2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/gpu/drm/i915/intel_pm.c
Ville Syrjälä bd2ef25d92 drm: Add drm_rotation_90_or_270()
We have intel_rotation_90_or_270() in i915 to check if the rotation is
90 or 270 degrees. Similar checks are elsewhere in drm, so let's move
the helper into a central place and use it everwhere.

v2: Drop the BIT()
    Convert all new intel_rotation_90_or_270() calls
    Deal with superfluous code shuffling

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> (v1)
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/1474907460-10717-2-git-send-email-ville.syrjala@linux.intel.com
2016-10-21 18:21:33 +02:00

7971 lines
224 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/cpufreq.h>
#include <drm/drm_plane_helper.h>
#include "i915_drv.h"
#include "intel_drv.h"
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
/**
* DOC: RC6
*
* RC6 is a special power stage which allows the GPU to enter an very
* low-voltage mode when idle, using down to 0V while at this stage. This
* stage is entered automatically when the GPU is idle when RC6 support is
* enabled, and as soon as new workload arises GPU wakes up automatically as well.
*
* There are different RC6 modes available in Intel GPU, which differentiate
* among each other with the latency required to enter and leave RC6 and
* voltage consumed by the GPU in different states.
*
* The combination of the following flags define which states GPU is allowed
* to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
* RC6pp is deepest RC6. Their support by hardware varies according to the
* GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
* which brings the most power savings; deeper states save more power, but
* require higher latency to switch to and wake up.
*/
#define INTEL_RC6_ENABLE (1<<0)
#define INTEL_RC6p_ENABLE (1<<1)
#define INTEL_RC6pp_ENABLE (1<<2)
static void gen9_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
I915_WRITE(GEN8_CONFIG0,
I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
/* WaEnableChickenDCPR:skl,bxt,kbl */
I915_WRITE(GEN8_CHICKEN_DCPR_1,
I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
/* WaFbcWakeMemOn:skl,bxt,kbl */
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS |
DISP_FBC_MEMORY_WAKE);
/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_DISABLE_DUMMY0);
}
static void bxt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
gen9_init_clock_gating(dev);
/* WaDisableSDEUnitClockGating:bxt */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* FIXME:
* GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
*/
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
/*
* Wa: Backlight PWM may stop in the asserted state, causing backlight
* to stay fully on.
*/
if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
}
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp;
tmp = I915_READ(CLKCFG);
switch (tmp & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_533:
dev_priv->fsb_freq = 533; /* 133*4 */
break;
case CLKCFG_FSB_800:
dev_priv->fsb_freq = 800; /* 200*4 */
break;
case CLKCFG_FSB_667:
dev_priv->fsb_freq = 667; /* 167*4 */
break;
case CLKCFG_FSB_400:
dev_priv->fsb_freq = 400; /* 100*4 */
break;
}
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
dev_priv->mem_freq = 533;
break;
case CLKCFG_MEM_667:
dev_priv->mem_freq = 667;
break;
case CLKCFG_MEM_800:
dev_priv->mem_freq = 800;
break;
}
/* detect pineview DDR3 setting */
tmp = I915_READ(CSHRDDR3CTL);
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u16 ddrpll, csipll;
ddrpll = I915_READ16(DDRMPLL1);
csipll = I915_READ16(CSIPLL0);
switch (ddrpll & 0xff) {
case 0xc:
dev_priv->mem_freq = 800;
break;
case 0x10:
dev_priv->mem_freq = 1066;
break;
case 0x14:
dev_priv->mem_freq = 1333;
break;
case 0x18:
dev_priv->mem_freq = 1600;
break;
default:
DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
dev_priv->mem_freq = 0;
break;
}
dev_priv->ips.r_t = dev_priv->mem_freq;
switch (csipll & 0x3ff) {
case 0x00c:
dev_priv->fsb_freq = 3200;
break;
case 0x00e:
dev_priv->fsb_freq = 3733;
break;
case 0x010:
dev_priv->fsb_freq = 4266;
break;
case 0x012:
dev_priv->fsb_freq = 4800;
break;
case 0x014:
dev_priv->fsb_freq = 5333;
break;
case 0x016:
dev_priv->fsb_freq = 5866;
break;
case 0x018:
dev_priv->fsb_freq = 6400;
break;
default:
DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
csipll & 0x3ff);
dev_priv->fsb_freq = 0;
break;
}
if (dev_priv->fsb_freq == 3200) {
dev_priv->ips.c_m = 0;
} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
dev_priv->ips.c_m = 1;
} else {
dev_priv->ips.c_m = 2;
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if (enable)
val &= ~FORCE_DDR_HIGH_FREQ;
else
val |= FORCE_DDR_HIGH_FREQ;
val &= ~FORCE_DDR_LOW_FREQ;
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
if (enable)
val |= DSP_MAXFIFO_PM5_ENABLE;
else
val &= ~DSP_MAXFIFO_PM5_ENABLE;
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
mutex_unlock(&dev_priv->rps.hw_lock);
}
#define FW_WM(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
struct drm_device *dev = &dev_priv->drm;
u32 val;
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
POSTING_READ(FW_BLC_SELF_VLV);
dev_priv->wm.vlv.cxsr = enable;
} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
POSTING_READ(FW_BLC_SELF);
} else if (IS_PINEVIEW(dev)) {
val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
I915_WRITE(DSPFW3, val);
POSTING_READ(DSPFW3);
} else if (IS_I945G(dev) || IS_I945GM(dev)) {
val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
_MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
I915_WRITE(FW_BLC_SELF, val);
POSTING_READ(FW_BLC_SELF);
} else if (IS_I915GM(dev)) {
/*
* FIXME can't find a bit like this for 915G, and
* and yet it does have the related watermark in
* FW_BLC_SELF. What's going on?
*/
val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
_MASKED_BIT_DISABLE(INSTPM_SELF_EN);
I915_WRITE(INSTPM, val);
POSTING_READ(INSTPM);
} else {
return;
}
DRM_DEBUG_KMS("memory self-refresh is %s\n",
enable ? "enabled" : "disabled");
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int pessimal_latency_ns = 5000;
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
static int vlv_get_fifo_size(struct drm_device *dev,
enum pipe pipe, int plane)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int sprite0_start, sprite1_start, size;
switch (pipe) {
uint32_t dsparb, dsparb2, dsparb3;
case PIPE_A:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
break;
case PIPE_B:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
break;
case PIPE_C:
dsparb2 = I915_READ(DSPARB2);
dsparb3 = I915_READ(DSPARB3);
sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
break;
default:
return 0;
}
switch (plane) {
case 0:
size = sprite0_start;
break;
case 1:
size = sprite1_start - sprite0_start;
break;
case 2:
size = 512 - 1 - sprite1_start;
break;
default:
return 0;
}
DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
pipe_name(pipe), plane == 0 ? "primary" : "sprite",
plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
size);
return size;
}
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_wm_info = {
.fifo_size = G4X_FIFO_SIZE,
.max_wm = G4X_MAX_WM,
.default_wm = G4X_MAX_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
.fifo_size = I945_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i915_wm_info = {
.fifo_size = I915_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_a_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_bc_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM/2,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i845_wm_info = {
.fifo_size = I830_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @cpp: bytes per pixel
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size, int cpp,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
wm_size = fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
/*
* Bspec seems to indicate that the value shouldn't be lower than
* 'burst size + 1'. Certainly 830 is quite unhappy with low values.
* Lets go for 8 which is the burst size since certain platforms
* already use a hardcoded 8 (which is what the spec says should be
* done).
*/
if (wm_size <= 8)
wm_size = 8;
return wm_size;
}
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
for_each_crtc(dev, crtc) {
if (intel_crtc_active(crtc)) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pineview_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
intel_set_memory_cxsr(dev_priv, false);
return;
}
crtc = single_enabled_crtc(dev);
if (crtc) {
const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
int clock = adjusted_mode->crtc_clock;
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
cpp, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= FW_WM(wm, SR);
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
cpp, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= FW_WM(wm, CURSOR_SR);
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
cpp, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= FW_WM(wm, HPLL_SR);
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
cpp, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= FW_WM(wm, HPLL_CURSOR);
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
intel_set_memory_cxsr(dev_priv, true);
} else {
intel_set_memory_cxsr(dev_priv, false);
}
}
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int htotal, hdisplay, clock, cpp;
int line_time_us, line_count;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (!intel_crtc_active(crtc)) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
/* Use the large buffer method to calculate cursor watermark */
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * crtc->cursor->state->crtc_w * cpp;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
return true;
}
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
return true;
}
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
int hdisplay, htotal, cpp, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
line_time_us = max(htotal * 1000 / clock, 1);
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * cpp;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * cpp / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * cpp * crtc->cursor->state->crtc_w;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
#define FW_WM_VLV(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
static void vlv_write_wm_values(struct intel_crtc *crtc,
const struct vlv_wm_values *wm)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
I915_WRITE(VLV_DDL(pipe),
(wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
(wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
(wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
(wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
I915_WRITE(DSPFW1,
FW_WM(wm->sr.plane, SR) |
FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
I915_WRITE(DSPFW2,
FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
I915_WRITE(DSPFW3,
FW_WM(wm->sr.cursor, CURSOR_SR));
if (IS_CHERRYVIEW(dev_priv)) {
I915_WRITE(DSPFW7_CHV,
FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
I915_WRITE(DSPFW8_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
I915_WRITE(DSPFW9_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
I915_WRITE(DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
} else {
I915_WRITE(DSPFW7,
FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
I915_WRITE(DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
}
/* zero (unused) WM1 watermarks */
I915_WRITE(DSPFW4, 0);
I915_WRITE(DSPFW5, 0);
I915_WRITE(DSPFW6, 0);
I915_WRITE(DSPHOWM1, 0);
POSTING_READ(DSPFW1);
}
#undef FW_WM_VLV
enum vlv_wm_level {
VLV_WM_LEVEL_PM2,
VLV_WM_LEVEL_PM5,
VLV_WM_LEVEL_DDR_DVFS,
};
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
unsigned int pipe_htotal,
unsigned int horiz_pixels,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = (latency * pixel_rate) / (pipe_htotal * 10000);
ret = (ret + 1) * horiz_pixels * cpp;
ret = DIV_ROUND_UP(ret, 64);
return ret;
}
static void vlv_setup_wm_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/* all latencies in usec */
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
}
}
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
struct intel_crtc *crtc,
const struct intel_plane_state *state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
int clock, htotal, cpp, width, wm;
if (dev_priv->wm.pri_latency[level] == 0)
return USHRT_MAX;
if (!state->base.visible)
return 0;
cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
clock = crtc->config->base.adjusted_mode.crtc_clock;
htotal = crtc->config->base.adjusted_mode.crtc_htotal;
width = crtc->config->pipe_src_w;
if (WARN_ON(htotal == 0))
htotal = 1;
if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
/*
* FIXME the formula gives values that are
* too big for the cursor FIFO, and hence we
* would never be able to use cursors. For
* now just hardcode the watermark.
*/
wm = 63;
} else {
wm = vlv_wm_method2(clock, htotal, width, cpp,
dev_priv->wm.pri_latency[level] * 10);
}
return min_t(int, wm, USHRT_MAX);
}
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct vlv_wm_state *wm_state = &crtc->wm_state;
struct intel_plane *plane;
unsigned int total_rate = 0;
const int fifo_size = 512 - 1;
int fifo_extra, fifo_left = fifo_size;
for_each_intel_plane_on_crtc(dev, crtc, plane) {
struct intel_plane_state *state =
to_intel_plane_state(plane->base.state);
if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
continue;
if (state->base.visible) {
wm_state->num_active_planes++;
total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
}
}
for_each_intel_plane_on_crtc(dev, crtc, plane) {
struct intel_plane_state *state =
to_intel_plane_state(plane->base.state);
unsigned int rate;
if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
plane->wm.fifo_size = 63;
continue;
}
if (!state->base.visible) {
plane->wm.fifo_size = 0;
continue;
}
rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
plane->wm.fifo_size = fifo_size * rate / total_rate;
fifo_left -= plane->wm.fifo_size;
}
fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
/* spread the remainder evenly */
for_each_intel_plane_on_crtc(dev, crtc, plane) {
int plane_extra;
if (fifo_left == 0)
break;
if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
continue;
/* give it all to the first plane if none are active */
if (plane->wm.fifo_size == 0 &&
wm_state->num_active_planes)
continue;
plane_extra = min(fifo_extra, fifo_left);
plane->wm.fifo_size += plane_extra;
fifo_left -= plane_extra;
}
WARN_ON(fifo_left != 0);
}
static void vlv_invert_wms(struct intel_crtc *crtc)
{
struct vlv_wm_state *wm_state = &crtc->wm_state;
int level;
for (level = 0; level < wm_state->num_levels; level++) {
struct drm_device *dev = crtc->base.dev;
const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
struct intel_plane *plane;
wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
for_each_intel_plane_on_crtc(dev, crtc, plane) {
switch (plane->base.type) {
int sprite;
case DRM_PLANE_TYPE_CURSOR:
wm_state->wm[level].cursor = plane->wm.fifo_size -
wm_state->wm[level].cursor;
break;
case DRM_PLANE_TYPE_PRIMARY:
wm_state->wm[level].primary = plane->wm.fifo_size -
wm_state->wm[level].primary;
break;
case DRM_PLANE_TYPE_OVERLAY:
sprite = plane->plane;
wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
wm_state->wm[level].sprite[sprite];
break;
}
}
}
}
static void vlv_compute_wm(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct vlv_wm_state *wm_state = &crtc->wm_state;
struct intel_plane *plane;
int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
int level;
memset(wm_state, 0, sizeof(*wm_state));
wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
wm_state->num_active_planes = 0;
vlv_compute_fifo(crtc);
if (wm_state->num_active_planes != 1)
wm_state->cxsr = false;
if (wm_state->cxsr) {
for (level = 0; level < wm_state->num_levels; level++) {
wm_state->sr[level].plane = sr_fifo_size;
wm_state->sr[level].cursor = 63;
}
}
for_each_intel_plane_on_crtc(dev, crtc, plane) {
struct intel_plane_state *state =
to_intel_plane_state(plane->base.state);
if (!state->base.visible)
continue;
/* normal watermarks */
for (level = 0; level < wm_state->num_levels; level++) {
int wm = vlv_compute_wm_level(plane, crtc, state, level);
int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
/* hack */
if (WARN_ON(level == 0 && wm > max_wm))
wm = max_wm;
if (wm > plane->wm.fifo_size)
break;
switch (plane->base.type) {
int sprite;
case DRM_PLANE_TYPE_CURSOR:
wm_state->wm[level].cursor = wm;
break;
case DRM_PLANE_TYPE_PRIMARY:
wm_state->wm[level].primary = wm;
break;
case DRM_PLANE_TYPE_OVERLAY:
sprite = plane->plane;
wm_state->wm[level].sprite[sprite] = wm;
break;
}
}
wm_state->num_levels = level;
if (!wm_state->cxsr)
continue;
/* maxfifo watermarks */
switch (plane->base.type) {
int sprite, level;
case DRM_PLANE_TYPE_CURSOR:
for (level = 0; level < wm_state->num_levels; level++)
wm_state->sr[level].cursor =
wm_state->wm[level].cursor;
break;
case DRM_PLANE_TYPE_PRIMARY:
for (level = 0; level < wm_state->num_levels; level++)
wm_state->sr[level].plane =
min(wm_state->sr[level].plane,
wm_state->wm[level].primary);
break;
case DRM_PLANE_TYPE_OVERLAY:
sprite = plane->plane;
for (level = 0; level < wm_state->num_levels; level++)
wm_state->sr[level].plane =
min(wm_state->sr[level].plane,
wm_state->wm[level].sprite[sprite]);
break;
}
}
/* clear any (partially) filled invalid levels */
for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
}
vlv_invert_wms(crtc);
}
#define VLV_FIFO(plane, value) \
(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_plane *plane;
int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
for_each_intel_plane_on_crtc(dev, crtc, plane) {
if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
WARN_ON(plane->wm.fifo_size != 63);
continue;
}
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
sprite0_start = plane->wm.fifo_size;
else if (plane->plane == 0)
sprite1_start = sprite0_start + plane->wm.fifo_size;
else
fifo_size = sprite1_start + plane->wm.fifo_size;
}
WARN_ON(fifo_size != 512 - 1);
DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
pipe_name(crtc->pipe), sprite0_start,
sprite1_start, fifo_size);
switch (crtc->pipe) {
uint32_t dsparb, dsparb2, dsparb3;
case PIPE_A:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
VLV_FIFO(SPRITEB, 0xff));
dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
VLV_FIFO(SPRITEB, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
VLV_FIFO(SPRITEB_HI, 0x1));
dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
I915_WRITE(DSPARB, dsparb);
I915_WRITE(DSPARB2, dsparb2);
break;
case PIPE_B:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
VLV_FIFO(SPRITED, 0xff));
dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
VLV_FIFO(SPRITED, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
VLV_FIFO(SPRITED_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
I915_WRITE(DSPARB, dsparb);
I915_WRITE(DSPARB2, dsparb2);
break;
case PIPE_C:
dsparb3 = I915_READ(DSPARB3);
dsparb2 = I915_READ(DSPARB2);
dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
VLV_FIFO(SPRITEF, 0xff));
dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
VLV_FIFO(SPRITEF, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
VLV_FIFO(SPRITEF_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
I915_WRITE(DSPARB3, dsparb3);
I915_WRITE(DSPARB2, dsparb2);
break;
default:
break;
}
}
#undef VLV_FIFO
static void vlv_merge_wm(struct drm_device *dev,
struct vlv_wm_values *wm)
{
struct intel_crtc *crtc;
int num_active_crtcs = 0;
wm->level = to_i915(dev)->wm.max_level;
wm->cxsr = true;
for_each_intel_crtc(dev, crtc) {
const struct vlv_wm_state *wm_state = &crtc->wm_state;
if (!crtc->active)
continue;
if (!wm_state->cxsr)
wm->cxsr = false;
num_active_crtcs++;
wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
}
if (num_active_crtcs != 1)
wm->cxsr = false;
if (num_active_crtcs > 1)
wm->level = VLV_WM_LEVEL_PM2;
for_each_intel_crtc(dev, crtc) {
struct vlv_wm_state *wm_state = &crtc->wm_state;
enum pipe pipe = crtc->pipe;
if (!crtc->active)
continue;
wm->pipe[pipe] = wm_state->wm[wm->level];
if (wm->cxsr)
wm->sr = wm_state->sr[wm->level];
wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
}
}
static void vlv_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct vlv_wm_values wm = {};
vlv_compute_wm(intel_crtc);
vlv_merge_wm(dev, &wm);
if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
/* FIXME should be part of crtc atomic commit */
vlv_pipe_set_fifo_size(intel_crtc);
return;
}
if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
chv_set_memory_dvfs(dev_priv, false);
if (wm.level < VLV_WM_LEVEL_PM5 &&
dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
chv_set_memory_pm5(dev_priv, false);
if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
intel_set_memory_cxsr(dev_priv, false);
/* FIXME should be part of crtc atomic commit */
vlv_pipe_set_fifo_size(intel_crtc);
vlv_write_wm_values(intel_crtc, &wm);
DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
"sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
intel_set_memory_cxsr(dev_priv, true);
if (wm.level >= VLV_WM_LEVEL_PM5 &&
dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
chv_set_memory_pm5(dev_priv, true);
if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
chv_set_memory_dvfs(dev_priv, true);
dev_priv->wm.vlv = wm;
}
#define single_plane_enabled(mask) is_power_of_2(mask)
static void g4x_update_wm(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = to_i915(dev);
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
bool cxsr_enabled;
if (g4x_compute_wm0(dev, PIPE_A,
&g4x_wm_info, pessimal_latency_ns,
&g4x_cursor_wm_info, pessimal_latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1 << PIPE_A;
if (g4x_compute_wm0(dev, PIPE_B,
&g4x_wm_info, pessimal_latency_ns,
&g4x_cursor_wm_info, pessimal_latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 1 << PIPE_B;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr)) {
cxsr_enabled = true;
} else {
cxsr_enabled = false;
intel_set_memory_cxsr(dev_priv, false);
plane_sr = cursor_sr = 0;
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
"B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
FW_WM(plane_sr, SR) |
FW_WM(cursorb_wm, CURSORB) |
FW_WM(planeb_wm, PLANEB) |
FW_WM(planea_wm, PLANEA));
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
FW_WM(cursora_wm, CURSORA));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
FW_WM(cursor_sr, CURSOR_SR));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i965_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
bool cxsr_enabled;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
unsigned long line_time_us;
int entries;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
cpp * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
cpp * crtc->cursor->state->crtc_w;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
cxsr_enabled = true;
} else {
cxsr_enabled = false;
/* Turn off self refresh if both pipes are enabled */
intel_set_memory_cxsr(dev_priv, false);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
FW_WM(8, CURSORB) |
FW_WM(8, PLANEB) |
FW_WM(8, PLANEA));
I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
FW_WM(8, PLANEC_OLD));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
#undef FW_WM
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i830_a_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
enabled = crtc;
} else {
planea_wm = fifo_size - wm_info->guard_size;
if (planea_wm > (long)wm_info->max_wm)
planea_wm = wm_info->max_wm;
}
if (IS_GEN2(dev))
wm_info = &i830_bc_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode;
int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
if (IS_GEN2(dev))
cpp = 4;
adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else {
planeb_wm = fifo_size - wm_info->guard_size;
if (planeb_wm > (long)wm_info->max_wm)
planeb_wm = wm_info->max_wm;
}
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
if (IS_I915GM(dev) && enabled) {
struct drm_i915_gem_object *obj;
obj = intel_fb_obj(enabled->primary->state->fb);
/* self-refresh seems busted with untiled */
if (!i915_gem_object_is_tiled(obj))
enabled = NULL;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
intel_set_memory_cxsr(dev_priv, false);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
unsigned long line_time_us;
int entries;
if (IS_I915GM(dev) || IS_I945GM(dev))
cpp = 4;
line_time_us = max(htotal * 1000 / clock, 1);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
cpp * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i845_update_wm(struct drm_crtc *unused_crtc)
{
struct drm_device *dev = unused_crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
uint32_t fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
&i845_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
4, pessimal_latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
{
uint32_t pixel_rate;
pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
* adjust the pixel_rate here. */
if (pipe_config->pch_pfit.enabled) {
uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
uint32_t pfit_size = pipe_config->pch_pfit.size;
pipe_w = pipe_config->pipe_src_w;
pipe_h = pipe_config->pipe_src_h;
pfit_w = (pfit_size >> 16) & 0xFFFF;
pfit_h = pfit_size & 0xFFFF;
if (pipe_w < pfit_w)
pipe_w = pfit_w;
if (pipe_h < pfit_h)
pipe_h = pfit_h;
if (WARN_ON(!pfit_w || !pfit_h))
return pixel_rate;
pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
pfit_w * pfit_h);
}
return pixel_rate;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
{
uint64_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
ret = (uint64_t) pixel_rate * cpp * latency;
ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
return ret;
}
/* latency must be in 0.1us units. */
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
uint32_t horiz_pixels, uint8_t cpp,
uint32_t latency)
{
uint32_t ret;
if (WARN(latency == 0, "Latency value missing\n"))
return UINT_MAX;
if (WARN_ON(!pipe_htotal))
return UINT_MAX;
ret = (latency * pixel_rate) / (pipe_htotal * 10000);
ret = (ret + 1) * horiz_pixels * cpp;
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
uint8_t cpp)
{
/*
* Neither of these should be possible since this function shouldn't be
* called if the CRTC is off or the plane is invisible. But let's be
* extra paranoid to avoid a potential divide-by-zero if we screw up
* elsewhere in the driver.
*/
if (WARN_ON(!cpp))
return 0;
if (WARN_ON(!horiz_pixels))
return 0;
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
}
struct ilk_wm_maximums {
uint16_t pri;
uint16_t spr;
uint16_t cur;
uint16_t fbc;
};
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
const struct intel_plane_state *pstate,
uint32_t mem_value,
bool is_lp)
{
int cpp = pstate->base.fb ?
drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
uint32_t method1, method2;
if (!cstate->base.active || !pstate->base.visible)
return 0;
method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
if (!is_lp)
return method1;
method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
cstate->base.adjusted_mode.crtc_htotal,
drm_rect_width(&pstate->base.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
const struct intel_plane_state *pstate,
uint32_t mem_value)
{
int cpp = pstate->base.fb ?
drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
uint32_t method1, method2;
if (!cstate->base.active || !pstate->base.visible)
return 0;
method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
cstate->base.adjusted_mode.crtc_htotal,
drm_rect_width(&pstate->base.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
const struct intel_plane_state *pstate,
uint32_t mem_value)
{
/*
* We treat the cursor plane as always-on for the purposes of watermark
* calculation. Until we have two-stage watermark programming merged,
* this is necessary to avoid flickering.
*/
int cpp = 4;
int width = pstate->base.visible ? pstate->base.crtc_w : 64;
if (!cstate->base.active)
return 0;
return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
cstate->base.adjusted_mode.crtc_htotal,
width, cpp, mem_value);
}
/* Only for WM_LP. */
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
const struct intel_plane_state *pstate,
uint32_t pri_val)
{
int cpp = pstate->base.fb ?
drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
if (!cstate->base.active || !pstate->base.visible)
return 0;
return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
}
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 3072;
else if (INTEL_INFO(dev)->gen >= 7)
return 768;
else
return 512;
}
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
int level, bool is_sprite)
{
if (INTEL_INFO(dev)->gen >= 8)
/* BDW primary/sprite plane watermarks */
return level == 0 ? 255 : 2047;
else if (INTEL_INFO(dev)->gen >= 7)
/* IVB/HSW primary/sprite plane watermarks */
return level == 0 ? 127 : 1023;
else if (!is_sprite)
/* ILK/SNB primary plane watermarks */
return level == 0 ? 127 : 511;
else
/* ILK/SNB sprite plane watermarks */
return level == 0 ? 63 : 255;
}
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
int level)
{
if (INTEL_INFO(dev)->gen >= 7)
return level == 0 ? 63 : 255;
else
return level == 0 ? 31 : 63;
}
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen >= 8)
return 31;
else
return 15;
}
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
bool is_sprite)
{
unsigned int fifo_size = ilk_display_fifo_size(dev);
/* if sprites aren't enabled, sprites get nothing */
if (is_sprite && !config->sprites_enabled)
return 0;
/* HSW allows LP1+ watermarks even with multiple pipes */
if (level == 0 || config->num_pipes_active > 1) {
fifo_size /= INTEL_INFO(dev)->num_pipes;
/*
* For some reason the non self refresh
* FIFO size is only half of the self
* refresh FIFO size on ILK/SNB.
*/
if (INTEL_INFO(dev)->gen <= 6)
fifo_size /= 2;
}
if (config->sprites_enabled) {
/* level 0 is always calculated with 1:1 split */
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
if (is_sprite)
fifo_size *= 5;
fifo_size /= 6;
} else {
fifo_size /= 2;
}
}
/* clamp to max that the registers can hold */
return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
}
/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
int level,
const struct intel_wm_config *config)
{
/* HSW LP1+ watermarks w/ multiple pipes */
if (level > 0 && config->num_pipes_active > 1)
return 64;
/* otherwise just report max that registers can hold */
return ilk_cursor_wm_reg_max(dev, level);
}
static void ilk_compute_wm_maximums(const struct drm_device *dev,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
max->cur = ilk_cursor_wm_max(dev, level, config);
max->fbc = ilk_fbc_wm_reg_max(dev);
}
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
int level,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_reg_max(dev, level, false);
max->spr = ilk_plane_wm_reg_max(dev, level, true);
max->cur = ilk_cursor_wm_reg_max(dev, level);
max->fbc = ilk_fbc_wm_reg_max(dev);
}
static bool ilk_validate_wm_level(int level,
const struct ilk_wm_maximums *max,
struct intel_wm_level *result)
{
bool ret;
/* already determined to be invalid? */
if (!result->enable)
return false;
result->enable = result->pri_val <= max->pri &&
result->spr_val <= max->spr &&
result->cur_val <= max->cur;
ret = result->enable;
/*
* HACK until we can pre-compute everything,
* and thus fail gracefully if LP0 watermarks
* are exceeded...
*/
if (level == 0 && !result->enable) {
if (result->pri_val > max->pri)
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
level, result->pri_val, max->pri);
if (result->spr_val > max->spr)
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
level, result->spr_val, max->spr);
if (result->cur_val > max->cur)
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
level, result->cur_val, max->cur);
result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
result->enable = true;
}
return ret;
}
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
const struct intel_crtc *intel_crtc,
int level,
struct intel_crtc_state *cstate,
struct intel_plane_state *pristate,
struct intel_plane_state *sprstate,
struct intel_plane_state *curstate,
struct intel_wm_level *result)
{
uint16_t pri_latency = dev_priv->wm.pri_latency[level];
uint16_t spr_latency = dev_priv->wm.spr_latency[level];
uint16_t cur_latency = dev_priv->wm.cur_latency[level];
/* WM1+ latency values stored in 0.5us units */
if (level > 0) {
pri_latency *= 5;
spr_latency *= 5;
cur_latency *= 5;
}
if (pristate) {
result->pri_val = ilk_compute_pri_wm(cstate, pristate,
pri_latency, level);
result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
}
if (sprstate)
result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
if (curstate)
result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
result->enable = true;
}
static uint32_t
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
{
const struct intel_atomic_state *intel_state =
to_intel_atomic_state(cstate->base.state);
const struct drm_display_mode *adjusted_mode =
&cstate->base.adjusted_mode;
u32 linetime, ips_linetime;
if (!cstate->base.active)
return 0;
if (WARN_ON(adjusted_mode->crtc_clock == 0))
return 0;
if (WARN_ON(intel_state->cdclk == 0))
return 0;
/* The WM are computed with base on how long it takes to fill a single
* row at the given clock rate, multiplied by 8.
* */
linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
adjusted_mode->crtc_clock);
ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
intel_state->cdclk);
return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
PIPE_WM_LINETIME_TIME(linetime);
}
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (IS_GEN9(dev)) {
uint32_t val;
int ret, i;
int level, max_level = ilk_wm_max_level(dev);
/* read the first set of memory latencies[0:3] */
val = 0; /* data0 to be programmed to 0 for first set */
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val);
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret) {
DRM_ERROR("SKL Mailbox read error = %d\n", ret);
return;
}
wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/* read the second set of memory latencies[4:7] */
val = 1; /* data0 to be programmed to 1 for second set */
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val);
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret) {
DRM_ERROR("SKL Mailbox read error = %d\n", ret);
return;
}
wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/*
* WaWmMemoryReadLatency:skl
*
* punit doesn't take into account the read latency so we need
* to add 2us to the various latency levels we retrieve from
* the punit.
* - W0 is a bit special in that it's the only level that
* can't be disabled if we want to have display working, so
* we always add 2us there.
* - For levels >=1, punit returns 0us latency when they are
* disabled, so we respect that and don't add 2us then
*
* Additionally, if a level n (n > 1) has a 0us latency, all
* levels m (m >= n) need to be disabled. We make sure to
* sanitize the values out of the punit to satisfy this
* requirement.
*/
wm[0] += 2;
for (level = 1; level <= max_level; level++)
if (wm[level] != 0)
wm[level] += 2;
else {
for (i = level + 1; i <= max_level; i++)
wm[i] = 0;
break;
}
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
uint64_t sskpd = I915_READ64(MCH_SSKPD);
wm[0] = (sskpd >> 56) & 0xFF;
if (wm[0] == 0)
wm[0] = sskpd & 0xF;
wm[1] = (sskpd >> 4) & 0xFF;
wm[2] = (sskpd >> 12) & 0xFF;
wm[3] = (sskpd >> 20) & 0x1FF;
wm[4] = (sskpd >> 32) & 0x1FF;
} else if (INTEL_INFO(dev)->gen >= 6) {
uint32_t sskpd = I915_READ(MCH_SSKPD);
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
} else if (INTEL_INFO(dev)->gen >= 5) {
uint32_t mltr = I915_READ(MLTR_ILK);
/* ILK primary LP0 latency is 700 ns */
wm[0] = 7;
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
}
}
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK sprite LP0 latency is 1300 ns */
if (IS_GEN5(dev))
wm[0] = 13;
}
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
/* ILK cursor LP0 latency is 1300 ns */
if (IS_GEN5(dev))
wm[0] = 13;
/* WaDoubleCursorLP3Latency:ivb */
if (IS_IVYBRIDGE(dev))
wm[3] *= 2;
}
int ilk_wm_max_level(const struct drm_device *dev)
{
/* how many WM levels are we expecting */
if (INTEL_INFO(dev)->gen >= 9)
return 7;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 4;
else if (INTEL_INFO(dev)->gen >= 6)
return 3;
else
return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
const char *name,
const uint16_t wm[8])
{
int level, max_level = ilk_wm_max_level(dev);
for (level = 0; level <= max_level; level++) {
unsigned int latency = wm[level];
if (latency == 0) {
DRM_ERROR("%s WM%d latency not provided\n",
name, level);
continue;
}
/*
* - latencies are in us on gen9.
* - before then, WM1+ latency values are in 0.5us units
*/
if (IS_GEN9(dev))
latency *= 10;
else if (level > 0)
latency *= 5;
DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
name, level, wm[level],
latency / 10, latency % 10);
}
}
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
uint16_t wm[5], uint16_t min)
{
int level, max_level = ilk_wm_max_level(&dev_priv->drm);
if (wm[0] >= min)
return false;
wm[0] = max(wm[0], min);
for (level = 1; level <= max_level; level++)
wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
return true;
}
static void snb_wm_latency_quirk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
bool changed;
/*
* The BIOS provided WM memory latency values are often
* inadequate for high resolution displays. Adjust them.
