2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 23:23:52 +08:00
linux-next/drivers/net/tehuti.c
Linus Torvalds 6203554207 drivers/net/tehuti: use proper capability check for raw IO access
Yeah, in practice they both mean "root", but Alan correctly points out
that anybody who gets to do raw IO space accesses should really be using
CAP_SYS_RAWIO rather than CAP_NET_ADMIN.

Pointed-out-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 11:45:16 -07:00

2521 lines
68 KiB
C

/*
* Tehuti Networks(R) Network Driver
* ethtool interface implementation
* Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/*
* RX HW/SW interaction overview
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There are 2 types of RX communication channels betwean driver and NIC.
* 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
* traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
* info about buffer's location, size and ID. An ID field is used to identify a
* buffer when it's returned with data via RXD Fifo (see below)
* 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
* filled by HW and is readen by SW. Each descriptor holds status and ID.
* HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
* via dma moves it into host memory, builds new RXD descriptor with same ID,
* pushes it into RXD Fifo and raises interrupt to indicate new RX data.
*
* Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
* One holds 1.5K packets and another - 26K packets. Depending on incoming
* packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
* filled with data, HW builds new RXD descriptor for it and push it into single
* RXD Fifo.
*
* RX SW Data Structures
* ~~~~~~~~~~~~~~~~~~~~~
* skb db - used to keep track of all skbs owned by SW and their dma addresses.
* For RX case, ownership lasts from allocating new empty skb for RXF until
* accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
* skb db. Implemented as array with bitmask.
* fifo - keeps info about fifo's size and location, relevant HW registers,
* usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
* Implemented as simple struct.
*
* RX SW Execution Flow
* ~~~~~~~~~~~~~~~~~~~~
* Upon initialization (ifconfig up) driver creates RX fifos and initializes
* relevant registers. At the end of init phase, driver enables interrupts.
* NIC sees that there is no RXF buffers and raises
* RD_INTR interrupt, isr fills skbs and Rx begins.
* Driver has two receive operation modes:
* NAPI - interrupt-driven mixed with polling
* interrupt-driven only
*
* Interrupt-driven only flow is following. When buffer is ready, HW raises
* interrupt and isr is called. isr collects all available packets
* (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
* Rx buffer allocation note
* ~~~~~~~~~~~~~~~~~~~~~~~~~
* Driver cares to feed such amount of RxF descriptors that respective amount of
* RxD descriptors can not fill entire RxD fifo. The main reason is lack of
* overflow check in Bordeaux for RxD fifo free/used size.
* FIXME: this is NOT fully implemented, more work should be done
*
*/
#include "tehuti.h"
#include "tehuti_fw.h"
static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
{0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0}
};
MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
/* Definitions needed by ISR or NAPI functions */
static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
static void bdx_tx_cleanup(struct bdx_priv *priv);
static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
/* Definitions needed by FW loading */
static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
/* Definitions needed by hw_start */
static int bdx_tx_init(struct bdx_priv *priv);
static int bdx_rx_init(struct bdx_priv *priv);
/* Definitions needed by bdx_close */
static void bdx_rx_free(struct bdx_priv *priv);
static void bdx_tx_free(struct bdx_priv *priv);
/* Definitions needed by bdx_probe */
static void bdx_ethtool_ops(struct net_device *netdev);
/*************************************************************************
* Print Info *
*************************************************************************/
static void print_hw_id(struct pci_dev *pdev)
{
struct pci_nic *nic = pci_get_drvdata(pdev);
u16 pci_link_status = 0;
u16 pci_ctrl = 0;
pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
nic->port_num == 1 ? "" : ", 2-Port");
printk(KERN_INFO
"tehuti: srom 0x%x fpga %d build %u lane# %d"
" max_pl 0x%x mrrs 0x%x\n",
readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
readl(nic->regs + FPGA_SEED),
GET_LINK_STATUS_LANES(pci_link_status),
GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
}
static void print_fw_id(struct pci_nic *nic)
{
printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
}
static void print_eth_id(struct net_device *ndev)
{
printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
(ndev->if_port == 0) ? 'A' : 'B');
}
/*************************************************************************
* Code *
*************************************************************************/
#define bdx_enable_interrupts(priv) \
do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
#define bdx_disable_interrupts(priv) \
do { WRITE_REG(priv, regIMR, 0); } while (0)
/* bdx_fifo_init
* create TX/RX descriptor fifo for host-NIC communication.
