2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/sound/soc/codecs/nau8540.c
Colin Ian King d101f9b96e
ASoC: nau8540: remove redundant variable osrate
Variable osrate is being assigned but is never used hence it is
redundant and can be removed.

Cleans up clang warning:
warning: variable 'osrate' set but not used [-Wunused-but-set-variable]

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2018-08-01 12:16:22 +01:00

888 lines
27 KiB
C

/*
* NAU85L40 ALSA SoC audio driver
*
* Copyright 2016 Nuvoton Technology Corp.
* Author: John Hsu <KCHSU0@nuvoton.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "nau8540.h"
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
/* the maximum frequency of CLK_ADC */
#define CLK_ADC_MAX 6144000
/* scaling for mclk from sysclk_src output */
static const struct nau8540_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
};
/* ratio for input clk freq */
static const struct nau8540_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8540_fll_attr fll_pre_scalar[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 4, 0x2 },
{ 8, 0x3 },
};
/* over sampling rate */
static const struct nau8540_osr_attr osr_adc_sel[] = {
{ 32, 3 }, /* OSR 32, SRC 1/8 */
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 256, 0 }, /* OSR 256, SRC 1 */
};
static const struct reg_default nau8540_reg_defaults[] = {
{NAU8540_REG_POWER_MANAGEMENT, 0x0000},
{NAU8540_REG_CLOCK_CTRL, 0x0000},
{NAU8540_REG_CLOCK_SRC, 0x0000},
{NAU8540_REG_FLL1, 0x0001},
{NAU8540_REG_FLL2, 0x3126},
{NAU8540_REG_FLL3, 0x0008},
{NAU8540_REG_FLL4, 0x0010},
{NAU8540_REG_FLL5, 0xC000},
{NAU8540_REG_FLL6, 0x6000},
{NAU8540_REG_FLL_VCO_RSV, 0xF13C},
{NAU8540_REG_PCM_CTRL0, 0x000B},
{NAU8540_REG_PCM_CTRL1, 0x3010},
{NAU8540_REG_PCM_CTRL2, 0x0800},
{NAU8540_REG_PCM_CTRL3, 0x0000},
{NAU8540_REG_PCM_CTRL4, 0x000F},
{NAU8540_REG_ALC_CONTROL_1, 0x0000},
{NAU8540_REG_ALC_CONTROL_2, 0x700B},
{NAU8540_REG_ALC_CONTROL_3, 0x0022},
{NAU8540_REG_ALC_CONTROL_4, 0x1010},
{NAU8540_REG_ALC_CONTROL_5, 0x1010},
{NAU8540_REG_NOTCH_FIL1_CH1, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH1, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH2, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH2, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH3, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH3, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH4, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH4, 0x0000},
{NAU8540_REG_HPF_FILTER_CH12, 0x0000},
{NAU8540_REG_HPF_FILTER_CH34, 0x0000},
{NAU8540_REG_ADC_SAMPLE_RATE, 0x0002},
{NAU8540_REG_DIGITAL_GAIN_CH1, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH2, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH3, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH4, 0x0400},
{NAU8540_REG_DIGITAL_MUX, 0x00E4},
{NAU8540_REG_GPIO_CTRL, 0x0000},
{NAU8540_REG_MISC_CTRL, 0x0000},
{NAU8540_REG_I2C_CTRL, 0xEFFF},
{NAU8540_REG_VMID_CTRL, 0x0000},
{NAU8540_REG_MUTE, 0x0000},
{NAU8540_REG_ANALOG_ADC1, 0x0011},
{NAU8540_REG_ANALOG_ADC2, 0x0020},
{NAU8540_REG_ANALOG_PWR, 0x0000},
{NAU8540_REG_MIC_BIAS, 0x0004},
{NAU8540_REG_REFERENCE, 0x0000},
{NAU8540_REG_FEPGA1, 0x0000},
{NAU8540_REG_FEPGA2, 0x0000},
{NAU8540_REG_FEPGA3, 0x0101},
{NAU8540_REG_FEPGA4, 0x0101},
{NAU8540_REG_PWR, 0x0000},
};
static bool nau8540_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_POWER_MANAGEMENT ... NAU8540_REG_FLL_VCO_RSV:
case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4:
case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5:
case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ADC_SAMPLE_RATE:
case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX:
case NAU8540_REG_P2P_CH1 ... NAU8540_REG_I2C_CTRL:
case NAU8540_REG_I2C_DEVICE_ID:
case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE:
case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR:
return true;
default:
return false;
}
}
static bool nau8540_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_SW_RESET ... NAU8540_REG_FLL_VCO_RSV:
case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4:
case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5:
case NAU8540_REG_NOTCH_FIL1_CH1 ... NAU8540_REG_ADC_SAMPLE_RATE:
case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX:
case NAU8540_REG_GPIO_CTRL ... NAU8540_REG_I2C_CTRL:
case NAU8540_REG_RST:
case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE:
case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR:
return true;
default:
return false;
}
}
static bool nau8540_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_SW_RESET:
case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ALC_STATUS:
case NAU8540_REG_P2P_CH1 ... NAU8540_REG_PEAK_CH4:
case NAU8540_REG_I2C_DEVICE_ID:
case NAU8540_REG_RST:
return true;
default:
return false;
}
}
static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -12800, 3600);
static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
static const struct snd_kcontrol_new nau8540_snd_controls[] = {
SOC_SINGLE_TLV("Mic1 Volume", NAU8540_REG_DIGITAL_GAIN_CH1,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic2 Volume", NAU8540_REG_DIGITAL_GAIN_CH2,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic3 Volume", NAU8540_REG_DIGITAL_GAIN_CH3,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic4 Volume", NAU8540_REG_DIGITAL_GAIN_CH4,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Frontend PGA1 Volume", NAU8540_REG_FEPGA3,
0, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA2 Volume", NAU8540_REG_FEPGA3,
8, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA3 Volume", NAU8540_REG_FEPGA4,
0, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA4 Volume", NAU8540_REG_FEPGA4,
8, 0x25, 0, fepga_gain_tlv),
};
static const char * const adc_channel[] = {
"ADC channel 1", "ADC channel 2", "ADC channel 3", "ADC channel 4"
};
static SOC_ENUM_SINGLE_DECL(
digital_ch4_enum, NAU8540_REG_DIGITAL_MUX, 6, adc_channel);
static const struct snd_kcontrol_new digital_ch4_mux =
SOC_DAPM_ENUM("Digital CH4 Select", digital_ch4_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch3_enum, NAU8540_REG_DIGITAL_MUX, 4, adc_channel);
static const struct snd_kcontrol_new digital_ch3_mux =
SOC_DAPM_ENUM("Digital CH3 Select", digital_ch3_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch2_enum, NAU8540_REG_DIGITAL_MUX, 2, adc_channel);
static const struct snd_kcontrol_new digital_ch2_mux =
SOC_DAPM_ENUM("Digital CH2 Select", digital_ch2_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch1_enum, NAU8540_REG_DIGITAL_MUX, 0, adc_channel);
static const struct snd_kcontrol_new digital_ch1_mux =
SOC_DAPM_ENUM("Digital CH1 Select", digital_ch1_enum);
static int adc_power_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
if (SND_SOC_DAPM_EVENT_ON(event)) {
msleep(300);
/* DO12 and DO34 pad output enable */
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, 0);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, 0);
} else if (SND_SOC_DAPM_EVENT_OFF(event)) {
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI);
}
return 0;
}
static int aiftx_power_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
if (SND_SOC_DAPM_EVENT_OFF(event)) {
regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0001);
regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0000);
}
return 0;
}
static const struct snd_soc_dapm_widget nau8540_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("MICBIAS2", NAU8540_REG_MIC_BIAS, 11, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("MICBIAS1", NAU8540_REG_MIC_BIAS, 10, 0, NULL, 0),
SND_SOC_DAPM_INPUT("MIC1"),
SND_SOC_DAPM_INPUT("MIC2"),
SND_SOC_DAPM_INPUT("MIC3"),
SND_SOC_DAPM_INPUT("MIC4"),
SND_SOC_DAPM_PGA("Frontend PGA1", NAU8540_REG_PWR, 12, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA2", NAU8540_REG_PWR, 13, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA3", NAU8540_REG_PWR, 14, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA4", NAU8540_REG_PWR, 15, 0, NULL, 0),
SND_SOC_DAPM_ADC_E("ADC1", NULL,
NAU8540_REG_POWER_MANAGEMENT, 0, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC2", NULL,
NAU8540_REG_POWER_MANAGEMENT, 1, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC3", NULL,
NAU8540_REG_POWER_MANAGEMENT, 2, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC4", NULL,
NAU8540_REG_POWER_MANAGEMENT, 3, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA("ADC CH1", NAU8540_REG_ANALOG_PWR, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH2", NAU8540_REG_ANALOG_PWR, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH3", NAU8540_REG_ANALOG_PWR, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH4", NAU8540_REG_ANALOG_PWR, 3, 0, NULL, 0),