*/
changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
if (!changed)
return;
DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}
static void ilk_setup_wm_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
if (IS_GEN6(dev))
snb_wm_latency_quirk(dev);
}
static void skl_setup_wm_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}
static bool ilk_validate_pipe_wm(struct drm_device *dev,
struct intel_pipe_wm *pipe_wm)
{
/* LP0 watermark maximums depend on this pipe alone */
const struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = pipe_wm->sprites_enabled,
.sprites_scaled = pipe_wm->sprites_scaled,
};
struct ilk_wm_maximums max;
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
/* At least LP0 must be valid */
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
DRM_DEBUG_KMS("LP0 watermark invalid\n");
return false;
}
return true;
}
/* Compute new watermarks for the pipe */
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
{
struct drm_atomic_state *state = cstate->base.state;
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
struct intel_pipe_wm *pipe_wm;
struct drm_device *dev = state->dev;
const struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_plane *intel_plane;
struct intel_plane_state *pristate = NULL;
struct intel_plane_state *sprstate = NULL;
struct intel_plane_state *curstate = NULL;
int level, max_level = ilk_wm_max_level(dev), usable_level;
struct ilk_wm_maximums max;
pipe_wm = &cstate->wm.ilk.optimal;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
struct intel_plane_state *ps;
ps = intel_atomic_get_existing_plane_state(state,
intel_plane);
if (!ps)
continue;
if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
pristate = ps;
else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
sprstate = ps;
else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
curstate = ps;
}
pipe_wm->pipe_enabled = cstate->base.active;
if (sprstate) {
pipe_wm->sprites_enabled = sprstate->base.visible;
pipe_wm->sprites_scaled = sprstate->base.visible &&
(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
}
usable_level = max_level;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
usable_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (pipe_wm->sprites_scaled)
usable_level = 0;
ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
pipe_wm->wm[0] = pipe_wm->raw_wm[0];
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
if (!ilk_validate_pipe_wm(dev, pipe_wm))
return -EINVAL;
ilk_compute_wm_reg_maximums(dev, 1, &max);
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
pristate, sprstate, curstate, wm);
/*
* Disable any watermark level that exceeds the
* register maximums since such watermarks are
* always invalid.
*/
if (level > usable_level)
continue;
if (ilk_validate_wm_level(level, &max, wm))
pipe_wm->wm[level] = *wm;
else
usable_level = level;
}
return 0;
}
/*
* Build a set of 'intermediate' watermark values that satisfy both the old
* state and the new state. These can be programmed to the hardware
* immediately.
*/
static int ilk_compute_intermediate_wm(struct drm_device *dev,
struct intel_crtc *intel_crtc,
struct intel_crtc_state *newstate)
{
struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
int level, max_level = ilk_wm_max_level(dev);
/*
* Start with the final, target watermarks, then combine with the
* currently active watermarks to get values that are safe both before
* and after the vblank.
*/
*a = newstate->wm.ilk.optimal;
a->pipe_enabled |= b->pipe_enabled;
a->sprites_enabled |= b->sprites_enabled;
a->sprites_scaled |= b->sprites_scaled;
for (level = 0; level <= max_level; level++) {
struct intel_wm_level *a_wm = &a->wm[level];
const struct intel_wm_level *b_wm = &b->wm[level];
a_wm->enable &= b_wm->enable;
a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
}
/*
* We need to make sure that these merged watermark values are
* actually a valid configuration themselves. If they're not,
* there's no safe way to transition from the old state to
* the new state, so we need to fail the atomic transaction.
*/
if (!ilk_validate_pipe_wm(dev, a))
return -EINVAL;
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
newstate->wm.need_postvbl_update = false;
return 0;
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
static void ilk_merge_wm_level(struct drm_device *dev,
int level,
struct intel_wm_level *ret_wm)
{
const struct intel_crtc *intel_crtc;
ret_wm->enable = true;
for_each_intel_crtc(dev, intel_crtc) {
const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
continue;
/*
* The watermark values may have been used in the past,
* so we must maintain them in the registers for some
* time even if the level is now disabled.
*/
if (!wm->enable)
ret_wm->enable = false;
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
}
}
/*
* Merge all low power watermarks for all active pipes.
*/
static void ilk_wm_merge(struct drm_device *dev,
const struct intel_wm_config *config,
const struct ilk_wm_maximums *max,
struct intel_pipe_wm *merged)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int level, max_level = ilk_wm_max_level(dev);
int last_enabled_level = max_level;
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
config->num_pipes_active > 1)
last_enabled_level = 0;
/* ILK: FBC WM must be disabled always */
merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
/* merge each WM1+ level */
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
ilk_merge_wm_level(dev, level, wm);
if (level > last_enabled_level)
wm->enable = false;
else if (!ilk_validate_wm_level(level, max, wm))
/* make sure all following levels get disabled */
last_enabled_level = level - 1;
/*
* The spec says it is preferred to disable
* FBC WMs instead of disabling a WM level.
*/
if (wm->fbc_val > max->fbc) {
if (wm->enable)
merged->fbc_wm_enabled = false;
wm->fbc_val = 0;
}
}
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
/*
* FIXME this is racy. FBC might get enabled later.
* What we should check here is whether FBC can be
* enabled sometime later.
*/
if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
intel_fbc_is_active(dev_priv)) {
for (level = 2; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
wm->enable = false;
}
}
}
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
return 2 * level;
else
return dev_priv->wm.pri_latency[level];
}
static void ilk_compute_wm_results(struct drm_device *dev,
const struct intel_pipe_wm *merged,
enum intel_ddb_partitioning partitioning,
struct ilk_wm_values *results)
{
struct intel_crtc *intel_crtc;
int level, wm_lp;
results->enable_fbc_wm = merged->fbc_wm_enabled;
results->partitioning = partitioning;
/* LP1+ register values */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
const struct intel_wm_level *r;
level = ilk_wm_lp_to_level(wm_lp, merged);
r = &merged->wm[level];
/*
* Maintain the watermark values even if the level is
* disabled. Doing otherwise could cause underruns.
*/
results->wm_lp[wm_lp - 1] =
(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
(r->pri_val << WM1_LP_SR_SHIFT) |
r->cur_val;
if (r->enable)
results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
if (INTEL_INFO(dev)->gen >= 8)
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
else
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT;
/*
* Always set WM1S_LP_EN when spr_val != 0, even if the
* level is disabled. Doing otherwise could cause underruns.
*/
if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
WARN_ON(wm_lp != 1);
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
} else
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
}
/* LP0 register values */
for_each_intel_crtc(dev, intel_crtc) {
enum pipe pipe = intel_crtc->pipe;
const struct intel_wm_level *r =
&intel_crtc->wm.active.ilk.wm[0];
if (WARN_ON(!r->enable))
continue;
results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
r->cur_val;
}
}
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
* case both are at the same level. Prefer r1 in case they're the same. */
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
struct intel_pipe_wm *r1,
struct intel_pipe_wm *r2)
{
int level, max_level = ilk_wm_max_level(dev);
int level1 = 0, level2 = 0;
for (level = 1; level <= max_level; level++) {
if (r1->wm[level].enable)
level1 = level;
if (r2->wm[level].enable)
level2 = level;
}
if (level1 == level2) {
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
return r2;
else
return r1;
} else if (level1 > level2) {
return r1;
} else {
return r2;
}
}
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
const struct ilk_wm_values *old,
const struct ilk_wm_values *new)
{
unsigned int dirty = 0;
enum pipe pipe;
int wm_lp;
for_each_pipe(dev_priv, pipe) {
if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
dirty |= WM_DIRTY_LINETIME(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
dirty |= WM_DIRTY_PIPE(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
}
if (old->enable_fbc_wm != new->enable_fbc_wm) {
dirty |= WM_DIRTY_FBC;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->partitioning != new->partitioning) {
dirty |= WM_DIRTY_DDB;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
/* LP1+ watermarks already deemed dirty, no need to continue */
if (dirty & WM_DIRTY_LP_ALL)
return dirty;
/* Find the lowest numbered LP1+ watermark in need of an update... */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
break;
}
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
for (; wm_lp <= 3; wm_lp++)
dirty |= WM_DIRTY_LP(wm_lp);
return dirty;
}
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
unsigned int dirty)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
bool changed = false;
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
changed = true;
}
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
changed = true;
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
changed = true;
}
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
return changed;
}
/*
* The spec says we shouldn't write when we don't need, because every write
* causes WMs to be re-evaluated, expending some power.
*/
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
struct ilk_wm_values *results)
{
struct drm_device *dev = &dev_priv->drm;
struct ilk_wm_values *previous = &dev_priv->wm.hw;
unsigned int dirty;
uint32_t val;
dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
if (!dirty)
return;
_ilk_disable_lp_wm(dev_priv, dirty);
if (dirty & WM_DIRTY_PIPE(PIPE_A))
I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
if (dirty & WM_DIRTY_PIPE(PIPE_B))
I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
if (dirty & WM_DIRTY_PIPE(PIPE_C))
I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
if (dirty & WM_DIRTY_LINETIME(PIPE_A))
I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
if (dirty & WM_DIRTY_LINETIME(PIPE_B))
I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
if (dirty & WM_DIRTY_LINETIME(PIPE_C))
I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
if (dirty & WM_DIRTY_DDB) {
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
val = I915_READ(WM_MISC);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~WM_MISC_DATA_PARTITION_5_6;
else
val |= WM_MISC_DATA_PARTITION_5_6;
I915_WRITE(WM_MISC, val);
} else {
val = I915_READ(DISP_ARB_CTL2);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~DISP_DATA_PARTITION_5_6;
else
val |= DISP_DATA_PARTITION_5_6;
I915_WRITE(DISP_ARB_CTL2, val);
}
}
if (dirty & WM_DIRTY_FBC) {
val = I915_READ(DISP_ARB_CTL);
if (results->enable_fbc_wm)
val &= ~DISP_FBC_WM_DIS;
else
val |= DISP_FBC_WM_DIS;
I915_WRITE(DISP_ARB_CTL, val);
}
if (dirty & WM_DIRTY_LP(1) &&
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
if (INTEL_INFO(dev)->gen >= 7) {
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
dev_priv->wm.hw = *results;
}
bool ilk_disable_lp_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}
#define SKL_SAGV_BLOCK_TIME 30 /* µs */
/*
* Return the index of a plane in the SKL DDB and wm result arrays. Primary
* plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
* other universal planes are in indices 1..n. Note that this may leave unused
* indices between the top "sprite" plane and the cursor.
*/
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
switch (plane->base.type) {
case DRM_PLANE_TYPE_PRIMARY:
return 0;
case DRM_PLANE_TYPE_CURSOR:
return PLANE_CURSOR;
case DRM_PLANE_TYPE_OVERLAY:
return plane->plane + 1;
default:
MISSING_CASE(plane->base.type);
return plane->plane;
}
}
/*
* SAGV dynamically adjusts the system agent voltage and clock frequencies
* depending on power and performance requirements. The display engine access
* to system memory is blocked during the adjustment time. Because of the
* blocking time, having this enabled can cause full system hangs and/or pipe
* underruns if we don't meet all of the following requirements:
*
* - <= 1 pipe enabled
* - All planes can enable watermarks for latencies >= SAGV engine block time
* - We're not using an interlaced display configuration
*/
int
skl_enable_sagv(struct drm_i915_private *dev_priv)
{
int ret;
if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
dev_priv->skl_sagv_status == I915_SKL_SAGV_ENABLED)
return 0;
DRM_DEBUG_KMS("Enabling the SAGV\n");
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_ENABLE);
/* We don't need to wait for the SAGV when enabling */
mutex_unlock(&dev_priv->rps.hw_lock);
/*
* Some skl systems, pre-release machines in particular,
* don't actually have an SAGV.
*/
if (ret == -ENXIO) {
DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
return 0;
} else if (ret < 0) {
DRM_ERROR("Failed to enable the SAGV\n");
return ret;
}
dev_priv->skl_sagv_status = I915_SKL_SAGV_ENABLED;
return 0;
}
static int
skl_do_sagv_disable(struct drm_i915_private *dev_priv)
{
int ret;
uint32_t temp = GEN9_SAGV_DISABLE;
ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
&temp);
if (ret)
return ret;
else
return temp & GEN9_SAGV_IS_DISABLED;
}
int
skl_disable_sagv(struct drm_i915_private *dev_priv)
{
int ret, result;
if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
dev_priv->skl_sagv_status == I915_SKL_SAGV_DISABLED)
return 0;
DRM_DEBUG_KMS("Disabling the SAGV\n");
mutex_lock(&dev_priv->rps.hw_lock);
/* bspec says to keep retrying for at least 1 ms */
ret = wait_for(result = skl_do_sagv_disable(dev_priv), 1);
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret == -ETIMEDOUT) {
DRM_ERROR("Request to disable SAGV timed out\n");
return -ETIMEDOUT;
}
/*
* Some skl systems, pre-release machines in particular,
* don't actually have an SAGV.
*/
if (result == -ENXIO) {
DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
return 0;
} else if (result < 0) {
DRM_ERROR("Failed to disable the SAGV\n");
return result;
}
dev_priv->skl_sagv_status = I915_SKL_SAGV_DISABLED;
return 0;
}
bool skl_can_enable_sagv(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_crtc *crtc;
enum pipe pipe;
int level, plane;
/*
* SKL workaround: bspec recommends we disable the SAGV when we have
* more then one pipe enabled
*
* If there are no active CRTCs, no additional checks need be performed
*/
if (hweight32(intel_state->active_crtcs) == 0)
return true;
else if (hweight32(intel_state->active_crtcs) > 1)
return false;
/* Since we're now guaranteed to only have one active CRTC... */
pipe = ffs(intel_state->active_crtcs) - 1;
crtc = dev_priv->pipe_to_crtc_mapping[pipe];
if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
return false;
for_each_plane(dev_priv, pipe, plane) {
/* Skip this plane if it's not enabled */
if (intel_state->wm_results.plane[pipe][plane][0] == 0)
continue;
/* Find the highest enabled wm level for this plane */
for (level = ilk_wm_max_level(dev);
intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
{ }
/*
* If any of the planes on this pipe don't enable wm levels
* that incur memory latencies higher then 30µs we can't enable
* the SAGV
*/
if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
return false;
}
return true;
}
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
const struct intel_crtc_state *cstate,
struct skl_ddb_entry *alloc, /* out */
int *num_active /* out */)
{
struct drm_atomic_state *state = cstate->base.state;
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_crtc *for_crtc = cstate->base.crtc;
unsigned int pipe_size, ddb_size;
int nth_active_pipe;
int pipe = to_intel_crtc(for_crtc)->pipe;
if (WARN_ON(!state) || !cstate->base.active) {
alloc->start = 0;
alloc->end = 0;
*num_active = hweight32(dev_priv->active_crtcs);
return;
}
if (intel_state->active_pipe_changes)
*num_active = hweight32(intel_state->active_crtcs);
else
*num_active = hweight32(dev_priv->active_crtcs);
ddb_size = INTEL_INFO(dev_priv)->ddb_size;
WARN_ON(ddb_size == 0);
ddb_size -= 4; /* 4 blocks for bypass path allocation */
/*
* If the state doesn't change the active CRTC's, then there's
* no need to recalculate; the existing pipe allocation limits
* should remain unchanged. Note that we're safe from racing
* commits since any racing commit that changes the active CRTC
* list would need to grab _all_ crtc locks, including the one
* we currently hold.
*/
if (!intel_state->active_pipe_changes) {
*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
return;
}
nth_active_pipe = hweight32(intel_state->active_crtcs &
(drm_crtc_mask(for_crtc) - 1));
pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
alloc->start = nth_active_pipe * ddb_size / *num_active;
alloc->end = alloc->start + pipe_size;
}
static unsigned int skl_cursor_allocation(int num_active)
{
if (num_active == 1)
return 32;
return 8;
}
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
entry->start = reg & 0x3ff;
entry->end = (reg >> 16) & 0x3ff;
if (entry->end)
entry->end += 1;
}
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
struct skl_ddb_allocation *ddb /* out */)
{
enum pipe pipe;
int plane;
u32 val;
memset(ddb, 0, sizeof(*ddb));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
continue;
for_each_plane(dev_priv, pipe, plane) {
val = I915_READ(PLANE_BUF_CFG(pipe, plane));
skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
val);
}
val = I915_READ(CUR_BUF_CFG(pipe));
skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
val);
intel_display_power_put(dev_priv, power_domain);
}
}
/*
* Determines the downscale amount of a plane for the purposes of watermark calculations.
* The bspec defines downscale amount as:
*
* """
* Horizontal down scale amount = maximum[1, Horizontal source size /
* Horizontal destination size]
* Vertical down scale amount = maximum[1, Vertical source size /
* Vertical destination size]
* Total down scale amount = Horizontal down scale amount *
* Vertical down scale amount
* """
*
* Return value is provided in 16.16 fixed point form to retain fractional part.
* Caller should take care of dividing & rounding off the value.