* 1K extra space is allocated at the end of the fifo to simplify
* processing of descriptors that wraps around fifo's end
* @priv - NIC private structure
* @f - fifo to initialize
* @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
* @reg_XXX - offsets of registers relative to base address
*
* Returns 0 on success, negative value on failure
*
*/
static int
bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
{
u16 memsz = FIFO_SIZE * (1 << fsz_type);
memset(f, 0, sizeof(struct fifo));
/* pci_alloc_consistent gives us 4k-aligned memory */
f->va = pci_alloc_consistent(priv->pdev,
memsz + FIFO_EXTRA_SPACE, &f->da);
if (!f->va) {
ERR("pci_alloc_consistent failed\n");
RET(-ENOMEM);
}
f->reg_CFG0 = reg_CFG0;
f->reg_CFG1 = reg_CFG1;
f->reg_RPTR = reg_RPTR;
f->reg_WPTR = reg_WPTR;
f->rptr = 0;
f->wptr = 0;
f->memsz = memsz;
f->size_mask = memsz - 1;
WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
WRITE_REG(priv, reg_CFG1, H32_64(f->da));
RET(0);
}
/* bdx_fifo_free - free all resources used by fifo
* @priv - NIC private structure
* @f - fifo to release
*/
static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
{
ENTER;
if (f->va) {
pci_free_consistent(priv->pdev,
f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
f->va = NULL;
}
RET();
}
/*
* bdx_link_changed - notifies OS about hw link state.
* @bdx_priv - hw adapter structure
*/
static void bdx_link_changed(struct bdx_priv *priv)
{
u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
if (!link) {
if (netif_carrier_ok(priv->ndev)) {
netif_stop_queue(priv->ndev);
netif_carrier_off(priv->ndev);
ERR("%s: Link Down\n", priv->ndev->name);
}
} else {
if (!netif_carrier_ok(priv->ndev)) {
netif_wake_queue(priv->ndev);
netif_carrier_on(priv->ndev);
ERR("%s: Link Up\n", priv->ndev->name);
}
}
}
static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
{
if (isr & IR_RX_FREE_0) {
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
DBG("RX_FREE_0\n");
}
if (isr & IR_LNKCHG0)
bdx_link_changed(priv);
if (isr & IR_PCIE_LINK)
ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
if (isr & IR_PCIE_TOUT)
ERR("%s: PCI-E Time Out\n", priv->ndev->name);
}
/* bdx_isr - Interrupt Service Routine for Bordeaux NIC
* @irq - interrupt number
* @ndev - network device
* @regs - CPU registers
*
* Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
*
* It reads ISR register to know interrupt reasons, and proceed them one by one.
* Reasons of interest are:
* RX_DESC - new packet has arrived and RXD fifo holds its descriptor
* RX_FREE - number of free Rx buffers in RXF fifo gets low
* TX_FREE - packet was transmited and RXF fifo holds its descriptor
*/
static irqreturn_t bdx_isr_napi(int irq, void *dev)
{
struct net_device *ndev = dev;
struct bdx_priv *priv = ndev->priv;
u32 isr;
ENTER;
isr = (READ_REG(priv, regISR) & IR_RUN);
if (unlikely(!isr)) {
bdx_enable_interrupts(priv);
return IRQ_NONE; /* Not our interrupt */
}
if (isr & IR_EXTRA)
bdx_isr_extra(priv, isr);
if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
if (likely(netif_rx_schedule_prep(ndev, &priv->napi))) {
__netif_rx_schedule(ndev, &priv->napi);
RET(IRQ_HANDLED);
} else {
/* NOTE: we get here if intr has slipped into window
* between these lines in bdx_poll:
* bdx_enable_interrupts(priv);
* return 0;
* currently intrs are disabled (since we read ISR),
* and we have failed to register next poll.
* so we read the regs to trigger chip
* and allow further interupts. */
READ_REG(priv, regTXF_WPTR_0);
READ_REG(priv, regRXD_WPTR_0);
}
}
bdx_enable_interrupts(priv);
RET(IRQ_HANDLED);
}
static int bdx_poll(struct napi_struct *napi, int budget)
{
struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
struct net_device *dev = priv->ndev;
int work_done;
ENTER;
bdx_tx_cleanup(priv);
work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
if ((work_done < budget) ||
(priv->napi_stop++ >= 30)) {
DBG("rx poll is done. backing to isr-driven\n");
/* from time to time we exit to let NAPI layer release
* device lock and allow waiting tasks (eg rmmod) to advance) */
priv->napi_stop = 0;
netif_rx_complete(dev, napi);
bdx_enable_interrupts(priv);
}
return work_done;
}
/* bdx_fw_load - loads firmware to NIC
* @priv - NIC private structure
* Firmware is loaded via TXD fifo, so it must be initialized first.
* Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
* can have few of them). So all drivers use semaphore register to choose one
* that will actually load FW to NIC.
