mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
e523b38e2f
If the BIOS does something obviously stupid, like claiming that the registers for the IOMMU are at physical address zero, then print a nasty message and abort, rather than trying to set up the IOMMU and then later panicking. It's becoming more and more obvious that trusting this stuff to the BIOS was a mistake. Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1155 lines
27 KiB
C
1155 lines
27 KiB
C
/*
|
|
* Copyright (c) 2006, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* Copyright (C) 2006-2008 Intel Corporation
|
|
* Author: Ashok Raj <ashok.raj@intel.com>
|
|
* Author: Shaohua Li <shaohua.li@intel.com>
|
|
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
*
|
|
* This file implements early detection/parsing of Remapping Devices
|
|
* reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
|
|
* tables.
|
|
*
|
|
* These routines are used by both DMA-remapping and Interrupt-remapping
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#undef PREFIX
|
|
#define PREFIX "DMAR:"
|
|
|
|
/* No locks are needed as DMA remapping hardware unit
|
|
* list is constructed at boot time and hotplug of
|
|
* these units are not supported by the architecture.
|
|
*/
|
|
LIST_HEAD(dmar_drhd_units);
|
|
|
|
static struct acpi_table_header * __initdata dmar_tbl;
|
|
static acpi_size dmar_tbl_size;
|
|
|
|
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
|
|
{
|
|
/*
|
|
* add INCLUDE_ALL at the tail, so scan the list will find it at
|
|
* the very end.
|
|
*/
|
|
if (drhd->include_all)
|
|
list_add_tail(&drhd->list, &dmar_drhd_units);
|
|
else
|
|
list_add(&drhd->list, &dmar_drhd_units);
|
|
}
|
|
|
|
static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
|
|
struct pci_dev **dev, u16 segment)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct pci_dev *pdev = NULL;
|
|
struct acpi_dmar_pci_path *path;
|
|
int count;
|
|
|
|
bus = pci_find_bus(segment, scope->bus);
|
|
path = (struct acpi_dmar_pci_path *)(scope + 1);
|
|
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
|
|
/ sizeof(struct acpi_dmar_pci_path);
|
|
|
|
while (count) {
|
|
if (pdev)
|
|
pci_dev_put(pdev);
|
|
/*
|
|
* Some BIOSes list non-exist devices in DMAR table, just
|
|
* ignore it
|
|
*/
|
|
if (!bus) {
|
|
printk(KERN_WARNING
|
|
PREFIX "Device scope bus [%d] not found\n",
|
|
scope->bus);
|
|
break;
|
|
}
|
|
pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
|
|
if (!pdev) {
|
|
printk(KERN_WARNING PREFIX
|
|
"Device scope device [%04x:%02x:%02x.%02x] not found\n",
|
|
segment, bus->number, path->dev, path->fn);
|
|
break;
|
|
}
|
|
path ++;
|
|
count --;
|
|
bus = pdev->subordinate;
|
|
}
|
|
if (!pdev) {
|
|
printk(KERN_WARNING PREFIX
|
|
"Device scope device [%04x:%02x:%02x.%02x] not found\n",
|
|
segment, scope->bus, path->dev, path->fn);
|
|
*dev = NULL;
|
|
return 0;
|
|
}
|
|
if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
|
|
pdev->subordinate) || (scope->entry_type == \
|
|
ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
|
|
pci_dev_put(pdev);
|
|
printk(KERN_WARNING PREFIX
|
|
"Device scope type does not match for %s\n",
|
|
pci_name(pdev));
|
|
return -EINVAL;
|
|
}
|
|
*dev = pdev;
|
|
return 0;
|
|
}
|
|
|
|
static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
|
|
struct pci_dev ***devices, u16 segment)
|
|
{
|
|
struct acpi_dmar_device_scope *scope;
|
|
void * tmp = start;
|
|
int index;
|
|
int ret;
|
|
|
|
*cnt = 0;
|
|
while (start < end) {
|
|
scope = start;
|
|
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
|
|
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
|
|
(*cnt)++;
|
|
else
|
|
printk(KERN_WARNING PREFIX
|
|
"Unsupported device scope\n");
|
|
start += scope->length;
|
|
}
|
|
if (*cnt == 0)
|
|
return 0;
|
|
|
|
*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
|
|
if (!*devices)
|
|
return -ENOMEM;
|
|
|
|
start = tmp;
|
|
index = 0;
|
|
while (start < end) {
|
|
scope = start;
|
|
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
|
|
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
|
|
ret = dmar_parse_one_dev_scope(scope,