SND_SOC_DAPM_MUX("Digital CH4 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch4_mux),
SND_SOC_DAPM_MUX("Digital CH3 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch3_mux),
SND_SOC_DAPM_MUX("Digital CH2 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch2_mux),
SND_SOC_DAPM_MUX("Digital CH1 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch1_mux),
SND_SOC_DAPM_AIF_OUT_E("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0,
aiftx_power_control, SND_SOC_DAPM_POST_PMD),
};
static const struct snd_soc_dapm_route nau8540_dapm_routes[] = {
{"Frontend PGA1", NULL, "MIC1"},
{"Frontend PGA2", NULL, "MIC2"},
{"Frontend PGA3", NULL, "MIC3"},
{"Frontend PGA4", NULL, "MIC4"},
{"ADC1", NULL, "Frontend PGA1"},
{"ADC2", NULL, "Frontend PGA2"},
{"ADC3", NULL, "Frontend PGA3"},
{"ADC4", NULL, "Frontend PGA4"},
{"ADC CH1", NULL, "ADC1"},
{"ADC CH2", NULL, "ADC2"},
{"ADC CH3", NULL, "ADC3"},
{"ADC CH4", NULL, "ADC4"},
{"ADC1", NULL, "MICBIAS1"},
{"ADC2", NULL, "MICBIAS1"},
{"ADC3", NULL, "MICBIAS2"},
{"ADC4", NULL, "MICBIAS2"},
{"Digital CH1 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH1 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH1 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH1 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH2 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH2 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH2 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH2 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH3 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH3 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH3 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH3 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH4 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH4 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH4 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH4 Mux", "ADC channel 4", "ADC CH4"},
{"AIFTX", NULL, "Digital CH1 Mux"},
{"AIFTX", NULL, "Digital CH2 Mux"},
{"AIFTX", NULL, "Digital CH3 Mux"},
{"AIFTX", NULL, "Digital CH4 Mux"},
};
static int nau8540_clock_check(struct nau8540 *nau8540, int rate, int osr)
{
if (osr >= ARRAY_SIZE(osr_adc_sel))
return -EINVAL;
if (rate * osr > CLK_ADC_MAX) {
dev_err(nau8540->dev, "exceed the maximum frequency of CLK_ADC\n");
return -EINVAL;
}
return 0;
}
static int nau8540_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0, osr;
/* CLK_ADC = OSR * FS
* ADC clock frequency is defined as Over Sampling Rate (OSR)
* multiplied by the audio sample rate (Fs). Note that the OSR and Fs
* values must be selected such that the maximum frequency is less
* than 6.144 MHz.
*/
regmap_read(nau8540->regmap, NAU8540_REG_ADC_SAMPLE_RATE, &osr);
osr &= NAU8540_ADC_OSR_MASK;
if (nau8540_clock_check(nau8540, params_rate(params), osr))
return -EINVAL;
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_ADC_SRC_MASK,
osr_adc_sel[osr].clk_src << NAU8540_CLK_ADC_SRC_SFT);
switch (params_width(params)) {
case 16:
val_len |= NAU8540_I2S_DL_16;
break;
case 20:
val_len |= NAU8540_I2S_DL_20;
break;
case 24:
val_len |= NAU8540_I2S_DL_24;
break;
case 32:
val_len |= NAU8540_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0,
NAU8540_I2S_DL_MASK, val_len);
return 0;
}
static int nau8540_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= NAU8540_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8540_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8540_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8540_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8540_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8540_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8540_I2S_DF_PCM_AB;
ctrl1_val |= NAU8540_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0,
NAU8540_I2S_DL_MASK | NAU8540_I2S_DF_MASK |
NAU8540_I2S_BP_INV | NAU8540_I2S_PCMB_EN, ctrl1_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_MS_MASK | NAU8540_I2S_DO12_OE, ctrl2_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_OE, 0);
return 0;
}
/**
* nau8540_set_tdm_slot - configure DAI TX TDM.
* @dai: DAI
* @tx_mask: bitmask representing active TX slots. Ex.
* 0xf for normal 4 channel TDM.
* 0xf0 for shifted 4 channel TDM
* @rx_mask: no used.
* @slots: Number of slots in use.
* @slot_width: Width in bits for each slot.
*
* Configures a DAI for TDM operation. Only support 4 slots TDM.