*/
static int bdx_fw_load(struct bdx_priv *priv)
{
int master, i;
ENTER;
master = READ_REG(priv, regINIT_SEMAPHORE);
if (!READ_REG(priv, regINIT_STATUS) && master) {
bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
mdelay(100);
}
for (i = 0; i < 200; i++) {
if (READ_REG(priv, regINIT_STATUS))
break;
mdelay(2);
}
if (master)
WRITE_REG(priv, regINIT_SEMAPHORE, 1);
if (i == 200) {
ERR("%s: firmware loading failed\n", priv->ndev->name);
DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
READ_REG(priv, regVPC),
READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
RET(-EIO);
} else {
DBG("%s: firmware loading success\n", priv->ndev->name);
RET(0);
}
}
static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
{
u32 val;
ENTER;
DBG("mac0=%x mac1=%x mac2=%x\n",
READ_REG(priv, regUNC_MAC0_A),
READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
WRITE_REG(priv, regUNC_MAC2_A, val);
val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
WRITE_REG(priv, regUNC_MAC1_A, val);
val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
WRITE_REG(priv, regUNC_MAC0_A, val);
DBG("mac0=%x mac1=%x mac2=%x\n",
READ_REG(priv, regUNC_MAC0_A),
READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
RET();
}
/* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
* @priv - NIC private structure
*/
static int bdx_hw_start(struct bdx_priv *priv)
{
int rc = -EIO;
struct net_device *ndev = priv->ndev;
ENTER;
bdx_link_changed(priv);
/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
WRITE_REG(priv, regPAUSE_QUANT, 0x96);
WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
WRITE_REG(priv, regRX_FULLNESS, 0);
WRITE_REG(priv, regTX_FULLNESS, 0);
WRITE_REG(priv, regCTRLST,
regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
WRITE_REG(priv, regVGLB, 0);
WRITE_REG(priv, regMAX_FRAME_A,
priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
/* Enable timer interrupt once in 2 secs. */
/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
bdx_restore_mac(priv->ndev, priv);
WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
#define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
ndev->name, ndev)))
goto err_irq;
bdx_enable_interrupts(priv);
RET(0);
err_irq:
RET(rc);
}
static void bdx_hw_stop(struct bdx_priv *priv)
{
ENTER;
bdx_disable_interrupts(priv);
free_irq(priv->pdev->irq, priv->ndev);
netif_carrier_off(priv->ndev);
netif_stop_queue(priv->ndev);
RET();
}
static int bdx_hw_reset_direct(void __iomem *regs)
{
u32 val, i;
ENTER;
/* reset sequences: read, write 1, read, write 0 */
val = readl(regs + regCLKPLL);
writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
udelay(50);
val = readl(regs + regCLKPLL);
writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
/* check that the PLLs are locked and reset ended */
for (i = 0; i < 70; i++, mdelay(10))
if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
/* do any PCI-E read transaction */
readl(regs + regRXD_CFG0_0);
return 0;
}
ERR("tehuti: HW reset failed\n");
return 1; /* failure */
}
static int bdx_hw_reset(struct bdx_priv *priv)
{
u32 val, i;
ENTER;
if (priv->port == 0) {
/* reset sequences: read, write 1, read, write 0 */
val = READ_REG(priv, regCLKPLL);
WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
udelay(50);
val = READ_REG(priv, regCLKPLL);
WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
}
/* check that the PLLs are locked and reset ended */
for (i = 0; i < 70; i++, mdelay(10))
if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
/* do any PCI-E read transaction */
READ_REG(priv, regRXD_CFG0_0);
return 0;
}
ERR("tehuti: HW reset failed\n");
return 1; /* failure */
}
static int bdx_sw_reset(struct bdx_priv *priv)
{
int i;
ENTER;
/* 1. load MAC (obsolete) */
/* 2. disable Rx (and Tx) */
WRITE_REG(priv, regGMAC_RXF_A, 0);
mdelay(100);
/* 3. disable port */
WRITE_REG(priv, regDIS_PORT, 1);
/* 4. disable queue */
WRITE_REG(priv, regDIS_QU, 1);
/* 5. wait until hw is disabled */
for (i = 0; i < 50; i++) {
if (READ_REG(priv, regRST_PORT) & 1)
break;
mdelay(10);
}
if (i == 50)
ERR("%s: SW reset timeout. continuing anyway\n",
priv->ndev->name);
/* 6. disable intrs */
WRITE_REG(priv, regRDINTCM0, 0);
WRITE_REG(priv, regTDINTCM0, 0);
WRITE_REG(priv, regIMR, 0);
READ_REG(priv, regISR);
/* 7. reset queue */
WRITE_REG(priv, regRST_QU, 1);
/* 8. reset port */
WRITE_REG(priv, regRST_PORT, 1);
/* 9. zero all read and write pointers */
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
WRITE_REG(priv, i, 0);
/* 10. unseet port disable */
WRITE_REG(priv, regDIS_PORT, 0);
/* 11. unset queue disable */
WRITE_REG(priv, regDIS_QU, 0);
/* 12. unset queue reset */
WRITE_REG(priv, regRST_QU, 0);
/* 13. unset port reset */
WRITE_REG(priv, regRST_PORT, 0);
/* 14. enable Rx */
/* skiped. will be done later */
/* 15. save MAC (obsolete) */
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
RET(0);
}
