pos);
val = stv0900_read_reg(intp, label >> 16);
val = (val & mask) >> pos;
return val;
}
static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
{
s32 i;
if (intp == NULL)
return STV0900_INVALID_HANDLE;
intp->chip_id = stv0900_read_reg(intp, R0900_MID);
if (intp->errs != STV0900_NO_ERROR)
return intp->errs;
/*Startup sequence*/
stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c);
stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c);
msleep(3);
stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
msleep(3);
stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
switch (intp->clkmode) {
case 0:
case 2:
stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20
| intp->clkmode);
break;
default:
/* preserve SELOSCI bit */
i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
break;
}
msleep(3);
for (i = 0; i < 181; i++)
stv0900_write_reg(intp, STV0900_InitVal[i][0],
STV0900_InitVal[i][1]);
if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
for (i = 0; i < 32; i++)
stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
STV0900_Cut20_AddOnVal[i][1]);
}
stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01);
stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21);
stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20);
stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20);
stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
return STV0900_NO_ERROR;
}
static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
{
u32 mclk = 90000000, div = 0, ad_div = 0;
div = stv0900_get_bits(intp, F0900_M_DIV);
ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
mclk = (div + 1) * ext_clk / ad_div;
dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
return mclk;
}
static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
{
u32 m_div, clk_sel;
if (intp == NULL)
return STV0900_INVALID_HANDLE;
if (intp->errs)
return STV0900_I2C_ERROR;
dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
intp->quartz);
clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
m_div = ((clk_sel * mclk) / intp->quartz) - 1;
stv0900_write_bits(intp, F0900_M_DIV, m_div);
intp->mclk = stv0900_get_mclk_freq(intp,
intp->quartz);
/*Set the DiseqC frequency to 22KHz */
/*
Formula:
DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
*/
m_div = intp->mclk / 704000;
stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
if ((intp->errs))
return STV0900_I2C_ERROR;
return STV0900_NO_ERROR;
}
static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
enum fe_stv0900_demod_num demod)
{
u32 lsb, msb, hsb, err_val;
switch (cntr) {
case 0:
default:
hsb = stv0900_get_bits(intp, ERR_CNT12);
msb = stv0900_get_bits(intp, ERR_CNT11);
lsb = stv0900_get_bits(intp, ERR_CNT10);
break;
case 1:
hsb = stv0900_get_bits(intp, ERR_CNT22);
msb = stv0900_get_bits(intp, ERR_CNT21);
lsb = stv0900_get_bits(intp, ERR_CNT20);
break;
}
err_val = (hsb << 16) + (msb << 8) + (lsb);
return err_val;
}
static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
stv0900_write_bits(intp, I2CT_ON, enable);
return 0;
}
static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
enum fe_stv0900_clock_type path1_ts,
enum fe_stv0900_clock_type path2_ts)
{
dprintk("%s\n", __func__);
if (intp->chip_id >= 0x20) {
switch (path1_ts) {
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
switch (path2_ts) {
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
stv0900_write_reg(intp, R0900_TSGENERAL,
0x00);
break;
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
stv0900_write_reg(intp, R0900_TSGENERAL,
0x06);
stv0900_write_bits(intp,
F0900_P1_TSFIFO_MANSPEED, 3);
stv0900_write_bits(intp,
F0900_P2_TSFIFO_MANSPEED, 0);
stv0900_write_reg(intp,
R0900_P1_TSSPEED, 0x14);
stv0900_write_reg(intp,
R0900_P2_TSSPEED, 0x28);
break;
}
break;
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
switch (path2_ts) {
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
stv0900_write_reg(intp,
R0900_TSGENERAL, 0x0C);
break;
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
stv0900_write_reg(intp,
R0900_TSGENERAL, 0x0A);
dprintk("%s: 0x0a\n", __func__);
break;
}
break;
}
} else {
switch (path1_ts) {
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
switch (path2_ts) {
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
stv0900_write_reg(intp, R0900_TSGENERAL1X,
0x10);
break;
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
stv0900_write_reg(intp, R0900_TSGENERAL1X,
0x16);
stv0900_write_bits(intp,
F0900_P1_TSFIFO_MANSPEED, 3);
stv0900_write_bits(intp,
F0900_P2_TSFIFO_MANSPEED, 0);
stv0900_write_reg(intp, R0900_P1_TSSPEED,
0x14);
stv0900_write_reg(intp, R0900_P2_TSSPEED,
0x28);
break;
}
break;
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
switch (path2_ts) {
case STV0900_SERIAL_PUNCT_CLOCK:
case STV0900_SERIAL_CONT_CLOCK:
default:
stv0900_write_reg(intp, R0900_TSGENERAL1X,
0x14);
break;
case STV0900_PARALLEL_PUNCT_CLOCK:
case STV0900_DVBCI_CLOCK:
stv0900_write_reg(intp, R0900_TSGENERAL1X,