*/
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
uint32_t downscale_h, downscale_w;
uint32_t src_w, src_h, dst_w, dst_h;
if (WARN_ON(!pstate->base.visible))
return DRM_PLANE_HELPER_NO_SCALING;
/* n.b., src is 16.16 fixed point, dst is whole integer */
src_w = drm_rect_width(&pstate->base.src);
src_h = drm_rect_height(&pstate->base.src);
dst_w = drm_rect_width(&pstate->base.dst);
dst_h = drm_rect_height(&pstate->base.dst);
if (drm_rotation_90_or_270(pstate->base.rotation))
swap(dst_w, dst_h);
downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
/* Provide result in 16.16 fixed point */
return (uint64_t)downscale_w * downscale_h >> 16;
}
static unsigned int
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
const struct drm_plane_state *pstate,
int y)
{
struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
struct drm_framebuffer *fb = pstate->fb;
uint32_t down_scale_amount, data_rate;
uint32_t width = 0, height = 0;
unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
if (!intel_pstate->base.visible)
return 0;
if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
return 0;
if (y && format != DRM_FORMAT_NV12)
return 0;
width = drm_rect_width(&intel_pstate->base.src) >> 16;
height = drm_rect_height(&intel_pstate->base.src) >> 16;
if (drm_rotation_90_or_270(pstate->rotation))
swap(width, height);
/* for planar format */
if (format == DRM_FORMAT_NV12) {
if (y) /* y-plane data rate */
data_rate = width * height *
drm_format_plane_cpp(format, 0);
else /* uv-plane data rate */
data_rate = (width / 2) * (height / 2) *
drm_format_plane_cpp(format, 1);
} else {
/* for packed formats */
data_rate = width * height * drm_format_plane_cpp(format, 0);
}
down_scale_amount = skl_plane_downscale_amount(intel_pstate);
return (uint64_t)data_rate * down_scale_amount >> 16;
}
/*
* We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
* a 8192x4096@32bpp framebuffer:
* 3 * 4096 * 8192 * 4 < 2^32
*/
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
{
struct drm_crtc_state *cstate = &intel_cstate->base;
struct drm_atomic_state *state = cstate->state;
struct drm_crtc *crtc = cstate->crtc;
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
const struct drm_plane *plane;
const struct intel_plane *intel_plane;
struct drm_plane_state *pstate;
unsigned int rate, total_data_rate = 0;
int id;
int i;
if (WARN_ON(!state))
return 0;
/* Calculate and cache data rate for each plane */
for_each_plane_in_state(state, plane, pstate, i) {
id = skl_wm_plane_id(to_intel_plane(plane));
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe != intel_crtc->pipe)
continue;
/* packed/uv */
rate = skl_plane_relative_data_rate(intel_cstate,
pstate, 0);
intel_cstate->wm.skl.plane_data_rate[id] = rate;
/* y-plane */
rate = skl_plane_relative_data_rate(intel_cstate,
pstate, 1);
intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
}
/* Calculate CRTC's total data rate from cached values */
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
int id = skl_wm_plane_id(intel_plane);
/* packed/uv */
total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
}
return total_data_rate;
}
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
const int y)
{
struct drm_framebuffer *fb = pstate->fb;
struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
uint32_t src_w, src_h;
uint32_t min_scanlines = 8;
uint8_t plane_bpp;
if (WARN_ON(!fb))
return 0;
/* For packed formats, no y-plane, return 0 */
if (y && fb->pixel_format != DRM_FORMAT_NV12)
return 0;
/* For Non Y-tile return 8-blocks */
if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
return 8;
src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
if (drm_rotation_90_or_270(pstate->rotation))
swap(src_w, src_h);
/* Halve UV plane width and height for NV12 */
if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
src_w /= 2;
src_h /= 2;
}
if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
else
plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
if (drm_rotation_90_or_270(pstate->rotation)) {
switch (plane_bpp) {
case 1:
min_scanlines = 32;
break;
case 2:
min_scanlines = 16;
break;
case 4:
min_scanlines = 8;
break;
case 8:
min_scanlines = 4;
break;
default:
WARN(1, "Unsupported pixel depth %u for rotation",
plane_bpp);
min_scanlines = 32;
}
}
return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}
static int
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
struct skl_ddb_allocation *ddb /* out */)
{
struct drm_atomic_state *state = cstate->base.state;
struct drm_crtc *crtc = cstate->base.crtc;
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane;
struct drm_plane *plane;
struct drm_plane_state *pstate;
enum pipe pipe = intel_crtc->pipe;
struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
uint16_t alloc_size, start, cursor_blocks;
uint16_t *minimum = cstate->wm.skl.minimum_blocks;
uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
unsigned int total_data_rate;
int num_active;
int id, i;
if (WARN_ON(!state))
return 0;
if (!cstate->base.active) {
ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
return 0;
}
skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
alloc_size = skl_ddb_entry_size(alloc);
if (alloc_size == 0) {
memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
return 0;
}
cursor_blocks = skl_cursor_allocation(num_active);
ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
alloc_size -= cursor_blocks;
/* 1. Allocate the mininum required blocks for each active plane */
for_each_plane_in_state(state, plane, pstate, i) {
intel_plane = to_intel_plane(plane);
id = skl_wm_plane_id(intel_plane);
if (intel_plane->pipe != pipe)
continue;
if (!to_intel_plane_state(pstate)->base.visible) {
minimum[id] = 0;
y_minimum[id] = 0;
continue;
}
if (plane->type == DRM_PLANE_TYPE_CURSOR) {
minimum[id] = 0;
y_minimum[id] = 0;
continue;
}
minimum[id] = skl_ddb_min_alloc(pstate, 0);
y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
}
for (i = 0; i < PLANE_CURSOR; i++) {
alloc_size -= minimum[i];
alloc_size -= y_minimum[i];
}
/*
* 2. Distribute the remaining space in proportion to the amount of
* data each plane needs to fetch from memory.
*
* FIXME: we may not allocate every single block here.
*/
total_data_rate = skl_get_total_relative_data_rate(cstate);
if (total_data_rate == 0)
return 0;
start = alloc->start;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
unsigned int data_rate, y_data_rate;
uint16_t plane_blocks, y_plane_blocks = 0;
int id = skl_wm_plane_id(intel_plane);
data_rate = cstate->wm.skl.plane_data_rate[id];
/*
* allocation for (packed formats) or (uv-plane part of planar format):
* promote the expression to 64 bits to avoid overflowing, the
* result is < available as data_rate / total_data_rate < 1
*/
plane_blocks = minimum[id];
plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
total_data_rate);
/* Leave disabled planes at (0,0) */
if (data_rate) {
ddb->plane[pipe][id].start = start;
ddb->plane[pipe][id].end = start + plane_blocks;
}
start += plane_blocks;
/*
* allocation for y_plane part of planar format:
*/
y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
y_plane_blocks = y_minimum[id];
y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
total_data_rate);
if (y_data_rate) {
ddb->y_plane[pipe][id].start = start;
ddb->y_plane[pipe][id].end = start + y_plane_blocks;
}
start += y_plane_blocks;
}
return 0;
}
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
{
/* TODO: Take into account the scalers once we support them */
return config->base.adjusted_mode.crtc_clock;
}
/*
* The max latency should be 257 (max the punit can code is 255 and we add 2us
* for the read latency) and cpp should always be <= 8, so that
* should allow pixel_rate up to ~2 GHz which seems sufficient since max
* 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
{
uint32_t wm_intermediate_val, ret;
if (latency == 0)
return UINT_MAX;
wm_intermediate_val = latency * pixel_rate * cpp / 512;
ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
return ret;
}
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
uint32_t horiz_pixels, uint8_t cpp,
uint64_t tiling, uint32_t latency)
{
uint32_t ret;
uint32_t plane_bytes_per_line, plane_blocks_per_line;
uint32_t wm_intermediate_val;
if (latency == 0)
return UINT_MAX;
plane_bytes_per_line = horiz_pixels * cpp;
if (tiling == I915_FORMAT_MOD_Y_TILED ||
tiling == I915_FORMAT_MOD_Yf_TILED) {
plane_bytes_per_line *= 4;
plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
plane_blocks_per_line /= 4;
} else if (tiling == DRM_FORMAT_MOD_NONE) {
plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
} else {
plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
}
wm_intermediate_val = latency * pixel_rate;
ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
plane_blocks_per_line;
return ret;
}
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
struct intel_plane_state *pstate)
{
uint64_t adjusted_pixel_rate;
uint64_t downscale_amount;
uint64_t pixel_rate;
/* Shouldn't reach here on disabled planes... */
if (WARN_ON(!pstate->base.visible))
return 0;
/*
* Adjusted plane pixel rate is just the pipe's adjusted pixel rate
* with additional adjustments for plane-specific scaling.
*/
adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
downscale_amount = skl_plane_downscale_amount(pstate);
pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
return pixel_rate;
}
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
struct intel_crtc_state *cstate,
struct intel_plane_state *intel_pstate,
uint16_t ddb_allocation,
int level,
uint16_t *out_blocks, /* out */
uint8_t *out_lines, /* out */
bool *enabled /* out */)
{
struct drm_plane_state *pstate = &intel_pstate->base;
struct drm_framebuffer *fb = pstate->fb;
uint32_t latency = dev_priv->wm.skl_latency[level];
uint32_t method1, method2;
uint32_t plane_bytes_per_line, plane_blocks_per_line;
uint32_t res_blocks, res_lines;
uint32_t selected_result;
uint8_t cpp;
uint32_t width = 0, height = 0;
uint32_t plane_pixel_rate;
if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
*enabled = false;
return 0;
}
width = drm_rect_width(&intel_pstate->base.src) >> 16;
height = drm_rect_height(&intel_pstate->base.src) >> 16;
if (drm_rotation_90_or_270(pstate->rotation))
swap(width, height);
cpp = drm_format_plane_cpp(fb->pixel_format, 0);
plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
method2 = skl_wm_method2(plane_pixel_rate,
cstate->base.adjusted_mode.crtc_htotal,
width,
cpp,
fb->modifier[0],
latency);
plane_bytes_per_line = width * cpp;
plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
uint32_t min_scanlines = 4;
uint32_t y_tile_minimum;
if (drm_rotation_90_or_270(pstate->rotation)) {
int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
drm_format_plane_cpp(fb->pixel_format, 1) :
drm_format_plane_cpp(fb->pixel_format, 0);
switch (cpp) {
case 1:
min_scanlines = 16;
break;
case 2:
min_scanlines = 8;
break;
case 8:
WARN(1, "Unsupported pixel depth for rotation");
}
}
y_tile_minimum = plane_blocks_per_line * min_scanlines;
selected_result = max(method2, y_tile_minimum);
} else {
if ((ddb_allocation / plane_blocks_per_line) >= 1)
selected_result = min(method1, method2);
else
selected_result = method1;
}
res_blocks = selected_result + 1;
res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
if (level >= 1 && level <= 7) {
if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
res_lines += 4;
else
res_blocks++;
}
if (res_blocks >= ddb_allocation || res_lines > 31) {
*enabled = false;
/*
* If there are no valid level 0 watermarks, then we can't
* support this display configuration.
*/
if (level) {
return 0;
} else {
DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
to_intel_crtc(cstate->base.crtc)->pipe,
skl_wm_plane_id(to_intel_plane(pstate->plane)),
res_blocks, ddb_allocation, res_lines);
return -EINVAL;
}
}
*out_blocks = res_blocks;
*out_lines = res_lines;
*enabled = true;
return 0;
}
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
struct skl_ddb_allocation *ddb,
struct intel_crtc_state *cstate,
int level,
struct skl_wm_level *result)
{
struct drm_atomic_state *state = cstate->base.state;
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
struct drm_plane *plane;
struct intel_plane *intel_plane;
struct intel_plane_state *intel_pstate;
uint16_t ddb_blocks;
enum pipe pipe = intel_crtc->pipe;
int ret;
/*
* We'll only calculate watermarks for planes that are actually
* enabled, so make sure all other planes are set as disabled.
*/
memset(result, 0, sizeof(*result));
for_each_intel_plane_mask(&dev_priv->drm,
intel_plane,
cstate->base.plane_mask) {
int i = skl_wm_plane_id(intel_plane);
plane = &intel_plane->base;
intel_pstate = NULL;
if (state)
intel_pstate =
intel_atomic_get_existing_plane_state(state,
intel_plane);
/*
* Note: If we start supporting multiple pending atomic commits
* against the same planes/CRTC's in the future, plane->state
* will no longer be the correct pre-state to use for the
* calculations here and we'll need to change where we get the
* 'unchanged' plane data from.
*
* For now this is fine because we only allow one queued commit
* against a CRTC. Even if the plane isn't modified by this
* transaction and we don't have a plane lock, we still have
* the CRTC's lock, so we know that no other transactions are
* racing with us to update it.
*/
if (!intel_pstate)
intel_pstate = to_intel_plane_state(plane->state);
WARN_ON(!intel_pstate->base.fb);
ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
ret = skl_compute_plane_wm(dev_priv,
cstate,
intel_pstate,
ddb_blocks,
level,
&result->plane_res_b[i],
&result->plane_res_l[i],
&result->plane_en[i]);
if (ret)
return ret;
}
return 0;
}
static uint32_t
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
{
if (!cstate->base.active)
return 0;
if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
return 0;
return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
skl_pipe_pixel_rate(cstate));
}
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
struct skl_wm_level *trans_wm /* out */)
{
struct drm_crtc *crtc = cstate->base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane;
if (!cstate->base.active)
return;
/* Until we know more, just disable transition WMs */
for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
int i = skl_wm_plane_id(intel_plane);
trans_wm->plane_en[i] = false;
}
}
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
struct skl_ddb_allocation *ddb,
struct skl_pipe_wm *pipe_wm)
{
struct drm_device *dev = cstate->base.crtc->dev;
const struct drm_i915_private *dev_priv = to_i915(dev);
int level, max_level = ilk_wm_max_level(dev);
int ret;
for (level = 0; level <= max_level; level++) {
ret = skl_compute_wm_level(dev_priv, ddb, cstate,
level, &pipe_wm->wm[level]);
if (ret)
return ret;
}
pipe_wm->linetime = skl_compute_linetime_wm(cstate);
skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
return 0;
}
static void skl_compute_wm_results(struct drm_device *dev,
struct skl_pipe_wm *p_wm,
struct skl_wm_values *r,
struct intel_crtc *intel_crtc)
{
int level, max_level = ilk_wm_max_level(dev);
enum pipe pipe = intel_crtc->pipe;
uint32_t temp;
int i;
for (level = 0; level <= max_level; level++) {
for (i = 0; i < intel_num_planes(intel_crtc); i++) {
temp = 0;
temp |= p_wm->wm[level].plane_res_l[i] <<
PLANE_WM_LINES_SHIFT;
temp |= p_wm->wm[level].plane_res_b[i];
if (p_wm->wm[level].plane_en[i])
temp |= PLANE_WM_EN;
r->plane[pipe][i][level] = temp;
}
temp = 0;
temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
if (p_wm->wm[level].plane_en[PLANE_CURSOR])
temp |= PLANE_WM_EN;
r->plane[pipe][PLANE_CURSOR][level] = temp;
}
/* transition WMs */
for (i = 0; i < intel_num_planes(intel_crtc); i++) {
temp = 0;
temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
temp |= p_wm->trans_wm.plane_res_b[i];
if (p_wm->trans_wm.plane_en[i])
temp |= PLANE_WM_EN;
r->plane_trans[pipe][i] = temp;
}
temp = 0;
temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
temp |= PLANE_WM_EN;
r->plane_trans[pipe][PLANE_CURSOR] = temp;
r->wm_linetime[pipe] = p_wm->linetime;
}
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const struct skl_ddb_entry *entry)
{
if (entry->end)
I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
else
I915_WRITE(reg, 0);
}
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
const struct skl_wm_values *wm,
int plane)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int level, max_level = ilk_wm_max_level(dev);
enum pipe pipe = intel_crtc->pipe;
for (level = 0; level <= max_level; level++) {
I915_WRITE(PLANE_WM(pipe, plane, level),
wm->plane[pipe][plane][level]);
}
I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
&wm->ddb.plane[pipe][plane]);
skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
&wm->ddb.y_plane[pipe][plane]);
}
void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
const struct skl_wm_values *wm)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int level, max_level = ilk_wm_max_level(dev);
enum pipe pipe = intel_crtc->pipe;
for (level = 0; level <= max_level; level++) {
I915_WRITE(CUR_WM(pipe, level),
wm->plane[pipe][PLANE_CURSOR][level]);
}
I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
&wm->ddb.plane[pipe][PLANE_CURSOR]);
}
bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
const struct skl_ddb_allocation *new,
enum pipe pipe)
{
return new->pipe[pipe].start == old->pipe[pipe].start &&
new->pipe[pipe].end == old->pipe[pipe].end;
}
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
return a->start < b->end && b->start < a->end;
}
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
const struct skl_ddb_allocation *old,
const struct skl_ddb_allocation *new,
enum pipe pipe)
{
struct drm_device *dev = state->dev;
struct intel_crtc *intel_crtc;
enum pipe otherp;
for_each_intel_crtc(dev, intel_crtc) {
otherp = intel_crtc->pipe;
if (otherp == pipe)
continue;
if (skl_ddb_entries_overlap(&new->pipe[pipe],
&old->pipe[otherp]))
return true;
}
return false;
}
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
struct skl_ddb_allocation *ddb, /* out */
struct skl_pipe_wm *pipe_wm, /* out */
bool *changed /* out */)
{
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
int ret;
ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
if (ret)
return ret;
if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
*changed = false;
else
*changed = true;
return 0;
}
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *cstate;
uint32_t i, ret = 0;
for_each_crtc_in_state(state, crtc, cstate, i)
ret |= drm_crtc_mask(crtc);
return ret;
}
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct intel_crtc *intel_crtc;
struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
uint32_t realloc_pipes = pipes_modified(state);
int ret;
/*
* If this is our first atomic update following hardware readout,
* we can't trust the DDB that the BIOS programmed for us. Let's
* pretend that all pipes switched active status so that we'll
* ensure a full DDB recompute.
*/
if (dev_priv->wm.distrust_bios_wm) {
ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
state->acquire_ctx);
if (ret)
return ret;
intel_state->active_pipe_changes = ~0;
/*
* We usually only initialize intel_state->active_crtcs if we
* we're doing a modeset; make sure this field is always
* initialized during the sanitization process that happens
* on the first commit too.