/* bdx_reset - performs right type of reset depending on hw type */
static int bdx_reset(struct bdx_priv *priv)
{
ENTER;
RET((priv->pdev->device == 0x3009)
? bdx_hw_reset(priv)
: bdx_sw_reset(priv));
}
/**
* bdx_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int bdx_close(struct net_device *ndev)
{
struct bdx_priv *priv = NULL;
ENTER;
priv = ndev->priv;
napi_disable(&priv->napi);
bdx_reset(priv);
bdx_hw_stop(priv);
bdx_rx_free(priv);
bdx_tx_free(priv);
RET(0);
}
/**
* bdx_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int bdx_open(struct net_device *ndev)
{
struct bdx_priv *priv;
int rc;
ENTER;
priv = ndev->priv;
bdx_reset(priv);
if (netif_running(ndev))
netif_stop_queue(priv->ndev);
if ((rc = bdx_tx_init(priv)))
goto err;
if ((rc = bdx_rx_init(priv)))
goto err;
if ((rc = bdx_fw_load(priv)))
goto err;
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
if ((rc = bdx_hw_start(priv)))
goto err;
napi_enable(&priv->napi);
print_fw_id(priv->nic);
RET(0);
err:
bdx_close(ndev);
RET(rc);
}
static void __init bdx_firmware_endianess(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(s_firmLoad); i++)
s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
}
static int bdx_range_check(struct bdx_priv *priv, u32 offset)
{
return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
-EINVAL : 0;
}
static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
struct bdx_priv *priv = ndev->priv;
u32 data[3];
int error;
ENTER;
DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
if (cmd != SIOCDEVPRIVATE) {
error = copy_from_user(data, ifr->ifr_data, sizeof(data));
if (error) {
ERR("cant copy from user\n");
RET(error);
}
DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
}
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
switch (data[0]) {
case BDX_OP_READ:
error = bdx_range_check(priv, data[1]);
if (error < 0)
return error;
data[2] = READ_REG(priv, data[1]);
DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
data[2]);
error = copy_to_user(ifr->ifr_data, data, sizeof(data));
if (error)
RET(error);
break;
case BDX_OP_WRITE:
error = bdx_range_check(priv, data[1]);
if (error < 0)
return error;
WRITE_REG(priv, data[1], data[2]);
DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
break;
default:
RET(-EOPNOTSUPP);
}
return 0;
}
static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
{
ENTER;
if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
RET(bdx_ioctl_priv(ndev, ifr, cmd));
else
RET(-EOPNOTSUPP);
}
/*
* __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
* by passing VLAN filter table to hardware
* @ndev network device
* @vid VLAN vid
* @op add or kill operation
*/
static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
{
struct bdx_priv *priv = ndev->priv;
u32 reg, bit, val;
ENTER;
DBG2("vid=%d value=%d\n", (int)vid, enable);
if (unlikely(vid >= 4096)) {
ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
RET();
}
reg = regVLAN_0 + (vid / 32) * 4;
bit = 1 << vid % 32;
val = READ_REG(priv, reg);
DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
if (enable)
val |= bit;
else
val &= ~bit;
DBG2("new val %x\n", val);
WRITE_REG(priv, reg, val);
RET();
}
/*
* bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
* @ndev network device
* @vid VLAN vid to add
*/
static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
{
__bdx_vlan_rx_vid(ndev, vid, 1);
}
/*
* bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
* @ndev network device
* @vid VLAN vid to kill
*/
static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
{
__bdx_vlan_rx_vid(ndev, vid, 0);
}
/*
* bdx_vlan_rx_register - kernel hook for adding VLAN group
* @ndev network device
* @grp VLAN group
*/
static void
bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
{
struct bdx_priv *priv = ndev->priv;
ENTER;
DBG("device='%s', group='%p'\n", ndev->name, grp);
priv->vlgrp = grp;
RET();
}
/**
* bdx_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
{
ENTER;
if (new_mtu == ndev->mtu)
RET(0);
/* enforce minimum frame size */
if (new_mtu < ETH_ZLEN) {
ERR("%s: %s mtu %d is less then minimal %d\n",
BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
RET(-EINVAL);
}
ndev->mtu = new_mtu;
if (netif_running(ndev)) {
bdx_close(ndev);
bdx_open(ndev);
}
RET(0);
}
static void bdx_setmulti(struct net_device *ndev)
{
struct bdx_priv *priv = ndev->priv;
u32 rxf_val =
GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
int i;
ENTER;
/* IMF - imperfect (hash) rx multicat filter */
/* PMF - perfect rx multicat filter */
/* FIXME: RXE(OFF) */
if (ndev->flags & IFF_PROMISC) {
rxf_val |= GMAC_RX_FILTER_PRM;
} else if (ndev->flags & IFF_ALLMULTI) {
/* set IMF to accept all multicast frmaes */
for (i = 0; i < MAC_MCST_HASH_NUM; i++)
WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
} else if (ndev->mc_count) {
u8 hash;
struct dev_mc_list *mclist;
u32 reg, val;
/* set IMF to deny all multicast frames */