0x12);
dprintk("%s: 0x12\n", __func__);
break;
}
break;
}
}
switch (path1_ts) {
case STV0900_PARALLEL_PUNCT_CLOCK:
stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
break;
case STV0900_DVBCI_CLOCK:
stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
break;
case STV0900_SERIAL_PUNCT_CLOCK:
stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
break;
case STV0900_SERIAL_CONT_CLOCK:
stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
break;
default:
break;
}
switch (path2_ts) {
case STV0900_PARALLEL_PUNCT_CLOCK:
stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
break;
case STV0900_DVBCI_CLOCK:
stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
break;
case STV0900_SERIAL_PUNCT_CLOCK:
stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
break;
case STV0900_SERIAL_CONT_CLOCK:
stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
break;
default:
break;
}
stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
}
void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency,
u32 bandwidth)
{
struct dvb_frontend_ops *frontend_ops = NULL;
struct dvb_tuner_ops *tuner_ops = NULL;
frontend_ops = &fe->ops;
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_frequency) {
if ((tuner_ops->set_frequency(fe, frequency)) < 0)
dprintk("%s: Invalid parameter\n", __func__);
else
dprintk("%s: Frequency=%d\n", __func__, frequency);
}
if (tuner_ops->set_bandwidth) {
if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
dprintk("%s: Invalid parameter\n", __func__);
else
dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
}
}
void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
{
struct dvb_frontend_ops *frontend_ops = NULL;
struct dvb_tuner_ops *tuner_ops = NULL;
frontend_ops = &fe->ops;
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_bandwidth) {
if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
dprintk("%s: Invalid parameter\n", __func__);
else
dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
}
}
u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod)
{
u32 freq, round;
/* Formulat :
Tuner_Frequency(MHz) = Regs / 64
Tuner_granularity(MHz) = Regs / 2048
real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz)
*/
freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
(stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
stv0900_get_bits(intp, TUN_RFFREQ0);
freq = (freq * 1000) / 64;
round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
stv0900_get_bits(intp, TUN_RFRESTE0);
round = (round * 1000) / 2048;
return freq + round;
}
void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
u32 Bandwidth, int demod)
{
u32 tunerFrequency;
/* Formulat:
Tuner_frequency_reg= Frequency(MHz)*64
*/
tunerFrequency = (Frequency * 64) / 1000;
stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
/* Low Pass Filter = BW /2 (MHz)*/
stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
/* Tuner Write trig */
stv0900_write_reg(intp, TNRLD, 1);
}
static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
const struct stv0900_table *lookup,
enum fe_stv0900_demod_num demod)
{
s32 agc_gain = 0,
imin,
imax,
i,
rf_lvl = 0;
dprintk("%s\n", __func__);
if ((lookup == NULL) || (lookup->size <= 0))
return 0;
agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
stv0900_get_bits(intp, AGCIQ_VALUE0));
imin = 0;
imax = lookup->size - 1;
if (INRANGE(lookup->table[imin].regval, agc_gain,
lookup->table[imax].regval)) {
while ((imax - imin) > 1) {
i = (imax + imin) >> 1;
if (INRANGE(lookup->table[imin].regval,
agc_gain,
lookup->table[i].regval))
imax = i;
else
imin = i;
}
rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
rf_lvl *= (lookup->table[imax].realval -
lookup->table[imin].realval);
rf_lvl /= (lookup->table[imax].regval -
lookup->table[imin].regval);
rf_lvl += lookup->table[imin].realval;
} else if (agc_gain > lookup->table[0].regval)
rf_lvl = 5;
else if (agc_gain < lookup->table[lookup->size-1].regval)
rf_lvl = -100;
dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
return rf_lvl;
}
static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *internal = state->internal;
s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
state->demod);
rflevel = (rflevel + 100) * (65535 / 70);
if (rflevel < 0)
rflevel = 0;
if (rflevel > 65535)
rflevel = 65535;
*strength = rflevel;
return 0;
}
static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
const struct stv0900_table *lookup)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
s32 c_n = -100,
regval,
imin,
imax,
i,
noise_field1,
noise_field0;
dprintk("%s\n", __func__);
if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
noise_field1 = NOSPLHT_NORMED1;
noise_field0 = NOSPLHT_NORMED0;
} else {
noise_field1 = NOSDATAT_NORMED1;
noise_field0 = NOSDATAT_NORMED0;
}
if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
if ((lookup != NULL) && lookup->size) {
regval = 0;
msleep(5);
for (i = 0; i < 16; i++) {
regval += MAKEWORD(stv0900_get_bits(intp,