|
|
&(*devices)[index], segment);
|
|
if (ret) {
|
|
kfree(*devices);
|
|
return ret;
|
|
}
|
|
index ++;
|
|
}
|
|
start += scope->length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
|
|
* structure which uniquely represent one DMA remapping hardware unit
|
|
* present in the platform
|
|
*/
|
|
static int __init
|
|
dmar_parse_one_drhd(struct acpi_dmar_header *header)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct dmar_drhd_unit *dmaru;
|
|
int ret = 0;
|
|
|
|
drhd = (struct acpi_dmar_hardware_unit *)header;
|
|
if (!drhd->address) {
|
|
/* Promote an attitude of violence to a BIOS engineer today */
|
|
WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
return -ENODEV;
|
|
}
|
|
dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
|
|
if (!dmaru)
|
|
return -ENOMEM;
|
|
|
|
dmaru->hdr = header;
|
|
dmaru->reg_base_addr = drhd->address;
|
|
dmaru->segment = drhd->segment;
|
|
dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
|
|
|
|
ret = alloc_iommu(dmaru);
|
|
if (ret) {
|
|
kfree(dmaru);
|
|
return ret;
|
|
}
|
|
dmar_register_drhd_unit(dmaru);
|
|
return 0;
|
|
}
|
|
|
|
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
int ret = 0;
|
|
|
|
drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
|
|
|
|
if (dmaru->include_all)
|
|
return 0;
|
|
|
|
ret = dmar_parse_dev_scope((void *)(drhd + 1),
|
|
((void *)drhd) + drhd->header.length,
|
|
&dmaru->devices_cnt, &dmaru->devices,
|
|
drhd->segment);
|
|
if (ret) {
|
|
list_del(&dmaru->list);
|
|
kfree(dmaru);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR
|
|
LIST_HEAD(dmar_rmrr_units);
|
|
|
|
static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
|
|
{
|
|
list_add(&rmrr->list, &dmar_rmrr_units);
|
|
}
|
|
|
|
|
|
static int __init
|
|
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
|
|
rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
|
|
if (!rmrru)
|
|
return -ENOMEM;
|
|
|
|
rmrru->hdr = header;
|
|
rmrr = (struct acpi_dmar_reserved_memory *)header;
|
|
rmrru->base_address = rmrr->base_address;
|
|
rmrru->end_address = rmrr->end_address;
|
|
|
|
dmar_register_rmrr_unit(rmrru);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
int ret;
|
|
|
|
rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
|
|
ret = dmar_parse_dev_scope((void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
|
|
|
|
if (ret || (rmrru->devices_cnt == 0)) {
|
|
list_del(&rmrru->list);
|
|
kfree(rmrru);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static void __init
|
|
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
|
|
switch (header->type) {
|
|
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
|
|
drhd = (struct acpi_dmar_hardware_unit *)header;
|
|
printk (KERN_INFO PREFIX
|
|
"DRHD (flags: 0x%08x)base: 0x%016Lx\n",
|
|
drhd->flags, (unsigned long long)drhd->address);
|
|
break;
|
|
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
|
|
rmrr = (struct acpi_dmar_reserved_memory *)header;
|
|
|
|
printk (KERN_INFO PREFIX
|
|
"RMRR base: 0x%016Lx end: 0x%016Lx\n",
|
|
(unsigned long long)rmrr->base_address,
|
|
(unsigned long long)rmrr->end_address);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dmar_table_detect - checks to see if the platform supports DMAR devices
|
|
*/
|
|
static int __init dmar_table_detect(void)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
|
|
/* if we could find DMAR table, then there are DMAR devices */
|
|
status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
|
|
(struct acpi_table_header **)&dmar_tbl,
|
|
&dmar_tbl_size);
|
|
|
|
if (ACPI_SUCCESS(status) && !dmar_tbl) {
|
|
printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
|
|
status = AE_NOT_FOUND;
|
|
}
|
|
|
|
return (ACPI_SUCCESS(status) ? 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* parse_dmar_table - parses the DMA reporting table
|
|
*/
|
|
static int __init
|
|
parse_dmar_table(void)
|
|
{
|
|
struct acpi_table_dmar *dmar;
|
|
struct acpi_dmar_header *entry_header;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Do it again, earlier dmar_tbl mapping could be mapped with
|
|
* fixed map.