for (i = 0; i < MAC_MCST_HASH_NUM; i++)
WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
/* set PMF to deny all multicast frames */
for (i = 0; i < MAC_MCST_NUM; i++) {
WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
}
/* use PMF to accept first MAC_MCST_NUM (15) addresses */
/* TBD: sort addreses and write them in ascending order
* into RX_MAC_MCST regs. we skip this phase now and accept ALL
* multicast frames throu IMF */
mclist = ndev->mc_list;
/* accept the rest of addresses throu IMF */
for (; mclist; mclist = mclist->next) {
hash = 0;
for (i = 0; i < ETH_ALEN; i++)
hash ^= mclist->dmi_addr[i];
reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
val = READ_REG(priv, reg);
val |= (1 << (hash % 32));
WRITE_REG(priv, reg, val);
}
} else {
DBG("only own mac %d\n", ndev->mc_count);
rxf_val |= GMAC_RX_FILTER_AB;
}
WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
/* enable RX */
/* FIXME: RXE(ON) */
RET();
}
static int bdx_set_mac(struct net_device *ndev, void *p)
{
struct bdx_priv *priv = ndev->priv;
struct sockaddr *addr = p;
ENTER;
/*
if (netif_running(dev))
return -EBUSY
*/
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
bdx_restore_mac(ndev, priv);
RET(0);
}
static int bdx_read_mac(struct bdx_priv *priv)
{
u16 macAddress[3], i;
ENTER;
macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
for (i = 0; i < 3; i++) {
priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
}
RET(0);
}
static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
{
u64 val;
val = READ_REG(priv, reg);
val |= ((u64) READ_REG(priv, reg + 8)) << 32;
return val;
}
/*Do the statistics-update work*/
static void bdx_update_stats(struct bdx_priv *priv)
{
struct bdx_stats *stats = &priv->hw_stats;
u64 *stats_vector = (u64 *) stats;
int i;
int addr;
/*Fill HW structure */
addr = 0x7200;
/*First 12 statistics - 0x7200 - 0x72B0 */
for (i = 0; i < 12; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x72C0);
/* 0x72C0-0x72E0 RSRV */
addr = 0x72F0;
for (; i < 16; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x7330);
/* 0x7330-0x7360 RSRV */
addr = 0x7370;
for (; i < 19; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x73A0);
/* 0x73A0-0x73B0 RSRV */
addr = 0x73C0;
for (; i < 23; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x7400);
BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
}
static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
{
struct bdx_priv *priv = ndev->priv;
struct net_device_stats *net_stat = &priv->net_stats;
return net_stat;
}
static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
u16 rxd_vlan);
static void print_rxfd(struct rxf_desc *rxfd);
/*************************************************************************
* Rx DB *
*************************************************************************/
static void bdx_rxdb_destroy(struct rxdb *db)
{
if (db)
vfree(db);
}
static struct rxdb *bdx_rxdb_create(int nelem)
{
struct rxdb *db;
int i;
db = vmalloc(sizeof(struct rxdb)
+ (nelem * sizeof(int))
+ (nelem * sizeof(struct rx_map)));
if (likely(db != NULL)) {
db->stack = (int *)(db + 1);
db->elems = (void *)(db->stack + nelem);
db->nelem = nelem;
db->top = nelem;
for (i = 0; i < nelem; i++)
db->stack[i] = nelem - i - 1; /* to make first allocs
close to db struct*/
}
return db;
}
static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
{
BDX_ASSERT(db->top <= 0);
return db->stack[--(db->top)];
}
static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
{
BDX_ASSERT((n < 0) || (n >= db->nelem));
return db->elems + n;
}
static inline int bdx_rxdb_available(struct rxdb *db)
{
return db->top;
}
static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
{
BDX_ASSERT((n >= db->nelem) || (n < 0));
db->stack[(db->top)++] = n;
}
/*************************************************************************
* Rx Init *
*************************************************************************/
/* bdx_rx_init - initialize RX all related HW and SW resources
* @priv - NIC private structure
*
* Returns 0 on success, negative value on failure
*
* It creates rxf and rxd fifos, update relevant HW registers, preallocate
* skb for rx. It assumes that Rx is desabled in HW
* funcs are grouped for better cache usage
*
* RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
* filled and packets will be dropped by nic without getting into host or
* cousing interrupt. Anyway, in that condition, host has no chance to proccess
* all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
*/
/* TBD: ensure proper packet size */
static int bdx_rx_init(struct bdx_priv *priv)
{
ENTER;
if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
regRXD_CFG0_0, regRXD_CFG1_0,
regRXD_RPTR_0, regRXD_WPTR_0))
goto err_mem;
if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
regRXF_CFG0_0, regRXF_CFG1_0,
regRXF_RPTR_0, regRXF_WPTR_0))
goto err_mem;
if (!