noise_field1),
stv0900_get_bits(intp,
noise_field0));
msleep(1);
}
regval /= 16;
imin = 0;
imax = lookup->size - 1;
if (INRANGE(lookup->table[imin].regval,
regval,
lookup->table[imax].regval)) {
while ((imax - imin) > 1) {
i = (imax + imin) >> 1;
if (INRANGE(lookup->table[imin].regval,
regval,
lookup->table[i].regval))
imax = i;
else
imin = i;
}
c_n = ((regval - lookup->table[imin].regval)
* (lookup->table[imax].realval
- lookup->table[imin].realval)
/ (lookup->table[imax].regval
- lookup->table[imin].regval))
+ lookup->table[imin].realval;
} else if (regval < lookup->table[imin].regval)
c_n = 1000;
}
}
return c_n;
}
static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
u8 err_val1, err_val0;
u32 header_err_val = 0;
*ucblocks = 0x0;
if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
/* DVB-S2 delineator errors count */
/* retreiving number for errnous headers */
err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
header_err_val = (err_val1 << 8) | err_val0;
/* retreiving number for errnous packets */
err_val1 = stv0900_read_reg(intp, UPCRCKO1);
err_val0 = stv0900_read_reg(intp, UPCRCKO0);
*ucblocks = (err_val1 << 8) | err_val0;
*ucblocks += header_err_val;
}
return 0;
}
static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
{
s32 snrlcl = stv0900_carr_get_quality(fe,
(const struct stv0900_table *)&stv0900_s2_cn);
snrlcl = (snrlcl + 30) * 384;
if (snrlcl < 0)
snrlcl = 0;
if (snrlcl > 65535)
snrlcl = 65535;
*snr = snrlcl;
return 0;
}
static u32 stv0900_get_ber(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
u32 ber = 10000000, i;
s32 demod_state;
demod_state = stv0900_get_bits(intp, HEADER_MODE);
switch (demod_state) {
case STV0900_SEARCH:
case STV0900_PLH_DETECTED:
default:
ber = 10000000;
break;
case STV0900_DVBS_FOUND:
ber = 0;
for (i = 0; i < 5; i++) {
msleep(5);
ber += stv0900_get_err_count(intp, 0, demod);
}
ber /= 5;
if (stv0900_get_bits(intp, PRFVIT)) {
ber *= 9766;
ber = ber >> 13;
}
break;
case STV0900_DVBS2_FOUND:
ber = 0;
for (i = 0; i < 5; i++) {
msleep(5);
ber += stv0900_get_err_count(intp, 0, demod);
}
ber /= 5;
if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
ber *= 9766;
ber = ber >> 13;
}
break;
}
return ber;
}
static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *internal = state->internal;
*ber = stv0900_get_ber(internal, state->demod);
return 0;
}
int stv0900_get_demod_lock(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod, s32 time_out)
{
s32 timer = 0,
lock = 0;
enum fe_stv0900_search_state dmd_state;
while ((timer < time_out) && (lock == 0)) {
dmd_state = stv0900_get_bits(intp, HEADER_MODE);
dprintk("Demod State = %d\n", dmd_state);
switch (dmd_state) {
case STV0900_SEARCH:
case STV0900_PLH_DETECTED:
default:
lock = 0;
break;
case STV0900_DVBS2_FOUND:
case STV0900_DVBS_FOUND:
lock = stv0900_get_bits(intp, LOCK_DEFINITIF);
break;
}
if (lock == 0)
msleep(10);
timer += 10;
}
if (lock)
dprintk("DEMOD LOCK OK\n");
else
dprintk("DEMOD LOCK FAIL\n");
return lock;
}
void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
s32 regflist,
i;
dprintk("%s\n", __func__);
regflist = MODCODLST0;
for (i = 0; i < 16; i++)
stv0900_write_reg(intp, regflist + i, 0xff);
}
void stv0900_activate_s2_modcod(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
u32 matype,
mod_code,
fmod,
reg_index,
field_index;
dprintk("%s\n", __func__);
if (intp->chip_id <= 0x11) {
msleep(5);
mod_code = stv0900_read_reg(intp, PLHMODCOD);
matype = mod_code & 0x3;
mod_code = (mod_code & 0x7f) >> 2;
reg_index = MODCODLSTF - mod_code / 2;
field_index = mod_code % 2;
switch (matype) {
case 0:
default:
fmod = 14;
break;
case 1:
fmod = 13;
break;
case 2:
fmod = 11;
break;
case 3:
fmod = 7;
break;
}
if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
&& (matype <= 1)) {
if (field_index == 0)
stv0900_write_reg(intp, reg_index,
0xf0 | fmod);
else
stv0900_write_reg(intp, reg_index,
(fmod << 4) | 0xf);
}
} else if (intp->chip_id >= 0x12) {
for (reg_index = 0; reg_index < 7; reg_index++)
stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
stv0900_write_reg(intp, MODCODLSTE, 0xff);
stv0900_write_reg(intp, MODCODLSTF, 0xcf);
for (reg_index = 0; reg_index < 8; reg_index++)
stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
}
}
void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
u32 reg_index;
dprintk("%s\n", __func__);
stv0900_write_reg(intp, MODCODLST0, 0xff);
stv0900_write_reg(intp, MODCODLST1, 0xf0);
stv0900_write_reg(intp, MODCODLSTF, 0x0f);
for (reg_index = 0; reg_index < 13; reg_index++)
stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
}
static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_CUSTOM;
}
void stv0900_start_search(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
u32 freq;
s16 freq_s16 ;
stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
if (intp->chip_id == 0x10)
stv0900_write_reg(intp, CORRELEXP, 0xaa);
if (intp->chip_id < 0x20)