|
|
*/
|
|
dmar_table_detect();
|
|
|
|
dmar = (struct acpi_table_dmar *)dmar_tbl;
|
|
if (!dmar)
|
|
return -ENODEV;
|
|
|
|
if (dmar->width < PAGE_SHIFT - 1) {
|
|
printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
printk (KERN_INFO PREFIX "Host address width %d\n",
|
|
dmar->width + 1);
|
|
|
|
entry_header = (struct acpi_dmar_header *)(dmar + 1);
|
|
while (((unsigned long)entry_header) <
|
|
(((unsigned long)dmar) + dmar_tbl->length)) {
|
|
/* Avoid looping forever on bad ACPI tables */
|
|
if (entry_header->length == 0) {
|
|
printk(KERN_WARNING PREFIX
|
|
"Invalid 0-length structure\n");
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
dmar_table_print_dmar_entry(entry_header);
|
|
|
|
switch (entry_header->type) {
|
|
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
|
|
ret = dmar_parse_one_drhd(entry_header);
|
|
break;
|
|
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
|
|
#ifdef CONFIG_DMAR
|
|
ret = dmar_parse_one_rmrr(entry_header);
|
|
#endif
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING PREFIX
|
|
"Unknown DMAR structure type\n");
|
|
ret = 0; /* for forward compatibility */
|
|
break;
|
|
}
|
|
if (ret)
|
|
break;
|
|
|
|
entry_header = ((void *)entry_header + entry_header->length);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
|
|
struct pci_dev *dev)
|
|
{
|
|
int index;
|
|
|
|
while (dev) {
|
|
for (index = 0; index < cnt; index++)
|
|
if (dev == devices[index])
|
|
return 1;
|
|
|
|
/* Check our parent */
|
|
dev = dev->bus->self;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct dmar_drhd_unit *
|
|
dmar_find_matched_drhd_unit(struct pci_dev *dev)
|
|
{
|
|
struct dmar_drhd_unit *dmaru = NULL;
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
|
|
list_for_each_entry(dmaru, &dmar_drhd_units, list) {
|
|
drhd = container_of(dmaru->hdr,
|
|
struct acpi_dmar_hardware_unit,
|
|
header);
|
|
|
|
if (dmaru->include_all &&
|
|
drhd->segment == pci_domain_nr(dev->bus))
|
|
return dmaru;
|
|
|
|
if (dmar_pci_device_match(dmaru->devices,
|
|
dmaru->devices_cnt, dev))
|
|
return dmaru;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int __init dmar_dev_scope_init(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd, *drhd_n;
|
|
int ret = -ENODEV;
|
|
|
|
list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
|
|
ret = dmar_parse_dev(drhd);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR
|
|
{
|
|
struct dmar_rmrr_unit *rmrr, *rmrr_n;
|
|
list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
|
|
ret = rmrr_parse_dev(rmrr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int __init dmar_table_init(void)
|
|
{
|
|
static int dmar_table_initialized;
|
|
int ret;
|
|
|
|
if (dmar_table_initialized)
|
|
return 0;
|
|
|
|
dmar_table_initialized = 1;
|
|
|
|
ret = parse_dmar_table();
|
|
if (ret) {
|
|
if (ret != -ENODEV)
|
|
printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
|
|
return ret;
|
|
}
|
|
|
|
if (list_empty(&dmar_drhd_units)) {
|
|
printk(KERN_INFO PREFIX "No DMAR devices found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR
|
|
if (list_empty(&dmar_rmrr_units))
|
|
printk(KERN_INFO PREFIX "No RMRR found\n");
|
|
#endif
|
|
|
|
#ifdef CONFIG_INTR_REMAP
|
|
parse_ioapics_under_ir();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void __init detect_intel_iommu(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = dmar_table_detect();
|
|
|
|
{
|
|
#ifdef CONFIG_INTR_REMAP
|
|
struct acpi_table_dmar *dmar;
|
|
/*
|
|
* for now we will disable dma-remapping when interrupt
|
|
* remapping is enabled.
|
|
* When support for queued invalidation for IOTLB invalidation
|
|
* is added, we will not need this any more.