*/
if (!intel_state->modeset)
intel_state->active_crtcs = dev_priv->active_crtcs;
}
/*
* If the modeset changes which CRTC's are active, we need to
* recompute the DDB allocation for *all* active pipes, even
* those that weren't otherwise being modified in any way by this
* atomic commit. Due to the shrinking of the per-pipe allocations
* when new active CRTC's are added, it's possible for a pipe that
* we were already using and aren't changing at all here to suddenly
* become invalid if its DDB needs exceeds its new allocation.
*
* Note that if we wind up doing a full DDB recompute, we can't let
* any other display updates race with this transaction, so we need
* to grab the lock on *all* CRTC's.
*/
if (intel_state->active_pipe_changes) {
realloc_pipes = ~0;
intel_state->wm_results.dirty_pipes = ~0;
}
for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
struct intel_crtc_state *cstate;
cstate = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(cstate))
return PTR_ERR(cstate);
ret = skl_allocate_pipe_ddb(cstate, ddb);
if (ret)
return ret;
ret = drm_atomic_add_affected_planes(state, &intel_crtc->base);
if (ret)
return ret;
}
return 0;
}
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
struct skl_wm_values *src,
enum pipe pipe)
{
dst->wm_linetime[pipe] = src->wm_linetime[pipe];
memcpy(dst->plane[pipe], src->plane[pipe],
sizeof(dst->plane[pipe]));
memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
sizeof(dst->plane_trans[pipe]));
dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
sizeof(dst->ddb.y_plane[pipe]));
memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
sizeof(dst->ddb.plane[pipe]));
}
static int
skl_compute_wm(struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *cstate;
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct skl_wm_values *results = &intel_state->wm_results;
struct skl_pipe_wm *pipe_wm;
bool changed = false;
int ret, i;
/*
* If this transaction isn't actually touching any CRTC's, don't
* bother with watermark calculation. Note that if we pass this
* test, we're guaranteed to hold at least one CRTC state mutex,
* which means we can safely use values like dev_priv->active_crtcs
* since any racing commits that want to update them would need to
* hold _all_ CRTC state mutexes.
*/
for_each_crtc_in_state(state, crtc, cstate, i)
changed = true;
if (!changed)
return 0;
/* Clear all dirty flags */
results->dirty_pipes = 0;
ret = skl_compute_ddb(state);
if (ret)
return ret;
/*
* Calculate WM's for all pipes that are part of this transaction.
* Note that the DDB allocation above may have added more CRTC's that
* weren't otherwise being modified (and set bits in dirty_pipes) if
* pipe allocations had to change.
*
* FIXME: Now that we're doing this in the atomic check phase, we
* should allow skl_update_pipe_wm() to return failure in cases where
* no suitable watermark values can be found.
*/
for_each_crtc_in_state(state, crtc, cstate, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *intel_cstate =
to_intel_crtc_state(cstate);
pipe_wm = &intel_cstate->wm.skl.optimal;
ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
&changed);
if (ret)
return ret;
if (changed)
results->dirty_pipes |= drm_crtc_mask(crtc);
if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
/* This pipe's WM's did not change */
continue;
intel_cstate->update_wm_pre = true;
skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
}
return 0;
}
static void skl_update_wm(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct skl_wm_values *results = &dev_priv->wm.skl_results;
struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
enum pipe pipe = intel_crtc->pipe;
if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
return;
intel_crtc->wm.active.skl = *pipe_wm;
mutex_lock(&dev_priv->wm.wm_mutex);
/*
* If this pipe isn't active already, we're going to be enabling it
* very soon. Since it's safe to update a pipe's ddb allocation while
* the pipe's shut off, just do so here. Already active pipes will have
* their watermarks updated once we update their planes.
*/
if (crtc->state->active_changed) {
int plane;
for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
skl_write_plane_wm(intel_crtc, results, plane);
skl_write_cursor_wm(intel_crtc, results);
}
skl_copy_wm_for_pipe(hw_vals, results, pipe);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void ilk_compute_wm_config(struct drm_device *dev,
struct intel_wm_config *config)
{
struct intel_crtc *crtc;
/* Compute the currently _active_ config */
for_each_intel_crtc(dev, crtc) {
const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
if (!wm->pipe_enabled)
continue;
config->sprites_enabled |= wm->sprites_enabled;
config->sprites_scaled |= wm->sprites_scaled;
config->num_pipes_active++;
}
}
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct ilk_wm_maximums max;
struct intel_wm_config config = {};
struct ilk_wm_values results = {};
enum intel_ddb_partitioning partitioning;
ilk_compute_wm_config(dev, &config);
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
/* 5/6 split only in single pipe config on IVB+ */
if (INTEL_INFO(dev)->gen >= 7 &&
config.num_pipes_active == 1 && config.sprites_enabled) {
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
} else {
best_lp_wm = &lp_wm_1_2;
}
partitioning = (best_lp_wm == &lp_wm_1_2) ?
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
ilk_write_wm_values(dev_priv, &results);
}
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
{
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
if (cstate->wm.need_postvbl_update) {
intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
ilk_program_watermarks(dev_priv);
}
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void skl_pipe_wm_active_state(uint32_t val,
struct skl_pipe_wm *active,
bool is_transwm,
bool is_cursor,
int i,
int level)
{
bool is_enabled = (val & PLANE_WM_EN) != 0;
if (!is_transwm) {
if (!is_cursor) {
active->wm[level].plane_en[i] = is_enabled;
active->wm[level].plane_res_b[i] =
val & PLANE_WM_BLOCKS_MASK;
active->wm[level].plane_res_l[i] =
(val >> PLANE_WM_LINES_SHIFT) &
PLANE_WM_LINES_MASK;
} else {
active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
active->wm[level].plane_res_b[PLANE_CURSOR] =
val & PLANE_WM_BLOCKS_MASK;
active->wm[level].plane_res_l[PLANE_CURSOR] =
(val >> PLANE_WM_LINES_SHIFT) &
PLANE_WM_LINES_MASK;
}
} else {
if (!is_cursor) {
active->trans_wm.plane_en[i] = is_enabled;
active->trans_wm.plane_res_b[i] =
val & PLANE_WM_BLOCKS_MASK;
active->trans_wm.plane_res_l[i] =
(val >> PLANE_WM_LINES_SHIFT) &
PLANE_WM_LINES_MASK;
} else {
active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
active->trans_wm.plane_res_b[PLANE_CURSOR] =
val & PLANE_WM_BLOCKS_MASK;
active->trans_wm.plane_res_l[PLANE_CURSOR] =
(val >> PLANE_WM_LINES_SHIFT) &
PLANE_WM_LINES_MASK;
}
}
}
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
enum pipe pipe = intel_crtc->pipe;
int level, i, max_level;
uint32_t temp;
max_level = ilk_wm_max_level(dev);
hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
for (level = 0; level <= max_level; level++) {
for (i = 0; i < intel_num_planes(intel_crtc); i++)
hw->plane[pipe][i][level] =
I915_READ(PLANE_WM(pipe, i, level));
hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
}
for (i = 0; i < intel_num_planes(intel_crtc); i++)
hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
if (!intel_crtc->active)
return;
hw->dirty_pipes |= drm_crtc_mask(crtc);
active->linetime = hw->wm_linetime[pipe];
for (level = 0; level <= max_level; level++) {
for (i = 0; i < intel_num_planes(intel_crtc); i++) {
temp = hw->plane[pipe][i][level];
skl_pipe_wm_active_state(temp, active, false,
false, i, level);
}
temp = hw->plane[pipe][PLANE_CURSOR][level];
skl_pipe_wm_active_state(temp, active, false, true, i, level);
}
for (i = 0; i < intel_num_planes(intel_crtc); i++) {
temp = hw->plane_trans[pipe][i];
skl_pipe_wm_active_state(temp, active, true, false, i, 0);
}
temp = hw->plane_trans[pipe][PLANE_CURSOR];
skl_pipe_wm_active_state(temp, active, true, true, i, 0);
intel_crtc->wm.active.skl = *active;
}
void skl_wm_get_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
struct drm_crtc *crtc;
skl_ddb_get_hw_state(dev_priv, ddb);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
skl_pipe_wm_get_hw_state(crtc);
if (dev_priv->active_crtcs) {
/* Fully recompute DDB on first atomic commit */
dev_priv->wm.distrust_bios_wm = true;
} else {
/* Easy/common case; just sanitize DDB now if everything off */
memset(ddb, 0, sizeof(*ddb));
}
}
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
enum pipe pipe = intel_crtc->pipe;
static const i915_reg_t wm0_pipe_reg[] = {
[PIPE_A] = WM0_PIPEA_ILK,
[PIPE_B] = WM0_PIPEB_ILK,
[PIPE_C] = WM0_PIPEC_IVB,
};
hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
memset(active, 0, sizeof(*active));
active->pipe_enabled = intel_crtc->active;
if (active->pipe_enabled) {
u32 tmp = hw->wm_pipe[pipe];
/*
* For active pipes LP0 watermark is marked as
* enabled, and LP1+ watermaks as disabled since
* we can't really reverse compute them in case
* multiple pipes are active.
*/
active->wm[0].enable = true;
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
active->linetime = hw->wm_linetime[pipe];
} else {
int level, max_level = ilk_wm_max_level(dev);
/*
* For inactive pipes, all watermark levels
* should be marked as enabled but zeroed,
* which is what we'd compute them to.
*/
for (level = 0; level <= max_level; level++)
active->wm[level].enable = true;
}
intel_crtc->wm.active.ilk = *active;
}
#define _FW_WM(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
struct vlv_wm_values *wm)
{
enum pipe pipe;
uint32_t tmp;
for_each_pipe(dev_priv, pipe) {
tmp = I915_READ(VLV_DDL(pipe));
wm->ddl[pipe].primary =
(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].cursor =
(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].sprite[0] =
(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].sprite[1] =
(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
}
tmp = I915_READ(DSPFW1);
wm->sr.plane = _FW_WM(tmp, SR);
wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
tmp = I915_READ(DSPFW2);
wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
tmp = I915_READ(DSPFW3);
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
if (IS_CHERRYVIEW(dev_priv)) {
tmp = I915_READ(DSPFW7_CHV);
wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = I915_READ(DSPFW8_CHV);
wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
tmp = I915_READ(DSPFW9_CHV);
wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
tmp = I915_READ(DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
} else {
tmp = I915_READ(DSPFW7);
wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = I915_READ(DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
}
}
#undef _FW_WM
#undef _FW_WM_VLV
void vlv_wm_get_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct vlv_wm_values *wm = &dev_priv->wm.vlv;
struct intel_plane *plane;
enum pipe pipe;
u32 val;
vlv_read_wm_values(dev_priv, wm);
for_each_intel_plane(dev, plane) {
switch (plane->base.type) {
int sprite;
case DRM_PLANE_TYPE_CURSOR:
plane->wm.fifo_size = 63;
break;
case DRM_PLANE_TYPE_PRIMARY:
plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
break;
case DRM_PLANE_TYPE_OVERLAY:
sprite = plane->plane;
plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
break;
}
}
wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
wm->level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
if (val & DSP_MAXFIFO_PM5_ENABLE)
wm->level = VLV_WM_LEVEL_PM5;
/*
* If DDR DVFS is disabled in the BIOS, Punit
* will never ack the request. So if that happens
* assume we don't have to enable/disable DDR DVFS
* dynamically. To test that just set the REQ_ACK
* bit to poke the Punit, but don't change the
* HIGH/LOW bits so that we don't actually change
* the current state.
*/
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
"assuming DDR DVFS is disabled\n");
dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
} else {
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if ((val & FORCE_DDR_HIGH_FREQ) == 0)
wm->level = VLV_WM_LEVEL_DDR_DVFS;
}
mutex_unlock(&dev_priv->rps.hw_lock);
}
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}
void ilk_wm_get_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct drm_crtc *crtc;
for_each_crtc(dev, crtc)
ilk_pipe_wm_get_hw_state(crtc);
hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
if (INTEL_INFO(dev)->gen >= 7) {
hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
}
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
else if (IS_IVYBRIDGE(dev))
hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
hw->enable_fbc_wm =
!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(crtc);
}
/*
* Lock protecting IPS related data structures
*/
DEFINE_SPINLOCK(mchdev_lock);
/* Global for IPS driver to get at the current i915 device. Protected by
* mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
{
u16 rgvswctl;
assert_spin_locked(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
return true;
}
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
{
u32 rgvmodectl;
u8 fmax, fmin, fstart, vstart;
spin_lock_irq(&mchdev_lock);
rgvmodectl = I915_READ(MEMMODECTL);
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
I915_WRITE(MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
dev_priv->ips.fstart = fstart;
dev_priv->ips.max_delay = fstart;
dev_priv->ips.min_delay = fmin;
dev_priv->ips.cur_delay = fstart;
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
/*
* Interrupts will be enabled in ironlake_irq_postinstall
*/
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
mdelay(1);
ironlake_set_drps(dev_priv, fstart);
dev_priv->ips.last_count1 = I915_READ(DMIEC) +
I915_READ(DDREC) + I915_READ(CSIEC);
dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
dev_priv->ips.last_count2 = I915_READ(GFXEC);
dev_priv->ips.last_time2 = ktime_get_raw_ns();
spin_unlock_irq(&mchdev_lock);
}
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
{
u16 rgvswctl;
spin_lock_irq(&mchdev_lock);
rgvswctl = I915_READ16(MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
/* Go back to the starting frequency */
ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
mdelay(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
mdelay(1);
spin_unlock_irq(&mchdev_lock);
}
/* There's a funny hw issue where the hw returns all 0 when reading from
* GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
* ourselves, instead of doing a rmw cycle (which might result in us clearing
* all limits and the gpu stuck at whatever frequency it is at atm).
*/
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
{
u32 limits;
/* Only set the down limit when we've reached the lowest level to avoid
* getting more interrupts, otherwise leave this clear. This prevents a
* race in the hw when coming out of rc6: There's a tiny window where
* the hw runs at the minimal clock before selecting the desired
* frequency, if the down threshold expires in that window we will not
* receive a down interrupt. */
if (IS_GEN9(dev_priv)) {
limits = (dev_priv->rps.max_freq_softlimit) << 23;
if (val <= dev_priv->rps.min_freq_softlimit)
limits |= (dev_priv->rps.min_freq_softlimit) << 14;
} else {
limits = dev_priv->rps.max_freq_softlimit << 24;
if (val <= dev_priv->rps.min_freq_softlimit)
limits |= dev_priv->rps.min_freq_softlimit << 16;
}
return limits;
}
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
int new_power;
u32 threshold_up = 0, threshold_down = 0; /* in % */
u32 ei_up = 0, ei_down = 0;
new_power = dev_priv->rps.power;
switch (dev_priv->rps.power) {
case LOW_POWER:
if (val > dev_priv->rps.efficient_freq + 1 &&
val > dev_priv->rps.cur_freq)
new_power = BETWEEN;
break;
case BETWEEN:
if (val <= dev_priv->rps.efficient_freq &&
val < dev_priv->rps.cur_freq)
new_power = LOW_POWER;
else if (val >= dev_priv->rps.rp0_freq &&
val > dev_priv->rps.cur_freq)
new_power = HIGH_POWER;
break;
case HIGH_POWER:
if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
val < dev_priv->rps.cur_freq)
new_power = BETWEEN;
break;
}
/* Max/min bins are special */
if (val <= dev_priv->rps.min_freq_softlimit)
new_power = LOW_POWER;
if (val >= dev_priv->rps.max_freq_softlimit)
new_power = HIGH_POWER;
if (new_power == dev_priv->rps.power)
return;
/* Note the units here are not exactly 1us, but 1280ns. */
switch (new_power) {
case LOW_POWER:
/* Upclock if more than 95% busy over 16ms */
ei_up = 16000;
threshold_up = 95;
/* Downclock if less than 85% busy over 32ms */
ei_down = 32000;
threshold_down = 85;
break;
case BETWEEN:
/* Upclock if more than 90% busy over 13ms */
ei_up = 13000;
threshold_up = 90;
/* Downclock if less than 75% busy over 32ms */
ei_down = 32000;
threshold_down = 75;
break;
case HIGH_POWER:
/* Upclock if more than 85% busy over 10ms */
ei_up = 10000;
threshold_up = 85;
/* Downclock if less than 60% busy over 32ms */
ei_down = 32000;
threshold_down = 60;
break;
}
I915_WRITE(GEN6_RP_UP_EI,
GT_INTERVAL_FROM_US(dev_priv, ei_up));
I915_WRITE(GEN6_RP_UP_THRESHOLD,
GT_INTERVAL_FROM_US(dev_priv,
ei_up * threshold_up / 100));
I915_WRITE(GEN6_RP_DOWN_EI,
GT_INTERVAL_FROM_US(dev_priv, ei_down));
I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
GT_INTERVAL_FROM_US(dev_priv,
ei_down * threshold_down / 100));
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
dev_priv->rps.power = new_power;
dev_priv->rps.up_threshold = threshold_up;
dev_priv->rps.down_threshold = threshold_down;
dev_priv->rps.last_adj = 0;
}
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
u32 mask = 0;
if (val > dev_priv->rps.min_freq_softlimit)
mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
if (val < dev_priv->rps.max_freq_softlimit)
mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
mask &= dev_priv->pm_rps_events;
return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
}
/* gen6_set_rps is called to update the frequency request, but should also be
* called when the range (min_delay and max_delay) is modified so that we can
* update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
{
/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
return;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq);
WARN_ON(val < dev_priv->rps.min_freq);
/* min/max delay may still have been modified so be sure to
* write the limits value.