stv0900_write_reg(intp, CARHDR, 0x55);
if (intp->chip_id <= 0x20) {
if (intp->symbol_rate[0] <= 5000000) {
stv0900_write_reg(intp, CARCFG, 0x44);
stv0900_write_reg(intp, CFRUP1, 0x0f);
stv0900_write_reg(intp, CFRUP0, 0xff);
stv0900_write_reg(intp, CFRLOW1, 0xf0);
stv0900_write_reg(intp, CFRLOW0, 0x00);
stv0900_write_reg(intp, RTCS2, 0x68);
} else {
stv0900_write_reg(intp, CARCFG, 0xc4);
stv0900_write_reg(intp, RTCS2, 0x44);
}
} else { /*cut 3.0 above*/
if (intp->symbol_rate[demod] <= 5000000)
stv0900_write_reg(intp, RTCS2, 0x68);
else
stv0900_write_reg(intp, RTCS2, 0x44);
stv0900_write_reg(intp, CARCFG, 0x46);
if (intp->srch_algo[demod] == STV0900_WARM_START) {
freq = 1000 << 16;
freq /= (intp->mclk / 1000);
freq_s16 = (s16)freq;
} else {
freq = (intp->srch_range[demod] / 2000);
if (intp->symbol_rate[demod] <= 5000000)
freq += 80;
else
freq += 600;
freq = freq << 16;
freq /= (intp->mclk / 1000);
freq_s16 = (s16)freq;
}
stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
freq_s16 *= (-1);
stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
}
stv0900_write_reg(intp, CFRINIT1, 0);
stv0900_write_reg(intp, CFRINIT0, 0);
if (intp->chip_id >= 0x20) {
stv0900_write_reg(intp, EQUALCFG, 0x41);
stv0900_write_reg(intp, FFECFG, 0x41);
if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
(intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
(intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
stv0900_write_reg(intp, VITSCALE,
0x82);
stv0900_write_reg(intp, VAVSRVIT, 0x0);
}
}
stv0900_write_reg(intp, SFRSTEP, 0x00);
stv0900_write_reg(intp, TMGTHRISE, 0xe0);
stv0900_write_reg(intp, TMGTHFALL, 0xc0);
stv0900_write_bits(intp, SCAN_ENABLE, 0);
stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0);
stv0900_write_reg(intp, RTC, 0x88);
if (intp->chip_id >= 0x20) {
if (intp->symbol_rate[demod] < 2000000) {
if (intp->chip_id <= 0x20)
stv0900_write_reg(intp, CARFREQ, 0x39);
else /*cut 3.0*/
stv0900_write_reg(intp, CARFREQ, 0x89);
stv0900_write_reg(intp, CARHDR, 0x40);
} else if (intp->symbol_rate[demod] < 10000000) {
stv0900_write_reg(intp, CARFREQ, 0x4c);
stv0900_write_reg(intp, CARHDR, 0x20);
} else {
stv0900_write_reg(intp, CARFREQ, 0x4b);
stv0900_write_reg(intp, CARHDR, 0x20);
}
} else {
if (intp->symbol_rate[demod] < 10000000)
stv0900_write_reg(intp, CARFREQ, 0xef);
else
stv0900_write_reg(intp, CARFREQ, 0xed);
}
switch (intp->srch_algo[demod]) {
case STV0900_WARM_START:
stv0900_write_reg(intp, DMDISTATE, 0x1f);
stv0900_write_reg(intp, DMDISTATE, 0x18);
break;
case STV0900_COLD_START:
stv0900_write_reg(intp, DMDISTATE, 0x1f);
stv0900_write_reg(intp, DMDISTATE, 0x15);
break;
default:
break;
}
}
u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode,
s32 pilot, u8 chip_id)
{
u8 aclc_value = 0x29;
s32 i, cllas2_size;
const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
dprintk("%s\n", __func__);
if (chip_id <= 0x12) {
cls2 = FE_STV0900_S2CarLoop;
cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
cllas2 = FE_STV0900_S2APSKCarLoopCut30;
cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
} else if (chip_id == 0x20) {
cls2 = FE_STV0900_S2CarLoopCut20;
cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
cllas2 = FE_STV0900_S2APSKCarLoopCut20;
cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut20);
} else {
cls2 = FE_STV0900_S2CarLoopCut30;
cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
cllas2 = FE_STV0900_S2APSKCarLoopCut30;
cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
}
if (modcode < STV0900_QPSK_12) {
i = 0;
while ((i < 3) && (modcode != cllqs2[i].modcode))
i++;
if (i >= 3)
i = 2;
} else {
i = 0;
while ((i < 14) && (modcode != cls2[i].modcode))
i++;
if (i >= 14) {
i = 0;
while ((i < 11) && (modcode != cllas2[i].modcode))
i++;
if (i >= 11)
i = 10;
}
}
if (modcode <= STV0900_QPSK_25) {
if (pilot) {
if (srate <= 3000000)
aclc_value = cllqs2[i].car_loop_pilots_on_2;
else if (srate <= 7000000)
aclc_value = cllqs2[i].car_loop_pilots_on_5;
else if (srate <= 15000000)
aclc_value = cllqs2[i].car_loop_pilots_on_10;
else if (srate <= 25000000)
aclc_value = cllqs2[i].car_loop_pilots_on_20;
else
aclc_value = cllqs2[i].car_loop_pilots_on_30;
} else {
if (srate <= 3000000)
aclc_value = cllqs2[i].car_loop_pilots_off_2;
else if (srate <= 7000000)
aclc_value = cllqs2[i].car_loop_pilots_off_5;
else if (srate <= 15000000)
aclc_value = cllqs2[i].car_loop_pilots_off_10;
else if (srate <= 25000000)
aclc_value = cllqs2[i].car_loop_pilots_off_20;
else
aclc_value = cllqs2[i].car_loop_pilots_off_30;
}
} else if (modcode <= STV0900_8PSK_910) {
if (pilot) {
if (srate <= 3000000)
aclc_value = cls2[i].car_loop_pilots_on_2;
else if (srate <= 7000000)
aclc_value = cls2[i].car_loop_pilots_on_5;
else if (srate <= 15000000)
aclc_value = cls2[i].car_loop_pilots_on_10;
else if (srate <= 25000000)
aclc_value = cls2[i].car_loop_pilots_on_20;
else
aclc_value = cls2[i].car_loop_pilots_on_30;
} else {
if (srate <= 3000000)
aclc_value = cls2[i].car_loop_pilots_off_2;