|
|
*/
|
|
dmar = (struct acpi_table_dmar *) dmar_tbl;
|
|
if (ret && cpu_has_x2apic && dmar->flags & 0x1)
|
|
printk(KERN_INFO
|
|
"Queued invalidation will be enabled to support "
|
|
"x2apic and Intr-remapping.\n");
|
|
#endif
|
|
#ifdef CONFIG_DMAR
|
|
if (ret && !no_iommu && !iommu_detected && !swiotlb &&
|
|
!dmar_disabled)
|
|
iommu_detected = 1;
|
|
#endif
|
|
}
|
|
early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
|
|
dmar_tbl = NULL;
|
|
}
|
|
|
|
|
|
int alloc_iommu(struct dmar_drhd_unit *drhd)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
int map_size;
|
|
u32 ver;
|
|
static int iommu_allocated = 0;
|
|
int agaw = 0;
|
|
|
|
iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
|
|
if (!iommu)
|
|
return -ENOMEM;
|
|
|
|
iommu->seq_id = iommu_allocated++;
|
|
sprintf (iommu->name, "dmar%d", iommu->seq_id);
|
|
|
|
iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
|
|
if (!iommu->reg) {
|
|
printk(KERN_ERR "IOMMU: can't map the region\n");
|
|
goto error;
|
|
}
|
|
iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
|
|
iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
|
|
|
|
#ifdef CONFIG_DMAR
|
|
agaw = iommu_calculate_agaw(iommu);
|
|
if (agaw < 0) {
|
|
printk(KERN_ERR
|
|
"Cannot get a valid agaw for iommu (seq_id = %d)\n",
|
|
iommu->seq_id);
|
|
goto error;
|
|
}
|
|
#endif
|
|
iommu->agaw = agaw;
|
|
|
|
/* the registers might be more than one page */
|
|
map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
|
|
cap_max_fault_reg_offset(iommu->cap));
|
|
map_size = VTD_PAGE_ALIGN(map_size);
|
|
if (map_size > VTD_PAGE_SIZE) {
|
|
iounmap(iommu->reg);
|
|
iommu->reg = ioremap(drhd->reg_base_addr, map_size);
|
|
if (!iommu->reg) {
|
|
printk(KERN_ERR "IOMMU: can't map the region\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
ver = readl(iommu->reg + DMAR_VER_REG);
|
|
pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
|
|
(unsigned long long)drhd->reg_base_addr,
|
|
DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
|
|
(unsigned long long)iommu->cap,
|
|
(unsigned long long)iommu->ecap);
|
|
|
|
spin_lock_init(&iommu->register_lock);
|
|
|
|
drhd->iommu = iommu;
|
|
return 0;
|
|
error:
|
|
kfree(iommu);
|
|
return -1;
|
|
}
|
|
|
|
void free_iommu(struct intel_iommu *iommu)
|
|
{
|
|
if (!iommu)
|
|
return;
|
|
|
|
#ifdef CONFIG_DMAR
|
|
free_dmar_iommu(iommu);
|
|
#endif
|
|
|
|
if (iommu->reg)
|
|
iounmap(iommu->reg);
|
|
kfree(iommu);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all the submitted descriptors which have completed its work.
|
|
*/
|
|
static inline void reclaim_free_desc(struct q_inval *qi)
|
|
{
|
|
while (qi->desc_status[qi->free_tail] == QI_DONE) {
|
|
qi->desc_status[qi->free_tail] = QI_FREE;
|
|
qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
|
|
qi->free_cnt++;
|
|
}
|
|
}
|
|
|
|
static int qi_check_fault(struct intel_iommu *iommu, int index)
|
|
{
|
|
u32 fault;
|
|
int head;
|
|
struct q_inval *qi = iommu->qi;
|
|
int wait_index = (index + 1) % QI_LENGTH;
|
|
|
|
fault = readl(iommu->reg + DMAR_FSTS_REG);
|
|
|
|
/*
|
|
* If IQE happens, the head points to the descriptor associated
|
|
* with the error. No new descriptors are fetched until the IQE
|
|
* is cleared.
|
|
*/
|
|
if (fault & DMA_FSTS_IQE) {
|
|
head = readl(iommu->reg + DMAR_IQH_REG);
|
|
if ((head >> 4) == index) {
|
|
memcpy(&qi->desc[index], &qi->desc[wait_index],
|
|
sizeof(struct qi_desc));
|
|
__iommu_flush_cache(iommu, &qi->desc[index],
|
|
sizeof(struct qi_desc));
|
|
writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Submit the queued invalidation descriptor to the remapping
|
|
* hardware unit and wait for its completion.