(priv->rxdb =
bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
sizeof(struct rxf_desc))))
goto err_mem;
priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
return 0;
err_mem:
ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
return -ENOMEM;
}
/* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
* @priv - NIC private structure
* @f - RXF fifo
*/
static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
{
struct rx_map *dm;
struct rxdb *db = priv->rxdb;
u16 i;
ENTER;
DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
db->nelem - bdx_rxdb_available(db));
while (bdx_rxdb_available(db) > 0) {
i = bdx_rxdb_alloc_elem(db);
dm = bdx_rxdb_addr_elem(db, i);
dm->dma = 0;
}
for (i = 0; i < db->nelem; i++) {
dm = bdx_rxdb_addr_elem(db, i);
if (dm->dma) {
pci_unmap_single(priv->pdev,
dm->dma, f->m.pktsz,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(dm->skb);
}
}
}
/* bdx_rx_free - release all Rx resources
* @priv - NIC private structure
* It assumes that Rx is desabled in HW
*/
static void bdx_rx_free(struct bdx_priv *priv)
{
ENTER;
if (priv->rxdb) {
bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
bdx_rxdb_destroy(priv->rxdb);
priv->rxdb = NULL;
}
bdx_fifo_free(priv, &priv->rxf_fifo0.m);
bdx_fifo_free(priv, &priv->rxd_fifo0.m);
RET();
}
/*************************************************************************
* Rx Engine *
*************************************************************************/
/* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
* @priv - nic's private structure
* @f - RXF fifo that needs skbs
* It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
* skb's virtual and physical addresses are stored in skb db.
* To calculate free space, func uses cached values of RPTR and WPTR
* When needed, it also updates RPTR and WPTR.
*/
/* TBD: do not update WPTR if no desc were written */
static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
{
struct sk_buff *skb;
struct rxf_desc *rxfd;
struct rx_map *dm;
int dno, delta, idx;
struct rxdb *db = priv->rxdb;
ENTER;
dno = bdx_rxdb_available(db) - 1;
while (dno > 0) {
if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
ERR("NO MEM: dev_alloc_skb failed\n");
break;
}
skb->dev = priv->ndev;
skb_reserve(skb, NET_IP_ALIGN);
idx = bdx_rxdb_alloc_elem(db);
dm = bdx_rxdb_addr_elem(db, idx);
dm->dma = pci_map_single(priv->pdev,
skb->data, f->m.pktsz,
PCI_DMA_FROMDEVICE);
dm->skb = skb;
rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
rxfd->va_lo = idx;
rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
print_rxfd(rxfd);
f->m.wptr += sizeof(struct rxf_desc);
delta = f->m.wptr - f->m.memsz;
if (unlikely(delta >= 0)) {
f->m.wptr = delta;
if (delta > 0) {
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
DBG("wrapped descriptor\n");
}
}
dno--;
}
/*TBD: to do - delayed rxf wptr like in txd */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
RET();
}
static inline void
NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
struct sk_buff *skb)
{
ENTER;
DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
priv->vlgrp);
if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
priv->ndev->name,
GET_RXD_VLAN_ID(rxd_vlan),
GET_RXD_VTAG(rxd_val1),
vlan_group_get_device(priv->vlgrp,
GET_RXD_VLAN_ID(rxd_vlan))->name);
/* NAPI variant of receive functions */
vlan_hwaccel_receive_skb(skb, priv->vlgrp,
GET_RXD_VLAN_ID(rxd_vlan));
} else {
netif_receive_skb(skb);
}
}
static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
{
struct rxf_desc *rxfd;
struct rx_map *dm;
struct rxf_fifo *f;
struct rxdb *db;
struct sk_buff *skb;
int delta;
ENTER;
DBG("priv=%p rxdd=%p\n", priv, rxdd);
f = &priv->rxf_fifo0;
db = priv->rxdb;
DBG("db=%p f=%p\n", db, f);
dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
DBG("dm=%p\n", dm);
skb = dm->skb;
rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
rxfd->va_lo = rxdd->va_lo;
rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
print_rxfd(rxfd);
f->m.wptr += sizeof(struct rxf_desc);
delta = f->m.wptr - f->m.memsz;
if (unlikely(delta >= 0)) {
f->m.wptr = delta;
if (delta > 0) {
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