*/
static int nau8540_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int ctrl2_val = 0, ctrl4_val = 0;
if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf)))
return -EINVAL;
ctrl4_val |= (NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN);
if (tx_mask & 0xf0) {
ctrl2_val = 4 * slot_width;
ctrl4_val |= (tx_mask >> 4);
} else {
ctrl4_val |= tx_mask;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL4,
NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN |
NAU8540_TDM_TX_MASK, ctrl4_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_OE, NAU8540_I2S_DO12_OE);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_OE | NAU8540_I2S_TSLOT_L_MASK,
NAU8540_I2S_DO34_OE | ctrl2_val);
return 0;
}
static const struct snd_soc_dai_ops nau8540_dai_ops = {
.hw_params = nau8540_hw_params,
.set_fmt = nau8540_set_fmt,
.set_tdm_slot = nau8540_set_tdm_slot,
};
#define NAU8540_RATES SNDRV_PCM_RATE_8000_48000
#define NAU8540_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8540_dai = {
.name = "nau8540-hifi",
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rates = NAU8540_RATES,
.formats = NAU8540_FORMATS,
},
.ops = &nau8540_dai_ops,
};
/**
* nau8540_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8540_calc_fll_param(unsigned int fll_in,
unsigned int fs, struct nau8540_fll *fll_param)
{
u64 fvco, fvco_max;
unsigned int fref, i, fvco_sel;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
* freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8540_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in / fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 124MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
fvco_max = 0;
fvco_sel = ARRAY_SIZE(mclk_src_scaling);
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
fvco_max < fvco) {
fvco_max = fvco;
fvco_sel = i;
}
}
if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 16) & 0x3FF;
fll_param->fll_frac = fvco & 0xFFFF;
return 0;
}
static void nau8540_fll_apply(struct regmap *regmap,
struct nau8540_fll *fll_param)
{
regmap_update_bits(regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK | NAU8540_CLK_MCLK_SRC_MASK,
NAU8540_CLK_SRC_MCLK | fll_param->mclk_src);
regmap_update_bits(regmap, NAU8540_REG_FLL1,
NAU8540_FLL_RATIO_MASK | NAU8540_ICTRL_LATCH_MASK,
fll_param->ratio | (0x6 << NAU8540_ICTRL_LATCH_SFT));
/* FLL 16-bit fractional input */
regmap_write(regmap, NAU8540_REG_FLL2, fll_param->fll_frac);
/* FLL 10-bit integer input */
regmap_update_bits(regmap, NAU8540_REG_FLL3,
NAU8540_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(regmap, NAU8540_REG_FLL4,
NAU8540_FLL_REF_DIV_MASK,
fll_param->clk_ref_div << NAU8540_FLL_REF_DIV_SFT);
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_CLK_SW_MASK, NAU8540_FLL_CLK_SW_REF);
regmap_update_bits(regmap,
NAU8540_REG_FLL6, NAU8540_DCO_EN, 0);
if (fll_param->fll_frac) {
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_MASK,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_FILTER);
regmap_update_bits(regmap, NAU8540_REG_FLL6,
NAU8540_SDM_EN | NAU8540_CUTOFF500,
NAU8540_SDM_EN | NAU8540_CUTOFF500);
} else {
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_MASK, NAU8540_FLL_FTR_SW_ACCU);
regmap_update_bits(regmap, NAU8540_REG_FLL6,
NAU8540_SDM_EN | NAU8540_CUTOFF500, 0);
}
}
/* freq_out must be 256*Fs in order to achieve the best performance */
static int nau8540_set_pll(struct snd_soc_component *component, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
struct nau8540_fll fll_param;
int ret, fs;
switch (pll_id) {
case NAU8540_CLK_FLL_MCLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_MCLK | 0);
break;
case NAU8540_CLK_FLL_BLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_BLK |
(0xf << NAU8540_GAIN_ERR_SFT));
break;
case NAU8540_CLK_FLL_FS:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_FS |
(0xf << NAU8540_GAIN_ERR_SFT));
break;
default:
dev_err(nau8540->dev, "Invalid clock id (%d)\n", pll_id);
return -EINVAL;
}
dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n",
freq_out, pll_id);
fs = freq_out / 256;
ret = nau8540_calc_fll_param(freq_in, fs, &fll_param);
if (ret < 0) {
dev_err(nau8540->dev, "Unsupported input clock %d\n", freq_in);
return ret;
}
dev_dbg(nau8540->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
fll_param.fll_int, fll_param.clk_ref_div);
nau8540_fll_apply(nau8540->regmap, &fll_param);
mdelay(2);
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO);
return 0;
}
static int nau8540_set_sysclk(struct snd_soc_component *component,
int clk_id, int source, unsigned int freq, int dir)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
switch (clk_id) {
case NAU8540_CLK_DIS:
case NAU8540_CLK_MCLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_MCLK);
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6,
NAU8540_DCO_EN, 0);
break;
case NAU8540_CLK_INTERNAL:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6,
NAU8540_DCO_EN, NAU8540_DCO_EN);
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO);
break;
default:
dev_err(nau8540->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n",
freq, clk_id);
return 0;
}
static void nau8540_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00);
regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00);
}
static void nau8540_init_regs(struct nau8540 *nau8540)
{
struct regmap *regmap = nau8540->regmap;
/* Enable Bias/VMID/VMID Tieoff */
regmap_update_bits(regmap, NAU8540_REG_VMID_CTRL,
NAU8540_VMID_EN | NAU8540_VMID_SEL_MASK,
NAU8540_VMID_EN | (0x2 << NAU8540_VMID_SEL_SFT));
regmap_update_bits(regmap, NAU8540_REG_REFERENCE,
NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN,
NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN);
mdelay(2);
regmap_update_bits(regmap, NAU8540_REG_MIC_BIAS,
NAU8540_PU_PRE, NAU8540_PU_PRE);
regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL,
NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN,
NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN);
/* ADC OSR selection, CLK_ADC = Fs * OSR;
* Channel time alignment enable.