|
|
*/
|
|
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
|
|
{
|
|
int rc = 0;
|
|
struct q_inval *qi = iommu->qi;
|
|
struct qi_desc *hw, wait_desc;
|
|
int wait_index, index;
|
|
unsigned long flags;
|
|
|
|
if (!qi)
|
|
return 0;
|
|
|
|
hw = qi->desc;
|
|
|
|
spin_lock_irqsave(&qi->q_lock, flags);
|
|
while (qi->free_cnt < 3) {
|
|
spin_unlock_irqrestore(&qi->q_lock, flags);
|
|
cpu_relax();
|
|
spin_lock_irqsave(&qi->q_lock, flags);
|
|
}
|
|
|
|
index = qi->free_head;
|
|
wait_index = (index + 1) % QI_LENGTH;
|
|
|
|
qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
|
|
|
|
hw[index] = *desc;
|
|
|
|
wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
|
|
QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
|
|
wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
|
|
|
|
hw[wait_index] = wait_desc;
|
|
|
|
__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
|
|
__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
|
|
|
|
qi->free_head = (qi->free_head + 2) % QI_LENGTH;
|
|
qi->free_cnt -= 2;
|
|
|
|
/*
|
|
* update the HW tail register indicating the presence of
|
|
* new descriptors.
|
|
*/
|
|
writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
|
|
|
|
while (qi->desc_status[wait_index] != QI_DONE) {
|
|
/*
|
|
* We will leave the interrupts disabled, to prevent interrupt
|
|
* context to queue another cmd while a cmd is already submitted
|
|
* and waiting for completion on this cpu. This is to avoid
|
|
* a deadlock where the interrupt context can wait indefinitely
|
|
* for free slots in the queue.
|
|
*/
|
|
rc = qi_check_fault(iommu, index);
|
|
if (rc)
|
|
goto out;
|
|
|
|
spin_unlock(&qi->q_lock);
|
|
cpu_relax();
|
|
spin_lock(&qi->q_lock);
|
|
}
|
|
out:
|
|
qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
|
|
|
|
reclaim_free_desc(qi);
|
|
spin_unlock_irqrestore(&qi->q_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Flush the global interrupt entry cache.
|
|
*/
|
|
void qi_global_iec(struct intel_iommu *iommu)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
desc.low = QI_IEC_TYPE;
|
|
desc.high = 0;
|
|
|
|
/* should never fail */
|
|
qi_submit_sync(&desc, iommu);
|
|
}
|
|
|
|
int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
|
|
u64 type, int non_present_entry_flush)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
|
|
| QI_CC_GRAN(type) | QI_CC_TYPE;
|
|
desc.high = 0;
|
|
|
|
return qi_submit_sync(&desc, iommu);
|
|
}
|
|
|
|
int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
|
|
unsigned int size_order, u64 type,
|
|
int non_present_entry_flush)
|
|
{
|
|
u8 dw = 0, dr = 0;
|
|
|
|
struct qi_desc desc;
|
|
int ih = 0;
|
|
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
if (cap_write_drain(iommu->cap))
|
|
dw = 1;
|
|
|
|
if (cap_read_drain(iommu->cap))
|
|
dr = 1;
|
|
|
|
desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
|
|
| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
|
|
desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
|
|
| QI_IOTLB_AM(size_order);
|
|
|
|
return qi_submit_sync(&desc, iommu);
|
|
}
|
|
|
|
/*
|
|
* Disable Queued Invalidation interface.
|
|
*/
|
|
void dmar_disable_qi(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long flags;
|
|
u32 sts;
|
|
cycles_t start_time = get_cycles();
|
|
|
|
if (!ecap_qis(iommu->ecap))
|
|
return;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
|
|
if (!(sts & DMA_GSTS_QIES))
|
|
goto end;
|
|
|
|
/*
|
|
* Give a chance to HW to complete the pending invalidation requests.
|
|
*/
|
|
while ((readl(iommu->reg + DMAR_IQT_REG) !=
|
|
readl(iommu->reg + DMAR_IQH_REG)) &&
|
|
(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
|
|
cpu_relax();
|
|
|
|
iommu->gcmd &= ~DMA_GCMD_QIE;
|
|
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
|
|
!(sts & DMA_GSTS_QIES), sts);
|
|
end:
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable queued invalidation.