DBG("wrapped descriptor\n");
}
}
RET();
}
/* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
* NOTE: a special treatment is given to non-continous descriptors
* that start near the end, wraps around and continue at the beginning. a second
* part is copied right after the first, and then descriptor is interpreted as
* normal. fifo has an extra space to allow such operations
* @priv - nic's private structure
* @f - RXF fifo that needs skbs
*/
/* TBD: replace memcpy func call by explicite inline asm */
static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
{
struct sk_buff *skb, *skb2;
struct rxd_desc *rxdd;
struct rx_map *dm;
struct rxf_fifo *rxf_fifo;
int tmp_len, size;
int done = 0;
int max_done = BDX_MAX_RX_DONE;
struct rxdb *db = NULL;
/* Unmarshalled descriptor - copy of descriptor in host order */
u32 rxd_val1;
u16 len;
u16 rxd_vlan;
ENTER;
max_done = budget;
priv->ndev->last_rx = jiffies;
f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
size = f->m.wptr - f->m.rptr;
if (size < 0)
size = f->m.memsz + size; /* size is negative :-) */
while (size > 0) {
rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
len = CPU_CHIP_SWAP16(rxdd->len);
rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
tmp_len = GET_RXD_BC(rxd_val1) << 3;
BDX_ASSERT(tmp_len <= 0);
size -= tmp_len;
if (size < 0) /* test for partially arrived descriptor */
break;
f->m.rptr += tmp_len;
tmp_len = f->m.rptr - f->m.memsz;
if (unlikely(tmp_len >= 0)) {
f->m.rptr = tmp_len;
if (tmp_len > 0) {
DBG("wrapped desc rptr=%d tmp_len=%d\n",
f->m.rptr, tmp_len);
memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
}
}
if (unlikely(GET_RXD_ERR(rxd_val1))) {
DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
priv->net_stats.rx_errors++;
bdx_recycle_skb(priv, rxdd);
continue;
}
rxf_fifo = &priv->rxf_fifo0;
db = priv->rxdb;
dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
skb = dm->skb;
if (len < BDX_COPYBREAK &&
(skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
skb_reserve(skb2, NET_IP_ALIGN);
/*skb_put(skb2, len); */
pci_dma_sync_single_for_cpu(priv->pdev,
dm->dma, rxf_fifo->m.pktsz,
PCI_DMA_FROMDEVICE);
memcpy(skb2->data, skb->data, len);
bdx_recycle_skb(priv, rxdd);
skb = skb2;
} else {
pci_unmap_single(priv->pdev,
dm->dma, rxf_fifo->m.pktsz,
PCI_DMA_FROMDEVICE);
bdx_rxdb_free_elem(db, rxdd->va_lo);
}
priv->net_stats.rx_bytes += len;
skb_put(skb, len);
skb->dev = priv->ndev;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->protocol = eth_type_trans(skb, priv->ndev);
/* Non-IP packets aren't checksum-offloaded */
if (GET_RXD_PKT_ID(rxd_val1) == 0)
skb->ip_summed = CHECKSUM_NONE;
NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
if (++done >= max_done)
break;
}
priv->net_stats.rx_packets += done;
/* FIXME: do smth to minimize pci accesses */
WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
RET(done);
}
/*************************************************************************
* Debug / Temprorary Code *
*************************************************************************/
static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
u16 rxd_vlan)
{
DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
"pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
"va_lo %d va_hi %d\n",
GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
rxdd->va_hi);
}
static void print_rxfd(struct rxf_desc *rxfd)
{
DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
"info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
}
/*
* TX HW/SW interaction overview
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There are 2 types of TX communication channels betwean driver and NIC.
* 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
* 2) TX Data Fifo - TXD - holds descriptors of full buffers.
*
* Currently NIC supports TSO, checksuming and gather DMA
* UFO and IP fragmentation is on the way
*
* RX SW Data Structures
* ~~~~~~~~~~~~~~~~~~~~~
* txdb - used to keep track of all skbs owned by SW and their dma addresses.
* For TX case, ownership lasts from geting packet via hard_xmit and until HW
* acknowledges sent by TXF descriptors.
* Implemented as cyclic buffer.
