2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/block/blk.h
Christoph Hellwig 98d61d5b1a block: simplify and export blk_rq_append_bio
The target SCSI passthrough backend is much better served with the low-level
blk_rq_append_bio construct then the helpers built on top of it, so export it.

Also use the opportunity to remove the pointless request_queue argument and
make the code flow a little more readable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-07-20 17:38:32 -06:00

304 lines
9.1 KiB
C

#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H
#include <linux/idr.h>
#include <linux/blk-mq.h>
#include "blk-mq.h"
/* Amount of time in which a process may batch requests */
#define BLK_BATCH_TIME (HZ/50UL)
/* Number of requests a "batching" process may submit */
#define BLK_BATCH_REQ 32
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT (5 * HZ)
struct blk_flush_queue {
unsigned int flush_queue_delayed:1;
unsigned int flush_pending_idx:1;
unsigned int flush_running_idx:1;
unsigned long flush_pending_since;
struct list_head flush_queue[2];
struct list_head flush_data_in_flight;
struct request *flush_rq;
/*
* flush_rq shares tag with this rq, both can't be active
* at the same time
*/
struct request *orig_rq;
spinlock_t mq_flush_lock;
};
extern struct kmem_cache *blk_requestq_cachep;
extern struct kmem_cache *request_cachep;
extern struct kobj_type blk_queue_ktype;
extern struct ida blk_queue_ida;
static inline struct blk_flush_queue *blk_get_flush_queue(
struct request_queue *q, struct blk_mq_ctx *ctx)
{
struct blk_mq_hw_ctx *hctx;
if (!q->mq_ops)
return q->fq;
hctx = q->mq_ops->map_queue(q, ctx->cpu);
return hctx->fq;
}
static inline void __blk_get_queue(struct request_queue *q)
{
kobject_get(&q->kobj);
}
struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
int node, int cmd_size);
void blk_free_flush_queue(struct blk_flush_queue *q);
int blk_init_rl(struct request_list *rl, struct request_queue *q,
gfp_t gfp_mask);
void blk_exit_rl(struct request_list *rl);
void init_request_from_bio(struct request *req, struct bio *bio);
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
struct bio *bio);
void blk_queue_bypass_start(struct request_queue *q);
void blk_queue_bypass_end(struct request_queue *q);
void blk_dequeue_request(struct request *rq);
void __blk_queue_free_tags(struct request_queue *q);
bool __blk_end_bidi_request(struct request *rq, int error,
unsigned int nr_bytes, unsigned int bidi_bytes);
void blk_freeze_queue(struct request_queue *q);
static inline void blk_queue_enter_live(struct request_queue *q)
{
/*
* Given that running in generic_make_request() context
* guarantees that a live reference against q_usage_counter has
* been established, further references under that same context
* need not check that the queue has been frozen (marked dead).
*/
percpu_ref_get(&q->q_usage_counter);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
#else
static inline void blk_flush_integrity(void)
{
}
#endif
void blk_timeout_work(struct work_struct *work);
unsigned long blk_rq_timeout(unsigned long timeout);
void blk_add_timer(struct request *req);
void blk_delete_timer(struct request *);
bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
struct bio *bio);
bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
struct bio *bio);
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
unsigned int *request_count,
struct request **same_queue_rq);
unsigned int blk_plug_queued_count(struct request_queue *q);
void blk_account_io_start(struct request *req, bool new_io);
void blk_account_io_completion(struct request *req, unsigned int bytes);
void blk_account_io_done(struct request *req);
/*
* Internal atomic flags for request handling
*/
enum rq_atomic_flags {
REQ_ATOM_COMPLETE = 0,
REQ_ATOM_STARTED,
};
/*
* EH timer and IO completion will both attempt to 'grab' the request, make
* sure that only one of them succeeds
*/
static inline int blk_mark_rq_complete(struct request *rq)
{
return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
}
static inline void blk_clear_rq_complete(struct request *rq)
{
clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
}
/*
* Internal elevator interface
*/
#define ELV_ON_HASH(rq) ((rq)->cmd_flags & REQ_HASHED)
void blk_insert_flush(struct request *rq);
static inline struct request *__elv_next_request(struct request_queue *q)
{
struct request *rq;
struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