|
|
*/
|
|
static void __dmar_enable_qi(struct intel_iommu *iommu)
|
|
{
|
|
u32 cmd, sts;
|
|
unsigned long flags;
|
|
struct q_inval *qi = iommu->qi;
|
|
|
|
qi->free_head = qi->free_tail = 0;
|
|
qi->free_cnt = QI_LENGTH;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
/* write zero to the tail reg */
|
|
writel(0, iommu->reg + DMAR_IQT_REG);
|
|
|
|
dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
|
|
|
|
cmd = iommu->gcmd | DMA_GCMD_QIE;
|
|
iommu->gcmd |= DMA_GCMD_QIE;
|
|
writel(cmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable Queued Invalidation interface. This is a must to support
|
|
* interrupt-remapping. Also used by DMA-remapping, which replaces
|
|
* register based IOTLB invalidation.
|
|
*/
|
|
int dmar_enable_qi(struct intel_iommu *iommu)
|
|
{
|
|
struct q_inval *qi;
|
|
|
|
if (!ecap_qis(iommu->ecap))
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* queued invalidation is already setup and enabled.
|
|
*/
|
|
if (iommu->qi)
|
|
return 0;
|
|
|
|
iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
|
|
if (!iommu->qi)
|
|
return -ENOMEM;
|
|
|
|
qi = iommu->qi;
|
|
|
|
qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
|
|
if (!qi->desc) {
|
|
kfree(qi);
|
|
iommu->qi = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
|
|
if (!qi->desc_status) {
|
|
free_page((unsigned long) qi->desc);
|
|
kfree(qi);
|
|
iommu->qi = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qi->free_head = qi->free_tail = 0;
|
|
qi->free_cnt = QI_LENGTH;
|
|
|
|
spin_lock_init(&qi->q_lock);
|
|
|
|
__dmar_enable_qi(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* iommu interrupt handling. Most stuff are MSI-like. */
|
|
|
|
enum faulttype {
|
|
DMA_REMAP,
|
|
INTR_REMAP,
|
|
UNKNOWN,
|
|
};
|
|
|
|
static const char *dma_remap_fault_reasons[] =
|
|
{
|
|
"Software",
|
|
"Present bit in root entry is clear",
|
|
"Present bit in context entry is clear",
|
|
"Invalid context entry",
|
|
"Access beyond MGAW",
|
|
"PTE Write access is not set",
|
|
"PTE Read access is not set",
|
|
"Next page table ptr is invalid",
|
|
"Root table address invalid",
|
|
"Context table ptr is invalid",
|
|
"non-zero reserved fields in RTP",
|
|
"non-zero reserved fields in CTP",
|
|
"non-zero reserved fields in PTE",
|
|
};
|
|
|
|
static const char *intr_remap_fault_reasons[] =
|
|
{
|
|
"Detected reserved fields in the decoded interrupt-remapped request",
|
|
"Interrupt index exceeded the interrupt-remapping table size",
|
|
"Present field in the IRTE entry is clear",
|
|
"Error accessing interrupt-remapping table pointed by IRTA_REG",
|
|
"Detected reserved fields in the IRTE entry",
|
|
"Blocked a compatibility format interrupt request",
|
|
"Blocked an interrupt request due to source-id verification failure",
|
|
};
|
|
|
|
#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
|
|
|
|
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
|
|
{
|
|
if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
|
|
ARRAY_SIZE(intr_remap_fault_reasons))) {
|
|
*fault_type = INTR_REMAP;
|
|
return intr_remap_fault_reasons[fault_reason - 0x20];
|
|
} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
|
|
*fault_type = DMA_REMAP;
|
|
return dma_remap_fault_reasons[fault_reason];
|
|
} else {
|
|
*fault_type = UNKNOWN;
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
void dmar_msi_unmask(unsigned int irq)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
/* unmask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(0, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_mask(unsigned int irq)
|
|
{
|
|
unsigned long flag;
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
|
|
/* mask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_write(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
|
|
writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
|
|
writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_read(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
|
|
msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
|
|
msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