else if (srate <= 7000000)
aclc_value = cls2[i].car_loop_pilots_off_5;
else if (srate <= 15000000)
aclc_value = cls2[i].car_loop_pilots_off_10;
else if (srate <= 25000000)
aclc_value = cls2[i].car_loop_pilots_off_20;
else
aclc_value = cls2[i].car_loop_pilots_off_30;
}
} else if (i < cllas2_size) {
if (srate <= 3000000)
aclc_value = cllas2[i].car_loop_pilots_on_2;
else if (srate <= 7000000)
aclc_value = cllas2[i].car_loop_pilots_on_5;
else if (srate <= 15000000)
aclc_value = cllas2[i].car_loop_pilots_on_10;
else if (srate <= 25000000)
aclc_value = cllas2[i].car_loop_pilots_on_20;
else
aclc_value = cllas2[i].car_loop_pilots_on_30;
}
return aclc_value;
}
u8 stv0900_get_optim_short_carr_loop(s32 srate,
enum fe_stv0900_modulation modulation,
u8 chip_id)
{
const struct stv0900_short_frames_car_loop_optim *s2scl;
const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
s32 mod_index = 0;
u8 aclc_value = 0x0b;
dprintk("%s\n", __func__);
s2scl = FE_STV0900_S2ShortCarLoop;
s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
switch (modulation) {
case STV0900_QPSK:
default:
mod_index = 0;
break;
case STV0900_8PSK:
mod_index = 1;
break;
case STV0900_16APSK:
mod_index = 2;
break;
case STV0900_32APSK:
mod_index = 3;
break;
}
if (chip_id >= 0x30) {
if (srate <= 3000000)
aclc_value = s2sclc30[mod_index].car_loop_2;
else if (srate <= 7000000)
aclc_value = s2sclc30[mod_index].car_loop_5;
else if (srate <= 15000000)
aclc_value = s2sclc30[mod_index].car_loop_10;
else if (srate <= 25000000)
aclc_value = s2sclc30[mod_index].car_loop_20;
else
aclc_value = s2sclc30[mod_index].car_loop_30;
} else if (chip_id >= 0x20) {
if (srate <= 3000000)
aclc_value = s2scl[mod_index].car_loop_cut20_2;
else if (srate <= 7000000)
aclc_value = s2scl[mod_index].car_loop_cut20_5;
else if (srate <= 15000000)
aclc_value = s2scl[mod_index].car_loop_cut20_10;
else if (srate <= 25000000)
aclc_value = s2scl[mod_index].car_loop_cut20_20;
else
aclc_value = s2scl[mod_index].car_loop_cut20_30;
} else {
if (srate <= 3000000)
aclc_value = s2scl[mod_index].car_loop_cut12_2;
else if (srate <= 7000000)
aclc_value = s2scl[mod_index].car_loop_cut12_5;
else if (srate <= 15000000)
aclc_value = s2scl[mod_index].car_loop_cut12_10;
else if (srate <= 25000000)
aclc_value = s2scl[mod_index].car_loop_cut12_20;
else
aclc_value = s2scl[mod_index].car_loop_cut12_30;
}
return aclc_value;
}
static
enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
enum fe_stv0900_demod_mode LDPC_Mode,
enum fe_stv0900_demod_num demod)
{
s32 reg_ind;
dprintk("%s\n", __func__);
switch (LDPC_Mode) {
case STV0900_DUAL:
default:
if ((intp->demod_mode != STV0900_DUAL)
|| (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
intp->demod_mode = STV0900_DUAL;
stv0900_write_bits(intp, F0900_FRESFEC, 1);
stv0900_write_bits(intp, F0900_FRESFEC, 0);
for (reg_ind = 0; reg_ind < 7; reg_ind++)
stv0900_write_reg(intp,
R0900_P1_MODCODLST0 + reg_ind,
0xff);
for (reg_ind = 0; reg_ind < 8; reg_ind++)
stv0900_write_reg(intp,
R0900_P1_MODCODLST7 + reg_ind,
0xcc);
stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff);
stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf);
for (reg_ind = 0; reg_ind < 7; reg_ind++)
stv0900_write_reg(intp,
R0900_P2_MODCODLST0 + reg_ind,
0xff);
for (reg_ind = 0; reg_ind < 8; reg_ind++)
stv0900_write_reg(intp,
R0900_P2_MODCODLST7 + reg_ind,
0xcc);
stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff);
stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf);
}
break;
case STV0900_SINGLE:
if (demod == STV0900_DEMOD_2) {
stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1);
stv0900_activate_s2_modcod_single(intp,
STV0900_DEMOD_2);
stv0900_write_reg(intp, R0900_GENCFG, 0x06);
} else {
stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2);
stv0900_activate_s2_modcod_single(intp,
STV0900_DEMOD_1);
stv0900_write_reg(intp, R0900_GENCFG, 0x04);
}
intp->demod_mode = STV0900_SINGLE;
stv0900_write_bits(intp, F0900_FRESFEC, 1);
stv0900_write_bits(intp, F0900_FRESFEC, 0);
stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1);
stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0);
stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1);
stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0);
break;
}
return STV0900_NO_ERROR;
}
static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
struct stv0900_init_params *p_init)
{
struct stv0900_state *state = fe->demodulator_priv;
enum fe_stv0900_error error = STV0900_NO_ERROR;
enum fe_stv0900_error demodError = STV0900_NO_ERROR;
struct stv0900_internal *intp = NULL;
int selosci, i;
struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
state->config->demod_address);
dprintk("%s\n", __func__);
if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
state->internal = temp_int->internal;
(state->internal->dmds_used)++;
dprintk("%s: Find Internal Structure!\n", __func__);
return STV0900_NO_ERROR;
} else {