*/
if (val != dev_priv->rps.cur_freq) {
gen6_set_rps_thresholds(dev_priv, val);
if (IS_GEN9(dev_priv))
I915_WRITE(GEN6_RPNSWREQ,
GEN9_FREQUENCY(val));
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(val));
else
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(val) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
}
/* Make sure we continue to get interrupts
* until we hit the minimum or maximum frequencies.
*/
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
POSTING_READ(GEN6_RPNSWREQ);
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
{
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
WARN_ON(val > dev_priv->rps.max_freq);
WARN_ON(val < dev_priv->rps.min_freq);
if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
"Odd GPU freq value\n"))
val &= ~1;
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
if (val != dev_priv->rps.cur_freq) {
vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
if (!IS_CHERRYVIEW(dev_priv))
gen6_set_rps_thresholds(dev_priv, val);
}
dev_priv->rps.cur_freq = val;
trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
*
* * If Gfx is Idle, then
* 1. Forcewake Media well.
* 2. Request idle freq.
* 3. Release Forcewake of Media well.
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
u32 val = dev_priv->rps.idle_freq;
if (dev_priv->rps.cur_freq <= val)
return;
/* Wake up the media well, as that takes a lot less
* power than the Render well. */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
valleyview_set_rps(dev_priv, val);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
}
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
gen6_rps_reset_ei(dev_priv);
I915_WRITE(GEN6_PMINTRMSK,
gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
gen6_enable_rps_interrupts(dev_priv);
/* Ensure we start at the user's desired frequency */
intel_set_rps(dev_priv,
clamp(dev_priv->rps.cur_freq,
dev_priv->rps.min_freq_softlimit,
dev_priv->rps.max_freq_softlimit));
}
mutex_unlock(&dev_priv->rps.hw_lock);
}
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
/* Flush our bottom-half so that it does not race with us
* setting the idle frequency and so that it is bounded by
* our rpm wakeref. And then disable the interrupts to stop any
* futher RPS reclocking whilst we are asleep.
*/
gen6_disable_rps_interrupts(dev_priv);
mutex_lock(&dev_priv->rps.hw_lock);
if (dev_priv->rps.enabled) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
vlv_set_rps_idle(dev_priv);
else
gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
dev_priv->rps.last_adj = 0;
I915_WRITE(GEN6_PMINTRMSK,
gen6_sanitize_rps_pm_mask(dev_priv, ~0));
}
mutex_unlock(&dev_priv->rps.hw_lock);
spin_lock(&dev_priv->rps.client_lock);
while (!list_empty(&dev_priv->rps.clients))
list_del_init(dev_priv->rps.clients.next);
spin_unlock(&dev_priv->rps.client_lock);
}
void gen6_rps_boost(struct drm_i915_private *dev_priv,
struct intel_rps_client *rps,
unsigned long submitted)
{
/* This is intentionally racy! We peek at the state here, then
* validate inside the RPS worker.
*/
if (!(dev_priv->gt.awake &&
dev_priv->rps.enabled &&
dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
return;
/* Force a RPS boost (and don't count it against the client) if
* the GPU is severely congested.
*/
if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
rps = NULL;
spin_lock(&dev_priv->rps.client_lock);
if (rps == NULL || list_empty(&rps->link)) {
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->rps.interrupts_enabled) {
dev_priv->rps.client_boost = true;
schedule_work(&dev_priv->rps.work);
}
spin_unlock_irq(&dev_priv->irq_lock);
if (rps != NULL) {
list_add(&rps->link, &dev_priv->rps.clients);
rps->boosts++;
} else
dev_priv->rps.boosts++;
}
spin_unlock(&dev_priv->rps.client_lock);
}
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
{
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
valleyview_set_rps(dev_priv, val);
else
gen6_set_rps(dev_priv, val);
}
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN9_PG_ENABLE, 0);
}
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN6_RP_CONTROL, 0);
}
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
I915_WRITE(GEN6_RP_CONTROL, 0);
}
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN6_RC_CONTROL, 0);
}
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
/* we're doing forcewake before Disabling RC6,
* This what the BIOS expects when going into suspend */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
I915_WRITE(GEN6_RC_CONTROL, 0);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
{
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
mode = GEN6_RC_CTL_RC6_ENABLE;
else
mode = 0;
}
if (HAS_RC6p(dev_priv))
DRM_DEBUG_DRIVER("Enabling RC6 states: "
"RC6 %s RC6p %s RC6pp %s\n",
onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
else
DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
}
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool enable_rc6 = true;
unsigned long rc6_ctx_base;
u32 rc_ctl;
int rc_sw_target;
rc_ctl = I915_READ(GEN6_RC_CONTROL);
rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
RC_SW_TARGET_STATE_SHIFT;
DRM_DEBUG_DRIVER("BIOS enabled RC states: "
"HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
rc_sw_target);
if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
enable_rc6 = false;
}
/*
* The exact context size is not known for BXT, so assume a page size
* for this check.
*/
rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
(rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
ggtt->stolen_reserved_size))) {
DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
enable_rc6 = false;
}
if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
enable_rc6 = false;
}
if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
!I915_READ(GEN8_PUSHBUS_ENABLE) ||
!I915_READ(GEN8_PUSHBUS_SHIFT)) {
DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
enable_rc6 = false;
}
if (!I915_READ(GEN6_GFXPAUSE)) {
DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
enable_rc6 = false;
}
if (!I915_READ(GEN8_MISC_CTRL0)) {
DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
enable_rc6 = false;
}
return enable_rc6;
}
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
{
/* No RC6 before Ironlake and code is gone for ilk. */
if (INTEL_INFO(dev_priv)->gen < 6)
return 0;
if (!enable_rc6)
return 0;
if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
DRM_INFO("RC6 disabled by BIOS\n");
return 0;
}
/* Respect the kernel parameter if it is set */
if (enable_rc6 >= 0) {
int mask;
if (HAS_RC6p(dev_priv))
mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
INTEL_RC6pp_ENABLE;
else
mask = INTEL_RC6_ENABLE;
if ((enable_rc6 & mask) != enable_rc6)
DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
"(requested %d, valid %d)\n",
enable_rc6 & mask, enable_rc6, mask);
return enable_rc6 & mask;
}
if (IS_IVYBRIDGE(dev_priv))
return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
return INTEL_RC6_ENABLE;
}
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
{
/* All of these values are in units of 50MHz */
/* static values from HW: RP0 > RP1 > RPn (min_freq) */
if (IS_BROXTON(dev_priv)) {
u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
} else {
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
}
/* hw_max = RP0 until we check for overclocking */
dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
u32 ddcc_status = 0;
if (sandybridge_pcode_read(dev_priv,
HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
&ddcc_status) == 0)
dev_priv->rps.efficient_freq =
clamp_t(u8,
((ddcc_status >> 8) & 0xff),
dev_priv->rps.min_freq,
dev_priv->rps.max_freq);
}
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
/* Store the frequency values in 16.66 MHZ units, which is
* the natural hardware unit for SKL
*/
dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
}
}
static void reset_rps(struct drm_i915_private *dev_priv,
void (*set)(struct drm_i915_private *, u8))
{
u8 freq = dev_priv->rps.cur_freq;
/* force a reset */
dev_priv->rps.power = -1;
dev_priv->rps.cur_freq = -1;
set(dev_priv, freq);
}
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
{
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
/*
* BIOS could leave the Hw Turbo enabled, so need to explicitly
* clear out the Control register just to avoid inconsitency
* with debugfs interface, which will show Turbo as enabled
* only and that is not expected by the User after adding the
* WaGsvDisableTurbo. Apart from this there is no problem even
* if the Turbo is left enabled in the Control register, as the
* Up/Down interrupts would remain masked.
*/
gen9_disable_rps(dev_priv);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return;
}
/* Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RC_VIDEO_FREQ,
GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
/* 1 second timeout*/
I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
GT_INTERVAL_FROM_US(dev_priv, 1000000));
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
/* Leaning on the below call to gen6_set_rps to program/setup the
* Up/Down EI & threshold registers, as well as the RP_CONTROL,
* RP_INTERRUPT_LIMITS & RPNSWREQ registers */
reset_rps(dev_priv, gen6_set_rps);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
uint32_t rc6_mask = 0;
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
/* 1b: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* 2a: Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
/* 2b: Program RC6 thresholds.*/
/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
if (IS_SKYLAKE(dev_priv))
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
else
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
if (HAS_GUC(dev_priv))
I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
I915_WRITE(GEN6_RC_SLEEP, 0);
/* 2c: Program Coarse Power Gating Policies. */
I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
/* 3a: Enable RC6 */
if (intel_enable_rc6() & INTEL_RC6_ENABLE)
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
/* WaRsUseTimeoutMode */
if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN7_RC_CTL_TO_MODE |
rc6_mask);
} else {
I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_EI_MODE(1) |
rc6_mask);
}
/*
* 3b: Enable Coarse Power Gating only when RC6 is enabled.
* WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
*/
if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
I915_WRITE(GEN9_PG_ENABLE, 0);
else
I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
uint32_t rc6_mask = 0;
/* 1a: Software RC state - RC0 */
I915_WRITE(GEN6_RC_STATE, 0);
/* 1c & 1d: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* 2a: Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
/* 2b: Program RC6 thresholds.*/
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
if (IS_BROADWELL(dev_priv))
I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
else
I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
/* 3: Enable RC6 */
if (intel_enable_rc6() & INTEL_RC6_ENABLE)
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
intel_print_rc6_info(dev_priv, rc6_mask);
if (IS_BROADWELL(dev_priv))
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN7_RC_CTL_TO_MODE |
rc6_mask);
else
I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
GEN6_RC_CTL_EI_MODE(1) |
rc6_mask);
/* 4 Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RPNSWREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
I915_WRITE(GEN6_RC_VIDEO_FREQ,
HSW_FREQUENCY(dev_priv->rps.rp1_freq));
/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
/* Docs recommend 900MHz, and 300 MHz respectively */
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
dev_priv->rps.max_freq_softlimit << 24 |
dev_priv->rps.min_freq_softlimit << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
/* 5: Enable RPS */
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
/* 6: Ring frequency + overclocking (our driver does this later */
reset_rps(dev_priv, gen6_set_rps);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
u32 rc6vids, rc6_mask = 0;
u32 gtfifodbg;
int rc6_mode;
int ret;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
/* Clear the DBG now so we don't confuse earlier errors */
gtfifodbg = I915_READ(GTFIFODBG);
if (gtfifodbg) {
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
if (IS_IVYBRIDGE(dev_priv))
I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
else
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
/* Check if we are enabling RC6 */
rc6_mode = intel_enable_rc6();
if (rc6_mode & INTEL_RC6_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
/* We don't use those on Haswell */
if (!IS_HASWELL(dev_priv)) {
if (rc6_mode & INTEL_RC6p_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
if (rc6_mode & INTEL_RC6pp_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
}
intel_print_rc6_info(dev_priv, rc6_mask);
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
/* Power down if completely idle for over 50ms */
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
if (ret)
DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
reset_rps(dev_priv, gen6_set_rps);
rc6vids = 0;
ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
if (IS_GEN6(dev_priv) && ret) {
DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
rc6vids &= 0xffff00;
rc6vids |= GEN6_ENCODE_RC6_VID(450);
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
if (ret)
DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
}
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
{
int min_freq = 15;
unsigned int gpu_freq;
unsigned int max_ia_freq, min_ring_freq;
unsigned int max_gpu_freq, min_gpu_freq;
int scaling_factor = 180;
struct cpufreq_policy *policy;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
policy = cpufreq_cpu_get(0);
if (policy) {
max_ia_freq = policy->cpuinfo.max_freq;
cpufreq_cpu_put(policy);
} else {
/*
* Default to measured freq if none found, PCU will ensure we
* don't go over
*/
max_ia_freq = tsc_khz;
}
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
min_ring_freq = I915_READ(DCLK) & 0xf;
/* convert DDR frequency from units of 266.6MHz to bandwidth */
min_ring_freq = mult_frac(min_ring_freq, 8, 3);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
} else {
min_gpu_freq = dev_priv->rps.min_freq;
max_gpu_freq = dev_priv->rps.max_freq;
}
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
int diff = max_gpu_freq - gpu_freq;
unsigned int ia_freq = 0, ring_freq = 0;
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
/*
* ring_freq = 2 * GT. ring_freq is in 100MHz units
* No floor required for ring frequency on SKL.
*/
ring_freq = gpu_freq;
} else if (INTEL_INFO(dev_priv)->gen >= 8) {
/* max(2 * GT, DDR). NB: GT is 50MHz units */
ring_freq = max(min_ring_freq, gpu_freq);
} else if (IS_HASWELL(dev_priv)) {
ring_freq = mult_frac(gpu_freq, 5, 4);
ring_freq = max(min_ring_freq, ring_freq);
/* leave ia_freq as the default, chosen by cpufreq */
} else {
/* On older processors, there is no separate ring
* clock domain, so in order to boost the bandwidth
* of the ring, we need to upclock the CPU (ia_freq).
*
* For GPU frequencies less than 750MHz,
* just use the lowest ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
}
sandybridge_pcode_write(dev_priv,
GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
gpu_freq);
}
}
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp0;
val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
case 8:
/* (2 * 4) config */
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
break;
case 12:
/* (2 * 6) config */
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
break;
case 16:
/* (2 * 8) config */
default:
/* Setting (2 * 8) Min RP0 for any other combination */
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
break;
}
rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
return rp0;
}
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpe;
val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
return rpe;
}
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp1;
val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
return rp1;
}
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp1;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
return rp1;
}
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
u32 val, rp0;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
/* Clamp to max */
rp0 = min_t(u32, rp0, 0xea);
return rp0;
}
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
u32 val, rpe;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
return rpe;
}
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
u32 val;
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
/*
* According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
* for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
* a BYT-M B0 the above register contains 0xbf. Moreover when setting
* a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
* to make sure it matches what Punit accepts.
*/
return max_t(u32, val, 0xc0);
}
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
dev_priv->vlv_pctx->stolen->start);
}
/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
unsigned long pctx_paddr, paddr;
u32 pcbr;
int pctx_size = 32*1024;
pcbr = I915_READ(VLV_PCBR);
if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
paddr = (dev_priv->mm.stolen_base +
(ggtt->stolen_size - pctx_size));
pctx_paddr = (paddr & (~4095));
I915_WRITE(VLV_PCBR, pctx_paddr);
}
DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
}
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *pctx;
unsigned long pctx_paddr;
u32 pcbr;
int pctx_size = 24*1024;
pcbr = I915_READ(VLV_PCBR);
if (pcbr) {
/* BIOS set it up already, grab the pre-alloc'd space */
int pcbr_offset;
pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
pcbr_offset,
I915_GTT_OFFSET_NONE,
pctx_size);
goto out;
}
DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
/*
* From the Gunit register HAS:
* The Gfx driver is expected to program this register and ensure
* proper allocation within Gfx stolen memory. For example, this
* register should be programmed such than the PCBR range does not
* overlap with other ranges, such as the frame buffer, protected
* memory, or any other relevant ranges.