|
|
u8 fault_reason, u16 source_id, unsigned long long addr)
|
|
{
|
|
const char *reason;
|
|
int fault_type;
|
|
|
|
reason = dmar_get_fault_reason(fault_reason, &fault_type);
|
|
|
|
if (fault_type == INTR_REMAP)
|
|
printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
|
|
"fault index %llx\n"
|
|
"INTR-REMAP:[fault reason %02d] %s\n",
|
|
(source_id >> 8), PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), addr >> 48,
|
|
fault_reason, reason);
|
|
else
|
|
printk(KERN_ERR
|
|
"DMAR:[%s] Request device [%02x:%02x.%d] "
|
|
"fault addr %llx \n"
|
|
"DMAR:[fault reason %02d] %s\n",
|
|
(type ? "DMA Read" : "DMA Write"),
|
|
(source_id >> 8), PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
|
|
return 0;
|
|
}
|
|
|
|
#define PRIMARY_FAULT_REG_LEN (16)
|
|
irqreturn_t dmar_fault(int irq, void *dev_id)
|
|
{
|
|
struct intel_iommu *iommu = dev_id;
|
|
int reg, fault_index;
|
|
u32 fault_status;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
if (fault_status)
|
|
printk(KERN_ERR "DRHD: handling fault status reg %x\n",
|
|
fault_status);
|
|
|
|
/* TBD: ignore advanced fault log currently */
|
|
if (!(fault_status & DMA_FSTS_PPF))
|
|
goto clear_rest;
|
|
|
|
fault_index = dma_fsts_fault_record_index(fault_status);
|
|
reg = cap_fault_reg_offset(iommu->cap);
|
|
while (1) {
|
|
u8 fault_reason;
|
|
u16 source_id;
|
|
u64 guest_addr;
|
|
int type;
|
|
u32 data;
|
|
|
|
/* highest 32 bits */
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
if (!(data & DMA_FRCD_F))
|
|
break;
|
|
|
|
fault_reason = dma_frcd_fault_reason(data);
|
|
type = dma_frcd_type(data);
|
|
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 8);
|
|
source_id = dma_frcd_source_id(data);
|
|
|
|
guest_addr = dmar_readq(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN);
|
|
guest_addr = dma_frcd_page_addr(guest_addr);
|
|
/* clear the fault */
|
|
writel(DMA_FRCD_F, iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
dmar_fault_do_one(iommu, type, fault_reason,
|
|
source_id, guest_addr);
|
|
|
|
fault_index++;
|
|
if (fault_index > cap_num_fault_regs(iommu->cap))
|
|
fault_index = 0;
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
}
|
|
clear_rest:
|
|
/* clear all the other faults */
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
writel(fault_status, iommu->reg + DMAR_FSTS_REG);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int dmar_set_interrupt(struct intel_iommu *iommu)
|
|
{
|
|
int irq, ret;
|
|
|
|
/*
|
|
* Check if the fault interrupt is already initialized.
|
|
*/
|
|
if (iommu->irq)
|
|
return 0;
|
|
|
|
irq = create_irq();
|
|
if (!irq) {
|
|
printk(KERN_ERR "IOMMU: no free vectors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_irq_data(irq, iommu);
|
|
iommu->irq = irq;
|
|
|
|
ret = arch_setup_dmar_msi(irq);
|
|
if (ret) {
|
|
set_irq_data(irq, NULL);
|
|
iommu->irq = 0;
|
|
destroy_irq(irq);
|
|
return 0;
|
|
}
|
|
|
|
ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
|
|
if (ret)
|
|
printk(KERN_ERR "IOMMU: can't request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
int __init enable_drhd_fault_handling(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
/*
|
|
* Enable fault control interrupt.
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
int ret;
|
|
struct intel_iommu *iommu = drhd->iommu;
|
|
ret = dmar_set_interrupt(iommu);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
|
|
" interrupt, ret %d\n",
|
|
(unsigned long long)drhd->reg_base_addr, ret);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Re-enable Queued Invalidation interface.
|
|
*/
|
|
int dmar_reenable_qi(struct intel_iommu *iommu)
|
|
{
|
|
if (!ecap_qis(iommu->ecap))
|
|
return -ENOENT;
|
|
|
|
if (!iommu->qi)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* First disable queued invalidation.
|
|
*/
|
|
dmar_disable_qi(iommu);
|
|
/*
|
|
* Then enable queued invalidation again. Since there is no pending
|
|
* invalidation requests now, it's safe to re-enable queued
|
|
* invalidation.
|
|
*/
|
|
__dmar_enable_qi(iommu);
|
|
|
|
return 0;
|
|
}
|