2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/arch/powerpc/kvm/e500.c
Alexander Graf 398a76c677 KVM: PPC: Add devname:kvm aliases for modules
Systems that support automatic loading of kernel modules through
device aliases should try and automatically load kvm when /dev/kvm
gets opened.

Add code to support that magic for all PPC kvm targets, even the
ones that don't support modules yet.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:00 +01:00

580 lines
15 KiB
C

/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include "../mm/mmu_decl.h"
#include "booke.h"
#include "e500.h"
struct id {
unsigned long val;
struct id **pentry;
};
#define NUM_TIDS 256
/*
* This table provide mappings from:
* (guestAS,guestTID,guestPR) --> ID of physical cpu
* guestAS [0..1]
* guestTID [0..255]
* guestPR [0..1]
* ID [1..255]
* Each vcpu keeps one vcpu_id_table.
*/
struct vcpu_id_table {
struct id id[2][NUM_TIDS][2];
};
/*
* This table provide reversed mappings of vcpu_id_table:
* ID --> address of vcpu_id_table item.
* Each physical core has one pcpu_id_table.
*/
struct pcpu_id_table {
struct id *entry[NUM_TIDS];
};
static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
/* This variable keeps last used shadow ID on local core.
* The valid range of shadow ID is [1..255] */
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
/*
* Allocate a free shadow id and setup a valid sid mapping in given entry.
* A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_setup_one(struct id *entry)
{
unsigned long sid;
int ret = -1;
sid = ++(__get_cpu_var(pcpu_last_used_sid));
if (sid < NUM_TIDS) {
__get_cpu_var(pcpu_sids).entry[sid] = entry;
entry->val = sid;
entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
ret = sid;
}
/*
* If sid == NUM_TIDS, we've run out of sids. We return -1, and
* the caller will invalidate everything and start over.
*
* sid > NUM_TIDS indicates a race, which we disable preemption to
* avoid.
*/
WARN_ON(sid > NUM_TIDS);
return ret;
}
/*
* Check if given entry contain a valid shadow id mapping.
* An ID mapping is considered valid only if
* both vcpu and pcpu know this mapping.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
static inline int local_sid_lookup(struct id *entry)
{
if (entry && entry->val != 0 &&
__get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
return entry->val;
return -1;
}
/* Invalidate all id mappings on local core -- call with preempt disabled */
static inline void local_sid_destroy_all(void)
{
__get_cpu_var(pcpu_last_used_sid) = 0;
memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
}
static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
{
vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
return vcpu_e500->idt;
}
static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kfree(vcpu_e500->idt);
vcpu_e500->idt = NULL;
}
/* Map guest pid to shadow.
* We use PID to keep shadow of current guest non-zero PID,
* and use PID1 to keep shadow of guest zero PID.
* So that guest tlbe with TID=0 can be accessed at any time */
static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
{
preempt_disable();
vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu),
get_cur_pid(&vcpu_e500->vcpu),
get_cur_pr(&vcpu_e500->vcpu), 1);
vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
get_cur_as(&vcpu_e500->vcpu), 0,
get_cur_pr(&vcpu_e500->vcpu), 1);
preempt_enable();
}
/* Invalidate all mappings on vcpu */
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/* Invalidate one ID mapping on vcpu */
static inline void kvmppc_e500_id_table_reset_one(
struct kvmppc_vcpu_e500 *vcpu_e500,
int as, int pid, int pr)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
BUG_ON(as >= 2);
BUG_ON(pid >= NUM_TIDS);
BUG_ON(pr >= 2);
idt->id[as][pid][pr].val = 0;
idt->id[as][pid][pr].pentry = NULL;
/* Update shadow pid when mappings are changed */
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
/*
* Map guest (vcpu,AS,ID,PR) to physical core shadow id.
* This function first lookup if a valid mapping exists,
* if not, then creates a new one.