*/
pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
if (!pctx) {
DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
goto out;
}
pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
I915_WRITE(VLV_PCBR, pctx_paddr);
out:
DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
dev_priv->vlv_pctx = pctx;
}
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
{
if (WARN_ON(!dev_priv->vlv_pctx))
return;
i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
dev_priv->vlv_pctx = NULL;
}
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
dev_priv->rps.gpll_ref_freq =
vlv_get_cck_clock(dev_priv, "GPLL ref",
CCK_GPLL_CLOCK_CONTROL,
dev_priv->czclk_freq);
DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
dev_priv->rps.gpll_ref_freq);
}
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
{
u32 val;
valleyview_setup_pctx(dev_priv);
vlv_init_gpll_ref_freq(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
switch ((val >> 6) & 3) {
case 0:
case 1:
dev_priv->mem_freq = 800;
break;
case 2:
dev_priv->mem_freq = 1066;
break;
case 3:
dev_priv->mem_freq = 1333;
break;
}
DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
dev_priv->rps.max_freq);
dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
dev_priv->rps.rp1_freq);
dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
dev_priv->rps.min_freq);
}
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
{
u32 val;
cherryview_setup_pctx(dev_priv);
vlv_init_gpll_ref_freq(dev_priv);
mutex_lock(&dev_priv->sb_lock);
val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
mutex_unlock(&dev_priv->sb_lock);
switch ((val >> 2) & 0x7) {
case 3:
dev_priv->mem_freq = 2000;
break;
default:
dev_priv->mem_freq = 1600;
break;
}
DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
dev_priv->rps.max_freq);
dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
dev_priv->rps.efficient_freq);
dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
dev_priv->rps.rp1_freq);
/* PUnit validated range is only [RPe, RP0] */
dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
dev_priv->rps.min_freq);
WARN_ONCE((dev_priv->rps.max_freq |
dev_priv->rps.efficient_freq |
dev_priv->rps.rp1_freq |
dev_priv->rps.min_freq) & 1,
"Odd GPU freq values\n");
}
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
{
valleyview_cleanup_pctx(dev_priv);
}
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
u32 gtfifodbg, val, rc6_mode = 0, pcbr;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
GT_FIFO_FREE_ENTRIES_CHV);
if (gtfifodbg) {
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
cherryview_check_pctx(dev_priv);
/* 1a & 1b: Get forcewake during program sequence. Although the driver
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
/* 2a: Program RC6 thresholds.*/
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
/* allows RC6 residency counter to work */
I915_WRITE(VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
/* For now we assume BIOS is allocating and populating the PCBR */
pcbr = I915_READ(VLV_PCBR);
/* 3: Enable RC6 */
if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
(pcbr >> VLV_PCBR_ADDR_SHIFT))
rc6_mode = GEN7_RC_CTL_TO_MODE;
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
/* 4 Program defaults and thresholds for RPS*/
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
I915_WRITE(GEN6_RP_UP_EI, 66000);
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
/* 5: Enable RPS */
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
/* Setting Fixed Bias */
val = VLV_OVERRIDE_EN |
VLV_SOC_TDP_EN |
CHV_BIAS_CPU_50_SOC_50;
vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
/* RPS code assumes GPLL is used */
WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
reset_rps(dev_priv, valleyview_set_rps);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
u32 gtfifodbg, val, rc6_mode = 0;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
valleyview_check_pctx(dev_priv);
gtfifodbg = I915_READ(GTFIFODBG);
if (gtfifodbg) {
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
/* If VLV, Forcewake all wells, else re-direct to regular path */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
/* Disable RC states. */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
I915_WRITE(GEN6_RP_UP_EI, 66000);
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for_each_engine(engine, dev_priv)
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
/* allows RC6 residency counter to work */
I915_WRITE(VLV_COUNTER_CONTROL,
_MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
VLV_RENDER_RC0_COUNT_EN |
VLV_MEDIA_RC6_COUNT_EN |
VLV_RENDER_RC6_COUNT_EN));
if (intel_enable_rc6() & INTEL_RC6_ENABLE)
rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
intel_print_rc6_info(dev_priv, rc6_mode);
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
/* Setting Fixed Bias */
val = VLV_OVERRIDE_EN |
VLV_SOC_TDP_EN |
VLV_BIAS_CPU_125_SOC_875;
vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
/* RPS code assumes GPLL is used */
WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
reset_rps(dev_priv, valleyview_set_rps);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
static unsigned long intel_pxfreq(u32 vidfreq)
{
unsigned long freq;
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
if (!pre)
return 0;
freq = ((div * 133333) / ((1<<post) * pre));
return freq;
}
static const struct cparams {
u16 i;
u16 t;
u16 m;
u16 c;
} cparams[] = {
{ 1, 1333, 301, 28664 },
{ 1, 1066, 294, 24460 },
{ 1, 800, 294, 25192 },
{ 0, 1333, 276, 27605 },
{ 0, 1066, 276, 27605 },
{ 0, 800, 231, 23784 },
};
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
{
u64 total_count, diff, ret;
u32 count1, count2, count3, m = 0, c = 0;
unsigned long now = jiffies_to_msecs(jiffies), diff1;
int i;
assert_spin_locked(&mchdev_lock);
diff1 = now - dev_priv->ips.last_time1;
/* Prevent division-by-zero if we are asking too fast.
* Also, we don't get interesting results if we are polling
* faster than once in 10ms, so just return the saved value
* in such cases.
*/
if (diff1 <= 10)
return dev_priv->ips.chipset_power;
count1 = I915_READ(DMIEC);
count2 = I915_READ(DDREC);
count3 = I915_READ(CSIEC);
total_count = count1 + count2 + count3;
/* FIXME: handle per-counter overflow */
if (total_count < dev_priv->ips.last_count1) {
diff = ~0UL - dev_priv->ips.last_count1;
diff += total_count;
} else {
diff = total_count - dev_priv->ips.last_count1;
}
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
if (cparams[i].i == dev_priv->ips.c_m &&
cparams[i].t == dev_priv->ips.r_t) {
m = cparams[i].m;
c = cparams[i].c;
break;
}
}
diff = div_u64(diff, diff1);
ret = ((m * diff) + c);
ret = div_u64(ret, 10);
dev_priv->ips.last_count1 = total_count;
dev_priv->ips.last_time1 = now;
dev_priv->ips.chipset_power = ret;
return ret;
}
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
unsigned long val;
if (INTEL_INFO(dev_priv)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_chipset_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
unsigned long m, x, b;
u32 tsfs;
tsfs = I915_READ(TSFS);
m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
x = I915_READ8(TR1);
b = tsfs & TSFS_INTR_MASK;
return ((m * x) / 127) - b;
}
static int _pxvid_to_vd(u8 pxvid)
{
if (pxvid == 0)
return 0;
if (pxvid >= 8 && pxvid < 31)
pxvid = 31;
return (pxvid + 2) * 125;
}
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
const int vd = _pxvid_to_vd(pxvid);
const int vm = vd - 1125;
if (INTEL_INFO(dev_priv)->is_mobile)
return vm > 0 ? vm : 0;
return vd;
}
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
u64 now, diff, diffms;
u32 count;
assert_spin_locked(&mchdev_lock);
now = ktime_get_raw_ns();
diffms = now - dev_priv->ips.last_time2;
do_div(diffms, NSEC_PER_MSEC);
/* Don't divide by 0 */
if (!diffms)
return;
count = I915_READ(GFXEC);
if (count < dev_priv->ips.last_count2) {
diff = ~0UL - dev_priv->ips.last_count2;
diff += count;
} else {
diff = count - dev_priv->ips.last_count2;
}
dev_priv->ips.last_count2 = count;
dev_priv->ips.last_time2 = now;
/* More magic constants... */
diff = diff * 1181;
diff = div_u64(diff, diffms * 10);
dev_priv->ips.gfx_power = diff;
}
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
if (INTEL_INFO(dev_priv)->gen != 5)
return;
spin_lock_irq(&mchdev_lock);
__i915_update_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
}
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
{
unsigned long t, corr, state1, corr2, state2;
u32 pxvid, ext_v;
assert_spin_locked(&mchdev_lock);
pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
pxvid = (pxvid >> 24) & 0x7f;
ext_v = pvid_to_extvid(dev_priv, pxvid);
state1 = ext_v;
t = i915_mch_val(dev_priv);
/* Revel in the empirically derived constants */
/* Correction factor in 1/100000 units */
if (t > 80)
corr = ((t * 2349) + 135940);
else if (t >= 50)
corr = ((t * 964) + 29317);
else /* < 50 */
corr = ((t * 301) + 1004);
corr = corr * ((150142 * state1) / 10000 - 78642);
corr /= 100000;
corr2 = (corr * dev_priv->ips.corr);
state2 = (corr2 * state1) / 10000;
state2 /= 100; /* convert to mW */
__i915_update_gfx_val(dev_priv);
return dev_priv->ips.gfx_power + state2;
}
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
unsigned long val;
if (INTEL_INFO(dev_priv)->gen != 5)
return 0;
spin_lock_irq(&mchdev_lock);
val = __i915_gfx_val(dev_priv);
spin_unlock_irq(&mchdev_lock);
return val;
}
/**
* i915_read_mch_val - return value for IPS use
*
* Calculate and return a value for the IPS driver to use when deciding whether
* we have thermal and power headroom to increase CPU or GPU power budget.
*/
unsigned long i915_read_mch_val(void)
{
struct drm_i915_private *dev_priv;
unsigned long chipset_val, graphics_val, ret = 0;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev)
goto out_unlock;
dev_priv = i915_mch_dev;
chipset_val = __i915_chipset_val(dev_priv);
graphics_val = __i915_gfx_val(dev_priv);
ret = chipset_val + graphics_val;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);
/**
* i915_gpu_raise - raise GPU frequency limit
*
* Raise the limit; IPS indicates we have thermal headroom.
*/
bool i915_gpu_raise(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
dev_priv->ips.max_delay--;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);
/**
* i915_gpu_lower - lower GPU frequency limit
*
* IPS indicates we're close to a thermal limit, so throttle back the GPU
* frequency maximum.
*/
bool i915_gpu_lower(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
dev_priv->ips.max_delay++;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);
/**
* i915_gpu_busy - indicate GPU business to IPS
*
* Tell the IPS driver whether or not the GPU is busy.
*/
bool i915_gpu_busy(void)
{
bool ret = false;
spin_lock_irq(&mchdev_lock);
if (i915_mch_dev)
ret = i915_mch_dev->gt.awake;
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);
/**
* i915_gpu_turbo_disable - disable graphics turbo
*
* Disable graphics turbo by resetting the max frequency and setting the
* current frequency to the default.
*/
bool i915_gpu_turbo_disable(void)
{
struct drm_i915_private *dev_priv;
bool ret = true;
spin_lock_irq(&mchdev_lock);
if (!i915_mch_dev) {
ret = false;
goto out_unlock;
}
dev_priv = i915_mch_dev;
dev_priv->ips.max_delay = dev_priv->ips.fstart;
if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
ret = false;
out_unlock:
spin_unlock_irq(&mchdev_lock);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
/**
* Tells the intel_ips driver that the i915 driver is now loaded, if
* IPS got loaded first.
*
* This awkward dance is so that neither module has to depend on the
* other in order for IPS to do the appropriate communication of
* GPU turbo limits to i915.
*/
static void
ips_ping_for_i915_load(void)
{
void (*link)(void);
link = symbol_get(ips_link_to_i915_driver);
if (link) {
link();
symbol_put(ips_link_to_i915_driver);
}
}
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
/* We only register the i915 ips part with intel-ips once everything is
* set up, to avoid intel-ips sneaking in and reading bogus values. */
spin_lock_irq(&mchdev_lock);
i915_mch_dev = dev_priv;
spin_unlock_irq(&mchdev_lock);
ips_ping_for_i915_load();
}
void intel_gpu_ips_teardown(void)
{
spin_lock_irq(&mchdev_lock);
i915_mch_dev = NULL;
spin_unlock_irq(&mchdev_lock);
}
static void intel_init_emon(struct drm_i915_private *dev_priv)
{
u32 lcfuse;
u8 pxw[16];
int i;
/* Disable to program */
I915_WRITE(ECR, 0);
POSTING_READ(ECR);
/* Program energy weights for various events */
I915_WRITE(SDEW, 0x15040d00);
I915_WRITE(CSIEW0, 0x007f0000);
I915_WRITE(CSIEW1, 0x1e220004);
I915_WRITE(CSIEW2, 0x04000004);
for (i = 0; i < 5; i++)
I915_WRITE(PEW(i), 0);
for (i = 0; i < 3; i++)
I915_WRITE(DEW(i), 0);
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = I915_READ(PXVFREQ(i));
unsigned long freq = intel_pxfreq(pxvidfreq);
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
unsigned long val;
val = vid * vid;
val *= (freq / 1000);
val *= 255;
val /= (127*127*900);
if (val > 0xff)
DRM_ERROR("bad pxval: %ld\n", val);
pxw[i] = val;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
for (i = 0; i < 4; i++) {
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
I915_WRITE(PXW(i), val);
}
/* Adjust magic regs to magic values (more experimental results) */
I915_WRITE(OGW0, 0);
I915_WRITE(OGW1, 0);
I915_WRITE(EG0, 0x00007f00);
I915_WRITE(EG1, 0x0000000e);
I915_WRITE(EG2, 0x000e0000);
I915_WRITE(EG3, 0x68000300);
I915_WRITE(EG4, 0x42000000);
I915_WRITE(EG5, 0x00140031);
I915_WRITE(EG6, 0);
I915_WRITE(EG7, 0);
for (i = 0; i < 8; i++)
I915_WRITE(PXWL(i), 0);
/* Enable PMON + select events */
I915_WRITE(ECR, 0x80000019);
lcfuse = I915_READ(LCFUSE02);
dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
}
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
{
/*
* RPM depends on RC6 to save restore the GT HW context, so make RC6 a
* requirement.
*/
if (!i915.enable_rc6) {
DRM_INFO("RC6 disabled, disabling runtime PM support\n");
intel_runtime_pm_get(dev_priv);
}
mutex_lock(&dev_priv->drm.struct_mutex);
mutex_lock(&dev_priv->rps.hw_lock);
/* Initialize RPS limits (for userspace) */
if (IS_CHERRYVIEW(dev_priv))
cherryview_init_gt_powersave(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_init_gt_powersave(dev_priv);
else if (INTEL_GEN(dev_priv) >= 6)
gen6_init_rps_frequencies(dev_priv);
/* Derive initial user preferences/limits from the hardware limits */
dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
dev_priv->rps.min_freq_softlimit =
max_t(int,
dev_priv->rps.efficient_freq,
intel_freq_opcode(dev_priv, 450));
/* After setting max-softlimit, find the overclock max freq */
if (IS_GEN6(dev_priv) ||
IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
u32 params = 0;
sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
if (params & BIT(31)) { /* OC supported */
DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
(dev_priv->rps.max_freq & 0xff) * 50,
(params & 0xff) * 50);
dev_priv->rps.max_freq = params & 0xff;
}
}
/* Finally allow us to boost to max by default */
dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
mutex_unlock(&dev_priv->rps.hw_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
intel_autoenable_gt_powersave(dev_priv);
}
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
{
if (IS_VALLEYVIEW(dev_priv))
valleyview_cleanup_gt_powersave(dev_priv);
if (!i915.enable_rc6)
intel_runtime_pm_put(dev_priv);
}
/**
* intel_suspend_gt_powersave - suspend PM work and helper threads
* @dev_priv: i915 device
*
* We don't want to disable RC6 or other features here, we just want
* to make sure any work we've queued has finished and won't bother
* us while we're suspended.
*/
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 6)
return;
if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
intel_runtime_pm_put(dev_priv);
/* gen6_rps_idle() will be called later to disable interrupts */
}
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
dev_priv->rps.enabled = true; /* force disabling */
intel_disable_gt_powersave(dev_priv);
gen6_reset_rps_interrupts(dev_priv);
}
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
if (!READ_ONCE(dev_priv->rps.enabled))
return;
mutex_lock(&dev_priv->rps.hw_lock);
if (INTEL_GEN(dev_priv) >= 9) {
gen9_disable_rc6(dev_priv);
gen9_disable_rps(dev_priv);
} else if (IS_CHERRYVIEW(dev_priv)) {
cherryview_disable_rps(dev_priv);
} else if (IS_VALLEYVIEW(dev_priv)) {
valleyview_disable_rps(dev_priv);
} else if (INTEL_GEN(dev_priv) >= 6) {
gen6_disable_rps(dev_priv);
} else if (IS_IRONLAKE_M(dev_priv)) {
ironlake_disable_drps(dev_priv);
}
dev_priv->rps.enabled = false;
mutex_unlock(&dev_priv->rps.hw_lock);
}
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
/* We shouldn't be disabling as we submit, so this should be less
* racy than it appears!
*/
if (READ_ONCE(dev_priv->rps.enabled))
return;
/* Powersaving is controlled by the host when inside a VM */
if (intel_vgpu_active(dev_priv))
return;
mutex_lock(&dev_priv->rps.hw_lock);
if (IS_CHERRYVIEW(dev_priv)) {
cherryview_enable_rps(dev_priv);
} else if (IS_VALLEYVIEW(dev_priv)) {
valleyview_enable_rps(dev_priv);
} else if (INTEL_GEN(dev_priv) >= 9) {
gen9_enable_rc6(dev_priv);
gen9_enable_rps(dev_priv);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
gen6_update_ring_freq(dev_priv);
} else if (IS_BROADWELL(dev_priv)) {
gen8_enable_rps(dev_priv);
gen6_update_ring_freq(dev_priv);
} else if (INTEL_GEN(dev_priv) >= 6) {
gen6_enable_rps(dev_priv);
gen6_update_ring_freq(dev_priv);
} else if (IS_IRONLAKE_M(dev_priv)) {
ironlake_enable_drps(dev_priv);
intel_init_emon(dev_priv);
}
WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
dev_priv->rps.enabled = true;
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
struct intel_engine_cs *rcs;
struct drm_i915_gem_request *req;
if (READ_ONCE(dev_priv->rps.enabled))
goto out;
rcs = &dev_priv->engine[RCS];
if (rcs->last_context)
goto out;
if (!rcs->init_context)
goto out;
mutex_lock(&dev_priv->drm.struct_mutex);
req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
if (IS_ERR(req))
goto unlock;
if (!i915.enable_execlists && i915_switch_context(req) == 0)
rcs->init_context(req);
/* Mark the device busy, calling intel_enable_gt_powersave() */
i915_add_request_no_flush(req);
unlock:
mutex_unlock(&dev_priv->drm.struct_mutex);
out:
intel_runtime_pm_put(dev_priv);
}
void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
if (READ_ONCE(dev_priv->rps.enabled))
return;
if (IS_IRONLAKE_M(dev_priv)) {
ironlake_enable_drps(dev_priv);
intel_init_emon(dev_priv);
} else if (INTEL_INFO(dev_priv)->gen >= 6) {
/*
* PCU communication is slow and this doesn't need to be
* done at any specific time, so do this out of our fast path
* to make resume and init faster.
*
* We depend on the HW RC6 power context save/restore
* mechanism when entering D3 through runtime PM suspend. So
* disable RPM until RPS/RC6 is properly setup. We can only
* get here via the driver load/system resume/runtime resume
* paths, so the _noresume version is enough (and in case of
* runtime resume it's necessary).