while (1) {
if (!list_empty(&q->queue_head)) {
rq = list_entry_rq(q->queue_head.next);
return rq;
}
/*
* Flush request is running and flush request isn't queueable
* in the drive, we can hold the queue till flush request is
* finished. Even we don't do this, driver can't dispatch next
* requests and will requeue them. And this can improve
* throughput too. For example, we have request flush1, write1,
* flush 2. flush1 is dispatched, then queue is hold, write1
* isn't inserted to queue. After flush1 is finished, flush2
* will be dispatched. Since disk cache is already clean,
* flush2 will be finished very soon, so looks like flush2 is
* folded to flush1.
* Since the queue is hold, a flag is set to indicate the queue
* should be restarted later. Please see flush_end_io() for
* details.
*/
if (fq->flush_pending_idx != fq->flush_running_idx &&
!queue_flush_queueable(q)) {
fq->flush_queue_delayed = 1;
return NULL;
}
if (unlikely(blk_queue_bypass(q)) ||
!q->elevator->type->ops.elevator_dispatch_fn(q, 0))
return NULL;
}
}
static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_activate_req_fn)
e->type->ops.elevator_activate_req_fn(q, rq);
}
static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
{
struct elevator_queue *e = q->elevator;
if (e->type->ops.elevator_deactivate_req_fn)
e->type->ops.elevator_deactivate_req_fn(q, rq);
}
#ifdef CONFIG_FAIL_IO_TIMEOUT
int blk_should_fake_timeout(struct request_queue *);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
const char *, size_t);
#else
static inline int blk_should_fake_timeout(struct request_queue *q)
{
return 0;
}
#endif
int ll_back_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio);
int ll_front_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio);
int attempt_back_merge(struct request_queue *q, struct request *rq);
int attempt_front_merge(struct request_queue *q, struct request *rq);
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
struct request *next);
void blk_recalc_rq_segments(struct request *rq);
void blk_rq_set_mixed_merge(struct request *rq);
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
int blk_try_merge(struct request *rq, struct bio *bio);
void blk_queue_congestion_threshold(struct request_queue *q);
int blk_dev_init(void);
/*
* Return the threshold (number of used requests) at which the queue is
* considered to be congested. It include a little hysteresis to keep the
* context switch rate down.
*/
static inline int queue_congestion_on_threshold(struct request_queue *q)
{
return q->nr_congestion_on;
}
/*
* The threshold at which a queue is considered to be uncongested
*/
static inline int queue_congestion_off_threshold(struct request_queue *q)
{
return q->nr_congestion_off;
}
extern int blk_update_nr_requests(struct request_queue *, unsigned int);
/*
* Contribute to IO statistics IFF:
*
* a) it's attached to a gendisk, and
* b) the queue had IO stats enabled when this request was started, and
* c) it's a file system request
*/
static inline int blk_do_io_stat(struct request *rq)
{
return rq->rq_disk &&
(rq->cmd_flags & REQ_IO_STAT) &&
(rq->cmd_type == REQ_TYPE_FS);
}
/*
* Internal io_context interface
*/
void get_io_context(struct io_context *ioc);
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
gfp_t gfp_mask);
void ioc_clear_queue(struct request_queue *q);
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
/**
* create_io_context - try to create task->io_context
* @gfp_mask: allocation mask
* @node: allocation node
*
* If %current->io_context is %NULL, allocate a new io_context and install
* it. Returns the current %current->io_context which may be %NULL if
* allocation failed.
*
* Note that this function can't be called with IRQ disabled because
* task_lock which protects %current->io_context is IRQ-unsafe.
*/
static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
{
WARN_ON_ONCE(irqs_disabled());
if (unlikely(!current->io_context))
create_task_io_context(current, gfp_mask, node);
return current->io_context;
}
/*
* Internal throttling interface
*/
#ifdef CONFIG_BLK_DEV_THROTTLING
extern void blk_throtl_drain(struct request_queue *q);
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
#else /* CONFIG_BLK_DEV_THROTTLING */
static inline void blk_throtl_drain(struct request_queue *q) { }
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
#endif /* CONFIG_BLK_DEV_THROTTLING */
#endif /* BLK_INTERNAL_H */