state->internal = kmalloc(sizeof(struct stv0900_internal),
GFP_KERNEL);
if (state->internal == NULL)
return STV0900_INVALID_HANDLE;
temp_int = append_internal(state->internal);
if (temp_int == NULL) {
kfree(state->internal);
state->internal = NULL;
return STV0900_INVALID_HANDLE;
}
state->internal->dmds_used = 1;
state->internal->i2c_adap = state->i2c_adap;
state->internal->i2c_addr = state->config->demod_address;
state->internal->clkmode = state->config->clkmode;
state->internal->errs = STV0900_NO_ERROR;
dprintk("%s: Create New Internal Structure!\n", __func__);
}
if (state->internal == NULL) {
error = STV0900_INVALID_HANDLE;
return error;
}
demodError = stv0900_initialize(state->internal);
if (demodError == STV0900_NO_ERROR) {
error = STV0900_NO_ERROR;
} else {
if (demodError == STV0900_INVALID_HANDLE)
error = STV0900_INVALID_HANDLE;
else
error = STV0900_I2C_ERROR;
return error;
}
intp = state->internal;
intp->demod_mode = p_init->demod_mode;
stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1);
intp->chip_id = stv0900_read_reg(intp, R0900_MID);
intp->rolloff = p_init->rolloff;
intp->quartz = p_init->dmd_ref_clk;
stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff);
stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff);
intp->ts_config = p_init->ts_config;
if (intp->ts_config == NULL)
stv0900_set_ts_parallel_serial(intp,
p_init->path1_ts_clock,
p_init->path2_ts_clock);
else {
for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
stv0900_write_reg(intp,
intp->ts_config[i].addr,
intp->ts_config[i].val);
stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
}
intp->tuner_type[0] = p_init->tuner1_type;
intp->tuner_type[1] = p_init->tuner2_type;
/* tuner init */
switch (p_init->tuner1_type) {
case 3: /*FE_AUTO_STB6100:*/
stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86);
stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3);
break;
/* case FE_SW_TUNER: */
default:
stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6);
break;
}
stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress);
switch (p_init->tuner1_adc) {
case 1:
stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
break;
default:
break;
}
stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
/* tuner init */
switch (p_init->tuner2_type) {
case 3: /*FE_AUTO_STB6100:*/
stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86);
stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3);
break;
/* case FE_SW_TUNER: */
default:
stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6);
break;
}
stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress);
switch (p_init->tuner2_adc) {
case 1:
stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
break;
default:
break;
}
stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv);
stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv);
stv0900_set_mclk(intp, 135000000);
msleep(3);
switch (intp->clkmode) {
case 0:
case 2:
stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
break;
default:
selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
break;
}
msleep(3);
intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
if (intp->errs)
error = STV0900_I2C_ERROR;
return error;
}
static int stv0900_status(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod)
{
enum fe_stv0900_search_state demod_state;
int locked = FALSE;
u8 tsbitrate0_val, tsbitrate1_val;
s32 bitrate;
demod_state = stv0900_get_bits(intp, HEADER_MODE);
switch (demod_state) {
case STV0900_SEARCH:
case STV0900_PLH_DETECTED:
default:
locked = FALSE;
break;
case STV0900_DVBS2_FOUND:
locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
stv0900_get_bits(intp, PKTDELIN_LOCK) &&
stv0900_get_bits(intp, TSFIFO_LINEOK);
break;
case STV0900_DVBS_FOUND:
locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
stv0900_get_bits(intp, LOCKEDVIT) &&
stv0900_get_bits(intp, TSFIFO_LINEOK);
break;
}
dprintk("%s: locked = %d\n", __func__, locked);
if (stvdebug) {
/* Print TS bitrate */
tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
/* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
* (tsbitrate1_val << 8 | tsbitrate0_val);
bitrate /= 16384;
dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
}
return locked;
}
static int stv0900_set_mis(struct stv0900_internal *intp,
enum fe_stv0900_demod_num demod, int mis)
{
dprintk("%s\n", __func__);
if (mis < 0 || mis > 255) {
dprintk("Disable MIS filtering\n");
stv0900_write_bits(intp, FILTER_EN, 0);
} else {
dprintk("Enable MIS filtering - %d\n", mis);
stv0900_write_bits(intp, FILTER_EN, 1);
stv0900_write_reg(intp, ISIENTRY, mis);
stv0900_write_reg(intp, ISIBITENA, 0xff);
}
return STV0900_NO_ERROR;
}
static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct stv0900_search_params p_search;
struct stv0900_signal_info p_result = intp->result[demod];
enum fe_stv0900_error error = STV0900_NO_ERROR;
dprintk("%s: ", __func__);
if (!(INRANGE(100000, c->symbol_rate, 70000000)))
return DVBFE_ALGO_SEARCH_FAILED;