*/
if (queue_delayed_work(dev_priv->wq,
&dev_priv->rps.autoenable_work,
round_jiffies_up_relative(HZ)))
intel_runtime_pm_get_noresume(dev_priv);
}
}
static void ibx_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
POSTING_READ(DSPSURF(pipe));
}
}
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
}
static void ironlake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
/*
* Required for FBC
* WaFbcDisableDpfcClockGating:ilk
*/
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
ilk_init_lp_watermarks(dev);
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev)) {
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
}
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(_3D_CHICKEN2,
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
_3D_CHICKEN2_WM_READ_PIPELINED);
/* WaDisableRenderCachePipelinedFlush:ilk */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:ilk */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
ibx_init_clock_gating(dev);
}
static void cpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
uint32_t val;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
PCH_CPUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* The below fixes the weird display corruption, a few pixels shifted
* downward, on (only) LVDS of some HP laptops with IVY.
*/
for_each_pipe(dev_priv, pipe) {
val = I915_READ(TRANS_CHICKEN2(pipe));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
if (dev_priv->vbt.fdi_rx_polarity_inverted)
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
I915_WRITE(TRANS_CHICKEN2(pipe), val);
}
/* WADP0ClockGatingDisable */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(TRANS_CHICKEN1(pipe),
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
}
static void gen6_check_mch_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t tmp;
tmp = I915_READ(MCH_SSKPD);
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
tmp);
}
static void gen6_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
I915_WRITE(_3D_CHICKEN,
_MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
/* WaDisable_RenderCache_OperationalFlush:snb */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/*
* BSpec recoomends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN6_GT_MODE,
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
ilk_init_lp_watermarks(dev);
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
I915_WRITE(GEN6_UCGCTL1,
I915_READ(GEN6_UCGCTL1) |
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*
* WaDisableRCCUnitClockGating:snb
* WaDisableRCPBUnitClockGating:snb
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/* WaStripsFansDisableFastClipPerformanceFix:snb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
/*
* Bspec says:
* "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
* 3DSTATE_SF number of SF output attributes is more than 16."
*/
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*
* WaFbcAsynchFlipDisableFbcQueue:snb
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
I915_WRITE(ILK_DSPCLK_GATE_D,
I915_READ(ILK_DSPCLK_GATE_D) |
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
g4x_disable_trickle_feed(dev);
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
/*
* WaVSThreadDispatchOverride:ivb,vlv
*
* This actually overrides the dispatch
* mode for all thread types.
*/
reg &= ~GEN7_FF_SCHED_MASK;
reg |= GEN7_FF_TS_SCHED_HW;
reg |= GEN7_FF_VS_SCHED_HW;
reg |= GEN7_FF_DS_SCHED_HW;
I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}
static void lpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/*
* TODO: this bit should only be enabled when really needed, then
* disabled when not needed anymore in order to save power.
*/
if (HAS_PCH_LPT_LP(dev))
I915_WRITE(SOUTH_DSPCLK_GATE_D,
I915_READ(SOUTH_DSPCLK_GATE_D) |
PCH_LP_PARTITION_LEVEL_DISABLE);
/* WADPOClockGatingDisable:hsw */
I915_WRITE(TRANS_CHICKEN1(PIPE_A),
I915_READ(TRANS_CHICKEN1(PIPE_A)) |
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
static void lpt_suspend_hw(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (HAS_PCH_LPT_LP(dev)) {
uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
}
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
int general_prio_credits,
int high_prio_credits)
{
u32 misccpctl;
/* WaTempDisableDOPClkGating:bdw */
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
I915_WRITE(GEN8_L3SQCREG1,
L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
L3_HIGH_PRIO_CREDITS(high_prio_credits));
/*
* Wait at least 100 clocks before re-enabling clock gating.
* See the definition of L3SQCREG1 in BSpec.
*/
POSTING_READ(GEN8_L3SQCREG1);
udelay(1);
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}
static void kabylake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen9_init_clock_gating(dev);
/* WaDisableSDEUnitClockGating:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaDisableGamClockGating:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
/* WaFbcNukeOnHostModify:kbl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void skylake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gen9_init_clock_gating(dev);
/* WAC6entrylatency:skl */
I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
FBC_LLC_FULLY_OPEN);
/* WaFbcNukeOnHostModify:skl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void broadwell_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe;
ilk_init_lp_watermarks(dev);
/* WaSwitchSolVfFArbitrationPriority:bdw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaPsrDPAMaskVBlankInSRD:bdw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(CHICKEN_PIPESL_1(pipe),
I915_READ(CHICKEN_PIPESL_1(pipe)) |
BDW_DPRS_MASK_VBLANK_SRD);
}
/* WaVSRefCountFullforceMissDisable:bdw */
/* WaDSRefCountFullforceMissDisable:bdw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableSDEUnitClockGating:bdw */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaProgramL3SqcReg1Default:bdw */
gen8_set_l3sqc_credits(dev_priv, 30, 2);
/*
* WaGttCachingOffByDefault:bdw
* GTT cache may not work with big pages, so if those
* are ever enabled GTT cache may need to be disabled.
*/
I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
/* WaKVMNotificationOnConfigChange:bdw */
I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
| KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
lpt_init_clock_gating(dev);
}
static void haswell_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
ilk_init_lp_watermarks(dev);
/* L3 caching of data atomics doesn't work -- disable it. */
I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
I915_WRITE(HSW_ROW_CHICKEN3,
_MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
/* This is required by WaCatErrorRejectionIssue:hsw */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/* WaVSRefCountFullforceMissDisable:hsw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
/* WaDisable_RenderCache_OperationalFlush:hsw */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
/* WaDisable4x2SubspanOptimization:hsw */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
/* WaSampleCChickenBitEnable:hsw */
I915_WRITE(HALF_SLICE_CHICKEN3,
_MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
/* WaSwitchSolVfFArbitrationPriority:hsw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaRsPkgCStateDisplayPMReq:hsw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
lpt_init_clock_gating(dev);
}
static void ivybridge_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t snpcr;
ilk_init_lp_watermarks(dev);
I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableEarlyCull:ivb */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:ivb */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaDisablePSDDualDispatchEnable:ivb */
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:ivb */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
/* WaApplyL3ControlAndL3ChickenMode:ivb */
I915_WRITE(GEN7_L3CNTLREG1,
GEN7_WA_FOR_GEN7_L3_CONTROL);
I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
GEN7_WA_L3_CHICKEN_MODE);
if (IS_IVB_GT1(dev))
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
else {
/* must write both registers */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
}
/* WaForceL3Serialization:ivb */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* This is required by WaCatErrorRejectionIssue:ivb */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
g4x_disable_trickle_feed(dev);
gen7_setup_fixed_func_scheduler(dev_priv);
if (0) { /* causes HiZ corruption on ivb:gt1 */
/* enable HiZ Raw Stall Optimization */
I915_WRITE(CACHE_MODE_0_GEN7,
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
}
/* WaDisable4x2SubspanOptimization:ivb */
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= GEN6_MBC_SNPCR_MED;
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
if (!HAS_PCH_NOP(dev))
cpt_init_clock_gating(dev);
gen6_check_mch_setup(dev);
}
static void valleyview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/* WaDisableEarlyCull:vlv */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
/* WaDisableBackToBackFlipFix:vlv */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaPsdDispatchEnable:vlv */
/* WaDisablePSDDualDispatchEnable:vlv */
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
_MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
/* WaDisable_RenderCache_OperationalFlush:vlv */
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
/* WaForceL3Serialization:vlv */
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
/* WaDisableDopClockGating:vlv */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
/* This is required by WaCatErrorRejectionIssue:vlv */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
gen7_setup_fixed_func_scheduler(dev_priv);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* WaDisableL3Bank2xClockGate:vlv
* Disabling L3 clock gating- MMIO 940c[25] = 1
* Set bit 25, to disable L3_BANK_2x_CLK_GATING */
I915_WRITE(GEN7_UCGCTL4,
I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
/*
* BSpec says this must be set, even though
* WaDisable4x2SubspanOptimization isn't listed for VLV.
*/
I915_WRITE(CACHE_MODE_1,
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
I915_WRITE(GEN7_GT_MODE,
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
/*
* WaIncreaseL3CreditsForVLVB0:vlv
* This is the hardware default actually.
*/
I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
/*
* WaDisableVLVClockGating_VBIIssue:vlv
* Disable clock gating on th GCFG unit to prevent a delay
* in the reporting of vblank events.
*/
I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
}
static void cherryview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/* WaVSRefCountFullforceMissDisable:chv */
/* WaDSRefCountFullforceMissDisable:chv */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
/* WaDisableSemaphoreAndSyncFlipWait:chv */
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableCSUnitClockGating:chv */
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* WaDisableSDEUnitClockGating:chv */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* WaProgramL3SqcReg1Default:chv
* See gfxspecs/Related Documents/Performance Guide/
* LSQC Setting Recommendations.
*/
gen8_set_l3sqc_credits(dev_priv, 38, 2);
/*
* GTT cache may not work with big pages, so if those
* are ever enabled GTT cache may need to be disabled.
*/
I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
}
static void g4x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
/* WaDisableRenderCachePipelinedFlush */
I915_WRITE(CACHE_MODE_0,
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:g4x */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
g4x_disable_trickle_feed(dev);
}
static void crestline_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void broadwater_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
/* WaDisable_RenderCache_OperationalFlush:gen4 */
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
}
static void gen3_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
if (IS_PINEVIEW(dev))
I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
/* IIR "flip pending" means done if this bit is set */
I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
/* interrupts should cause a wake up from C3 */
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i85x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
/* interrupts should cause a wake up from C3 */
I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
_MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i830_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
_MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
}
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
dev_priv->display.init_clock_gating(dev);
}
void intel_suspend_hw(struct drm_device *dev)
{
if (HAS_PCH_LPT(dev))
lpt_suspend_hw(dev);
}
static void nop_init_clock_gating(struct drm_device *dev)
{
DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}
/**
* intel_init_clock_gating_hooks - setup the clock gating hooks
* @dev_priv: device private
*
* Setup the hooks that configure which clocks of a given platform can be
* gated and also apply various GT and display specific workarounds for these
* platforms. Note that some GT specific workarounds are applied separately
* when GPU contexts or batchbuffers start their execution.
*/
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
if (IS_SKYLAKE(dev_priv))
dev_priv->display.init_clock_gating = skylake_init_clock_gating;
else if (IS_KABYLAKE(dev_priv))
dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
else if (IS_BROXTON(dev_priv))
dev_priv->display.init_clock_gating = bxt_init_clock_gating;
else if (IS_BROADWELL(dev_priv))
dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
else if (IS_CHERRYVIEW(dev_priv))
dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
else if (IS_HASWELL(dev_priv))
dev_priv->display.init_clock_gating = haswell_init_clock_gating;
else if (IS_IVYBRIDGE(dev_priv))
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
else if (IS_VALLEYVIEW(dev_priv))
dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
else if (IS_GEN6(dev_priv))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_GEN5(dev_priv))
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
else if (IS_G4X(dev_priv))
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
else if (IS_CRESTLINE(dev_priv))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev_priv))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
else if (IS_GEN3(dev_priv))
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else if (IS_GEN2(dev_priv))
dev_priv->display.init_clock_gating = i830_init_clock_gating;
else {
MISSING_CASE(INTEL_DEVID(dev_priv));
dev_priv->display.init_clock_gating = nop_init_clock_gating;
}
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
intel_fbc_init(dev_priv);
/* For cxsr */
if (IS_PINEVIEW(dev))
i915_pineview_get_mem_freq(dev);
else if (IS_GEN5(dev))
i915_ironlake_get_mem_freq(dev);
/* For FIFO watermark updates */
if (INTEL_INFO(dev)->gen >= 9) {
skl_setup_wm_latency(dev);
dev_priv->display.update_wm = skl_update_wm;
dev_priv->display.compute_global_watermarks = skl_compute_wm;
} else if (HAS_PCH_SPLIT(dev)) {
ilk_setup_wm_latency(dev);
if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm =
ilk_compute_intermediate_wm;
dev_priv->display.initial_watermarks =
ilk_initial_watermarks;
dev_priv->display.optimize_watermarks =
ilk_optimize_watermarks;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
}
} else if (IS_CHERRYVIEW(dev)) {
vlv_setup_wm_latency(dev);
dev_priv->display.update_wm = vlv_update_wm;
} else if (IS_VALLEYVIEW(dev)) {
vlv_setup_wm_latency(dev);
dev_priv->display.update_wm = vlv_update_wm;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
DRM_INFO("failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
intel_set_memory_cxsr(dev_priv, false);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
} else if (IS_G4X(dev)) {
dev_priv->display.update_wm = g4x_update_wm;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
} else if (IS_GEN2(dev)) {
if (INTEL_INFO(dev)->num_pipes == 1) {
dev_priv->display.update_wm = i845_update_wm;
dev_priv->display.get_fifo_size = i845_get_fifo_size;
} else {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
} else {
DRM_ERROR("unexpected fall-through in intel_init_pm\n");
}
}
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
uint32_t flags =
I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
switch (flags) {
case GEN6_PCODE_SUCCESS:
return 0;
case GEN6_PCODE_UNIMPLEMENTED_CMD:
case GEN6_PCODE_ILLEGAL_CMD:
return -ENXIO;
case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
return -EOVERFLOW;
case GEN6_PCODE_TIMEOUT:
return -ETIMEDOUT;
default:
MISSING_CASE(flags)
return 0;
}
}
static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
uint32_t flags =
I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
switch (flags) {
case GEN6_PCODE_SUCCESS:
return 0;
case GEN6_PCODE_ILLEGAL_CMD:
return -ENXIO;
case GEN7_PCODE_TIMEOUT:
return -ETIMEDOUT;
case GEN7_PCODE_ILLEGAL_DATA:
return -EINVAL;
case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
return -EOVERFLOW;
default:
MISSING_CASE(flags);
return 0;
}
}
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
{
int status;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
/* GEN6_PCODE_* are outside of the forcewake domain, we can
* use te fw I915_READ variants to reduce the amount of work
* required when reading/writing.
*/
if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE_FW(GEN6_PCODE_DATA, *val);
I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (intel_wait_for_register_fw(dev_priv,
GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
500)) {
DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
*val = I915_READ_FW(GEN6_PCODE_DATA);
I915_WRITE_FW(GEN6_PCODE_DATA, 0);
if (INTEL_GEN(dev_priv) > 6)
status = gen7_check_mailbox_status(dev_priv);
else
status = gen6_check_mailbox_status(dev_priv);
if (status) {
DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
status);
return status;
}
return 0;
}
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
u32 mbox, u32 val)
{
int status;
WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
/* GEN6_PCODE_* are outside of the forcewake domain, we can
* use te fw I915_READ variants to reduce the amount of work
* required when reading/writing.
*/
if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
return -EAGAIN;
}
I915_WRITE_FW(GEN6_PCODE_DATA, val);
I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
if (intel_wait_for_register_fw(dev_priv,
GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
500)) {
DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
return -ETIMEDOUT;
}
I915_WRITE_FW(GEN6_PCODE_DATA, 0);
if (INTEL_GEN(dev_priv) > 6)
status = gen7_check_mailbox_status(dev_priv);
else
status = gen6_check_mailbox_status(dev_priv);
if (status) {
DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
status);
return status;
}
return 0;
}
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
/*
* N = val - 0xb7
* Slow = Fast = GPLL ref * N
*/
return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
}
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
}
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
/*
* N = val / 2
* CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
*/
return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
}
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
/* CHV needs even values */
return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
}
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
if (IS_GEN9(dev_priv))
return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
GEN9_FREQ_SCALER);
else if (IS_CHERRYVIEW(dev_priv))
return chv_gpu_freq(dev_priv, val);
else if (IS_VALLEYVIEW(dev_priv))
return byt_gpu_freq(dev_priv, val);
else
return val * GT_FREQUENCY_MULTIPLIER;
}
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
if (IS_GEN9(dev_priv))
return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
GT_FREQUENCY_MULTIPLIER);
else if (IS_CHERRYVIEW(dev_priv))
return chv_freq_opcode(dev_priv, val);
else if (IS_VALLEYVIEW(dev_priv))
return byt_freq_opcode(dev_priv, val);
else
return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
}
struct request_boost {
struct work_struct work;
struct drm_i915_gem_request *req;
};
static void __intel_rps_boost_work(struct work_struct *work)
{
struct request_boost *boost = container_of(work, struct request_boost, work);
struct drm_i915_gem_request *req = boost->req;
if (!i915_gem_request_completed(req))
gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
i915_gem_request_put(req);
kfree(boost);
}
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
{
struct request_boost *boost;
if (req == NULL || INTEL_GEN(req->i915) < 6)
return;
if (i915_gem_request_completed(req))
return;
boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
if (boost == NULL)
return;
boost->req = i915_gem_request_get(req);
INIT_WORK(&boost->work, __intel_rps_boost_work);
queue_work(req->i915->wq, &boost->work);
}
void intel_pm_setup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
mutex_init(&dev_priv->rps.hw_lock);
spin_lock_init(&dev_priv->rps.client_lock);
INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
__intel_autoenable_gt_powersave);
INIT_LIST_HEAD(&dev_priv->rps.clients);
dev_priv->pm.suspended = false;
atomic_set(&dev_priv->pm.wakeref_count, 0);
atomic_set(&dev_priv->pm.atomic_seq, 0);
}