*
* The caller must have preemption disabled, and keep it that way until
* it has finished with the returned shadow id (either written into the
* TLB or arch.shadow_pid, or discarded).
*/
unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
unsigned int as, unsigned int gid,
unsigned int pr, int avoid_recursion)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
int sid;
BUG_ON(as >= 2);
BUG_ON(gid >= NUM_TIDS);
BUG_ON(pr >= 2);
sid = local_sid_lookup(&idt->id[as][gid][pr]);
while (sid <= 0) {
/* No mapping yet */
sid = local_sid_setup_one(&idt->id[as][gid][pr]);
if (sid <= 0) {
_tlbil_all();
local_sid_destroy_all();
}
/* Update shadow pid when mappings are changed */
if (!avoid_recursion)
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
return sid;
}
unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
}
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (vcpu->arch.pid != pid) {
vcpu_e500->pid[0] = vcpu->arch.pid = pid;
kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}
}
/* gtlbe must not be mapped by more than one host tlbe */
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
struct vcpu_id_table *idt = vcpu_e500->idt;
unsigned int pr, tid, ts, pid;
u32 val, eaddr;
unsigned long flags;
ts = get_tlb_ts(gtlbe);
tid = get_tlb_tid(gtlbe);
preempt_disable();
/* One guest ID may be mapped to two shadow IDs */
for (pr = 0; pr < 2; pr++) {
/*
* The shadow PID can have a valid mapping on at most one
* host CPU. In the common case, it will be valid on this
* CPU, in which case we do a local invalidation of the
* specific address.
*
* If the shadow PID is not valid on the current host CPU,
* we invalidate the entire shadow PID.
*/
pid = local_sid_lookup(&idt->id[ts][tid][pr]);
if (pid <= 0) {
kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
continue;
}
/*
* The guest is invalidating a 4K entry which is in a PID
* that has a valid shadow mapping on this host CPU. We
* search host TLB to invalidate it's shadow TLB entry,
* similar to __tlbil_va except that we need to look in AS1.
*/
val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
eaddr = get_tlb_eaddr(gtlbe);
local_irq_save(flags);
mtspr(SPRN_MAS6, val);
asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
val = mfspr(SPRN_MAS1);
if (val & MAS1_VALID) {
mtspr(SPRN_MAS1, val & ~MAS1_VALID);
asm volatile("tlbwe");
}
local_irq_restore(flags);
}
preempt_enable();
}
void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
kvmppc_e500_id_table_reset_all(vcpu_e500);
}
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
/* Recalc shadow pid since MSR changes */
kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
{
kvmppc_booke_vcpu_load(vcpu, cpu);
/* Shadow PID may be expired on local core */
kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}
static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_SPE
if (vcpu->arch.shadow_msr & MSR_SPE)
kvmppc_vcpu_disable_spe(vcpu);
#endif
kvmppc_booke_vcpu_put(vcpu);
}
int kvmppc_core_check_processor_compat(void)
{
int r;
if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
r = 0;
else
r = -ENOTSUPP;
return r;
}
static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct kvm_book3e_206_tlb_entry *tlbe;
/* Insert large initial mapping for guest. */
tlbe = get_entry(vcpu_e500, 1, 0);
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
tlbe->mas2 = 0;
tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
/* 4K map for serial output. Used by kernel wrapper. */
tlbe = get_entry(vcpu_e500, 1, 1);
tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
}
int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_e500_tlb_setup(vcpu_e500);
/* Registers init */
vcpu->arch.pvr = mfspr(SPRN_PVR);
vcpu_e500->svr = mfspr(SPRN_SVR);
vcpu->arch.cpu_type = KVM_CPU_E500V2;
return 0;
}
static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
KVM_SREGS_E_PM;
sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
sregs->u.e.impl.fsl.features = 0;
sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
sregs->u.e.ivor_high[3] =
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
kvmppc_get_sregs_ivor(vcpu, sregs);
kvmppc_get_sregs_e500_tlb(vcpu, sregs);
return 0;
}
static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int ret;
if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
}
ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
if (ret < 0)
return ret;
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
if (sregs->u.e.features & KVM_SREGS_E_SPE) {
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
sregs->u.e.ivor_high[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
sregs->u.e.ivor_high[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
sregs->u.e.ivor_high[2];
}
if (sregs->u.e.features & KVM_SREGS_E_PM) {
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
sregs->u.e.ivor_high[3];
}
return kvmppc_set_sregs_ivor(vcpu, sregs);
}
static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
return r;
}
static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
return r;
}
static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
unsigned int id)
{
struct kvmppc_vcpu_e500 *vcpu_e500;
struct kvm_vcpu *vcpu;
int err;
vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu_e500) {
err = -ENOMEM;
goto out;
}
vcpu = &vcpu_e500->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
goto uninit_vcpu;
err = kvmppc_e500_tlb_init(vcpu_e500);
if (err)
goto uninit_id;
vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
if (!vcpu->arch.shared)
goto uninit_tlb;
return vcpu;
uninit_tlb:
kvmppc_e500_tlb_uninit(vcpu_e500);
uninit_id:
kvmppc_e500_id_table_free(vcpu_e500);
uninit_vcpu:
kvm_vcpu_uninit(vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
out:
return ERR_PTR(err);
}
static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
free_page((unsigned long)vcpu->arch.shared);
kvmppc_e500_tlb_uninit(vcpu_e500);
kvmppc_e500_id_table_free(vcpu_e500);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
}
static int kvmppc_core_init_vm_e500(struct kvm *kvm)
{
return 0;
}
static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
{
}
static struct kvmppc_ops kvm_ops_e500 = {
.get_sregs = kvmppc_core_get_sregs_e500,
.set_sregs = kvmppc_core_set_sregs_e500,
.get_one_reg = kvmppc_get_one_reg_e500,
.set_one_reg = kvmppc_set_one_reg_e500,
.vcpu_load = kvmppc_core_vcpu_load_e500,
.vcpu_put = kvmppc_core_vcpu_put_e500,
.vcpu_create = kvmppc_core_vcpu_create_e500,
.vcpu_free = kvmppc_core_vcpu_free_e500,
.mmu_destroy = kvmppc_mmu_destroy_e500,
.init_vm = kvmppc_core_init_vm_e500,
.destroy_vm = kvmppc_core_destroy_vm_e500,
.emulate_op = kvmppc_core_emulate_op_e500,
.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
};
static int __init kvmppc_e500_init(void)
{
int r, i;
unsigned long ivor[3];
/* Process remaining handlers above the generic first 16 */
unsigned long *handler = &kvmppc_booke_handler_addr[16];
unsigned long handler_len;
unsigned long max_ivor = 0;
r = kvmppc_core_check_processor_compat();
if (r)
goto err_out;
r = kvmppc_booke_init();
if (r)
goto err_out;
/* copy extra E500 exception handlers */
ivor[0] = mfspr(SPRN_IVOR32);
ivor[1] = mfspr(SPRN_IVOR33);
ivor[2] = mfspr(SPRN_IVOR34);
for (i = 0; i < 3; i++) {
if (ivor[i] > ivor[max_ivor])
max_ivor = i;
handler_len = handler[i + 1] - handler[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
(void *)handler[i], handler_len);
}
handler_len = handler[max_ivor + 1] - handler[max_ivor];
flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
ivor[max_ivor] + handler_len);
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
if (r)
goto err_out;
kvm_ops_e500.owner = THIS_MODULE;
kvmppc_pr_ops = &kvm_ops_e500;
err_out:
return r;
}
static void __exit kvmppc_e500_exit(void)
{
kvmppc_pr_ops = NULL;
kvmppc_booke_exit();
}
module_init(kvmppc_e500_init);
module_exit(kvmppc_e500_exit);
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");