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
stv0900_set_mis(intp, demod, c->stream_id);
p_result.locked = FALSE;
p_search.path = demod;
p_search.frequency = c->frequency;
p_search.symbol_rate = c->symbol_rate;
p_search.search_range = 10000000;
p_search.fec = STV0900_FEC_UNKNOWN;
p_search.standard = STV0900_AUTO_SEARCH;
p_search.iq_inversion = STV0900_IQ_AUTO;
p_search.search_algo = STV0900_BLIND_SEARCH;
/* Speeds up DVB-S searching */
if (c->delivery_system == SYS_DVBS)
p_search.standard = STV0900_SEARCH_DVBS1;
intp->srch_standard[demod] = p_search.standard;
intp->symbol_rate[demod] = p_search.symbol_rate;
intp->srch_range[demod] = p_search.search_range;
intp->freq[demod] = p_search.frequency;
intp->srch_algo[demod] = p_search.search_algo;
intp->srch_iq_inv[demod] = p_search.iq_inversion;
intp->fec[demod] = p_search.fec;
if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
(intp->errs == STV0900_NO_ERROR)) {
p_result.locked = intp->result[demod].locked;
p_result.standard = intp->result[demod].standard;
p_result.frequency = intp->result[demod].frequency;
p_result.symbol_rate = intp->result[demod].symbol_rate;
p_result.fec = intp->result[demod].fec;
p_result.modcode = intp->result[demod].modcode;
p_result.pilot = intp->result[demod].pilot;
p_result.frame_len = intp->result[demod].frame_len;
p_result.spectrum = intp->result[demod].spectrum;
p_result.rolloff = intp->result[demod].rolloff;
p_result.modulation = intp->result[demod].modulation;
} else {
p_result.locked = FALSE;
switch (intp->err[demod]) {
case STV0900_I2C_ERROR:
error = STV0900_I2C_ERROR;
break;
case STV0900_NO_ERROR:
default:
error = STV0900_SEARCH_FAILED;
break;
}
}
if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
dprintk("Search Success\n");
return DVBFE_ALGO_SEARCH_SUCCESS;
} else {
dprintk("Search Fail\n");
return DVBFE_ALGO_SEARCH_FAILED;
}
}
static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct stv0900_state *state = fe->demodulator_priv;
dprintk("%s: ", __func__);
if ((stv0900_status(state->internal, state->demod)) == TRUE) {
dprintk("DEMOD LOCK OK\n");
*status = FE_HAS_CARRIER
| FE_HAS_VITERBI
| FE_HAS_SYNC
| FE_HAS_LOCK;
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 1);
} else {
*status = 0;
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 0);
dprintk("DEMOD LOCK FAIL\n");
}
return 0;
}
static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
if (stop_ts == TRUE)
stv0900_write_bits(intp, RST_HWARE, 1);
else
stv0900_write_bits(intp, RST_HWARE, 0);
return 0;
}
static int stv0900_diseqc_init(struct dvb_frontend *fe)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
stv0900_write_bits(intp, DISEQC_RESET, 1);
stv0900_write_bits(intp, DISEQC_RESET, 0);
return 0;
}
static int stv0900_init(struct dvb_frontend *fe)
{
dprintk("%s\n", __func__);
stv0900_stop_ts(fe, 1);
stv0900_diseqc_init(fe);
return 0;
}
static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
u32 NbData, enum fe_stv0900_demod_num demod)
{
s32 i = 0;
stv0900_write_bits(intp, DIS_PRECHARGE, 1);
while (i < NbData) {
while (stv0900_get_bits(intp, FIFO_FULL))
;/* checkpatch complains */
stv0900_write_reg(intp, DISTXDATA, data[i]);
i++;
}
stv0900_write_bits(intp, DIS_PRECHARGE, 0);
i = 0;
while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
msleep(10);
i++;
}
return 0;
}
static int stv0900_send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct stv0900_state *state = fe->demodulator_priv;
return stv0900_diseqc_send(state->internal,
cmd->msg,
cmd->msg_len,
state->demod);
}
static int stv0900_send_burst(struct dvb_frontend *fe,
enum fe_sec_mini_cmd burst)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
u8 data;
switch (burst) {
case SEC_MINI_A:
stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
data = 0x00;
stv0900_diseqc_send(intp, &data, 1, state->demod);
break;
case SEC_MINI_B:
stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
data = 0xff;
stv0900_diseqc_send(intp, &data, 1, state->demod);
break;
}
return 0;
}
static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
struct dvb_diseqc_slave_reply *reply)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
s32 i = 0;
reply->msg_len = 0;
while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
msleep(10);
i++;
}
if (stv0900_get_bits(intp, RX_END)) {
reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
for (i = 0; i < reply->msg_len; i++)
reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
}
return 0;
}
static int stv0900_set_tone(struct dvb_frontend *fe,
enum fe_sec_tone_mode toneoff)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
switch (toneoff) {
case SEC_TONE_ON:
/*Set the DiseqC mode to 22Khz _continues_ tone*/
stv0900_write_bits(intp, DISTX_MODE, 0);
stv0900_write_bits(intp, DISEQC_RESET, 1);
/*release DiseqC reset to enable the 22KHz tone*/
stv0900_write_bits(intp, DISEQC_RESET, 0);
break;
case SEC_TONE_OFF:
/*return diseqc mode to config->diseqc_mode.