*/
regmap_update_bits(regmap, NAU8540_REG_ADC_SAMPLE_RATE,
NAU8540_CH_SYNC | NAU8540_ADC_OSR_MASK,
NAU8540_CH_SYNC | NAU8540_ADC_OSR_64);
/* PGA input mode selection */
regmap_update_bits(regmap, NAU8540_REG_FEPGA1,
NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT,
NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT);
regmap_update_bits(regmap, NAU8540_REG_FEPGA2,
NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT,
NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT);
/* DO12 and DO34 pad output disable */
regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI);
regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI);
}
static int __maybe_unused nau8540_suspend(struct snd_soc_component *component)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8540->regmap, true);
regcache_mark_dirty(nau8540->regmap);
return 0;
}
static int __maybe_unused nau8540_resume(struct snd_soc_component *component)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8540->regmap, false);
regcache_sync(nau8540->regmap);
return 0;
}
static const struct snd_soc_component_driver nau8540_component_driver = {
.set_sysclk = nau8540_set_sysclk,
.set_pll = nau8540_set_pll,
.suspend = nau8540_suspend,
.resume = nau8540_resume,
.controls = nau8540_snd_controls,
.num_controls = ARRAY_SIZE(nau8540_snd_controls),
.dapm_widgets = nau8540_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8540_dapm_widgets),
.dapm_routes = nau8540_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8540_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config nau8540_regmap_config = {
.val_bits = 16,
.reg_bits = 16,
.max_register = NAU8540_REG_MAX,
.readable_reg = nau8540_readable_reg,
.writeable_reg = nau8540_writeable_reg,
.volatile_reg = nau8540_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8540_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8540_reg_defaults),
};
static int nau8540_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8540 *nau8540 = dev_get_platdata(dev);
int ret, value;
if (!nau8540) {
nau8540 = devm_kzalloc(dev, sizeof(*nau8540), GFP_KERNEL);
if (!nau8540)
return -ENOMEM;
}
i2c_set_clientdata(i2c, nau8540);
nau8540->regmap = devm_regmap_init_i2c(i2c, &nau8540_regmap_config);
if (IS_ERR(nau8540->regmap))
return PTR_ERR(nau8540->regmap);
ret = regmap_read(nau8540->regmap, NAU8540_REG_I2C_DEVICE_ID, &value);
if (ret < 0) {
dev_err(dev, "Failed to read device id from the NAU85L40: %d\n",
ret);
return ret;
}
nau8540->dev = dev;
nau8540_reset_chip(nau8540->regmap);
nau8540_init_regs(nau8540);
return devm_snd_soc_register_component(dev,
&nau8540_component_driver, &nau8540_dai, 1);
}
static const struct i2c_device_id nau8540_i2c_ids[] = {
{ "nau8540", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8540_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8540_of_ids[] = {
{ .compatible = "nuvoton,nau8540", },
{}
};
MODULE_DEVICE_TABLE(of, nau8540_of_ids);
#endif
static struct i2c_driver nau8540_i2c_driver = {
.driver = {
.name = "nau8540",
.of_match_table = of_match_ptr(nau8540_of_ids),
},
.probe = nau8540_i2c_probe,
.id_table = nau8540_i2c_ids,
};
module_i2c_driver(nau8540_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU85L40 driver");
MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>");
MODULE_LICENSE("GPL v2");