Usually it's without _continues_ tone */
stv0900_write_bits(intp, DISTX_MODE,
state->config->diseqc_mode);
/*maintain the DiseqC reset to disable the 22KHz tone*/
stv0900_write_bits(intp, DISEQC_RESET, 1);
stv0900_write_bits(intp, DISEQC_RESET, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static void stv0900_release(struct dvb_frontend *fe)
{
struct stv0900_state *state = fe->demodulator_priv;
dprintk("%s\n", __func__);
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 0);
if ((--(state->internal->dmds_used)) <= 0) {
dprintk("%s: Actually removing\n", __func__);
remove_inode(state->internal);
kfree(state->internal);
}
kfree(state);
}
static int stv0900_sleep(struct dvb_frontend *fe)
{
struct stv0900_state *state = fe->demodulator_priv;
dprintk("%s\n", __func__);
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 0);
return 0;
}
static int stv0900_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct stv0900_state *state = fe->demodulator_priv;
struct stv0900_internal *intp = state->internal;
enum fe_stv0900_demod_num demod = state->demod;
struct stv0900_signal_info p_result = intp->result[demod];
p->frequency = p_result.locked ? p_result.frequency : 0;
p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
return 0;
}
static const struct dvb_frontend_ops stv0900_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
.info = {
.name = "STV0900 frontend",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 125,
.frequency_tolerance = 0,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.symbol_rate_tolerance = 500,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 | FE_CAN_QPSK |
FE_CAN_2G_MODULATION |
FE_CAN_FEC_AUTO
},
.release = stv0900_release,
.init = stv0900_init,
.get_frontend = stv0900_get_frontend,
.sleep = stv0900_sleep,
.get_frontend_algo = stv0900_frontend_algo,
.i2c_gate_ctrl = stv0900_i2c_gate_ctrl,
.diseqc_send_master_cmd = stv0900_send_master_cmd,
.diseqc_send_burst = stv0900_send_burst,
.diseqc_recv_slave_reply = stv0900_recv_slave_reply,
.set_tone = stv0900_set_tone,
.search = stv0900_search,
.read_status = stv0900_read_status,
.read_ber = stv0900_read_ber,
.read_signal_strength = stv0900_read_signal_strength,
.read_snr = stv0900_read_snr,
.read_ucblocks = stv0900_read_ucblocks,
};
struct dvb_frontend *stv0900_attach(const struct stv0900_config *config,
struct i2c_adapter *i2c,
int demod)
{
struct stv0900_state *state = NULL;
struct stv0900_init_params init_params;
enum fe_stv0900_error err_stv0900;
state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
if (state == NULL)
goto error;
state->demod = demod;
state->config = config;
state->i2c_adap = i2c;
memcpy(&state->frontend.ops, &stv0900_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
switch (demod) {
case 0:
case 1:
init_params.dmd_ref_clk = config->xtal;
init_params.demod_mode = config->demod_mode;
init_params.rolloff = STV0900_35;
init_params.path1_ts_clock = config->path1_mode;
init_params.tun1_maddress = config->tun1_maddress;
init_params.tun1_iq_inv = STV0900_IQ_NORMAL;
init_params.tuner1_adc = config->tun1_adc;
init_params.tuner1_type = config->tun1_type;
init_params.path2_ts_clock = config->path2_mode;
init_params.ts_config = config->ts_config_regs;
init_params.tun2_maddress = config->tun2_maddress;
init_params.tuner2_adc = config->tun2_adc;
init_params.tuner2_type = config->tun2_type;
init_params.tun2_iq_inv = STV0900_IQ_SWAPPED;
err_stv0900 = stv0900_init_internal(&state->frontend,
&init_params);
if (err_stv0900)
goto error;
if (state->internal->chip_id >= 0x30)
state->frontend.ops.info.caps |= FE_CAN_MULTISTREAM;
break;
default:
goto error;
break;
}
dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod);
return &state->frontend;
error:
dprintk("%s: Failed to attach STV0900 demodulator(%d) \n",
__func__, demod);
kfree(state);
return NULL;
}
EXPORT_SYMBOL(stv0900_attach);
MODULE_PARM_DESC(debug, "Set debug");
MODULE_AUTHOR("Igor M. Liplianin");
MODULE_DESCRIPTION("ST STV0900 frontend");
MODULE_LICENSE("GPL");