* fifo - keeps info about fifo's size and location, relevant HW registers,
* usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
* Implemented as simple struct.
*
* TX SW Execution Flow
* ~~~~~~~~~~~~~~~~~~~~
* OS calls driver's hard_xmit method with packet to sent.
* Driver creates DMA mappings, builds TXD descriptors and kicks HW
* by updating TXD WPTR.
* When packet is sent, HW write us TXF descriptor and SW frees original skb.
* To prevent TXD fifo overflow without reading HW registers every time,
* SW deploys "tx level" technique.
* Upon strart up, tx level is initialized to TXD fifo length.
* For every sent packet, SW gets its TXD descriptor sizei
* (from precalculated array) and substructs it from tx level.
* The size is also stored in txdb. When TXF ack arrives, SW fetch size of
* original TXD descriptor from txdb and adds it to tx level.
* When Tx level drops under some predefined treshhold, the driver
* stops the TX queue. When TX level rises above that level,
* the tx queue is enabled again.
*
* This technique avoids eccessive reading of RPTR and WPTR registers.
* As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
*/
/*************************************************************************
* Tx DB *
*************************************************************************/
static inline int bdx_tx_db_size(struct txdb *db)
{
int taken = db->wptr - db->rptr;
if (taken < 0)
taken = db->size + 1 + taken; /* (size + 1) equals memsz */
return db->size - taken;
}
/* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
* @d - tx data base
* @ptr - read or write pointer
*/
static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
{
BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
BDX_ASSERT(*pptr != db->rptr && /* expect either read */
*pptr != db->wptr); /* or write pointer */
BDX_ASSERT(*pptr < db->start || /* pointer has to be */
*pptr >= db->end); /* in range */
++*pptr;
if (unlikely(*pptr == db->end))
*pptr = db->start;
}
/* bdx_tx_db_inc_rptr - increment read pointer
* @d - tx data base
*/
static inline void bdx_tx_db_inc_rptr(struct txdb *db)
{
BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
__bdx_tx_db_ptr_next(db, &db->rptr);
}
/* bdx_tx_db_inc_rptr - increment write pointer
* @d - tx data base
*/
static inline void bdx_tx_db_inc_wptr(struct txdb *db)
{
__bdx_tx_db_ptr_next(db, &db->wptr);
BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
a result of write */
}
/* bdx_tx_db_init - creates and initializes tx db
* @d - tx data base
* @sz_type - size of tx fifo
* Returns 0 on success, error code otherwise
*/
static int bdx_tx_db_init(struct txdb *d, int sz_type)
{
int memsz = FIFO_SIZE * (1 << (sz_type + 1));
d->start = vmalloc(memsz);
if (!d->start)
return -ENOMEM;
/*
* In order to differentiate between db is empty and db is full
* states at least one element should always be empty in order to
* avoid rptr == wptr which means db is empty
*/
d->size = memsz / sizeof(struct tx_map) - 1;
d->end = d->start + d->size + 1; /* just after last element */
/* all dbs are created equally empty */
d->rptr = d->start;
d->wptr = d->start;
return 0;
}
/* bdx_tx_db_close - closes tx db and frees all memory
* @d - tx data base
*/
static void bdx_tx_db_close(struct txdb *d)
{
BDX_ASSERT(d == NULL);
if (d->start) {
vfree(d->start);
d->start = NULL;
}
}
/*************************************************************************
* Tx Engine *
*************************************************************************/
/* sizes of tx desc (including padding if needed) as function
* of skb's frag number */
static struct {
u16 bytes;
u16 qwords; /* qword = 64 bit */
} txd_sizes[MAX_SKB_FRAGS + 1];
/* txdb_map_skb - creates and stores dma mappings for skb's data blocks
* @priv - NIC private structure
* @skb - socket buffer to map
*
* It makes dma mappings for skb's data blocks and writes them to PBL of
* new tx descriptor. It also stores them in the tx db, so they could be
* unmaped after data was sent. It is reponsibility of a caller to make
* sure that there is enough space in the tx db. Last element holds pointer
* to skb itself and marked with zero length
*/
static inline void
bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
struct txd_desc *txdd)
{
struct txdb *db = &priv->txdb;
struct pbl *pbl = &txdd->pbl[0];
int nr_frags = skb_shinfo(skb)->nr_frags;
int i;
db->wptr->len = skb->len - skb->data_len;
db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
db->wptr->len, PCI_DMA_TODEVICE);
pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
DBG("=== pbl len: 0x%x ================\n", pbl->len);
DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
bdx_tx_db_inc_wptr(db);
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[i];
db->wptr->len = frag->size;
db->wptr->addr.dma =
pci_map_page(priv->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
pbl++;
pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
bdx_tx_db_inc_wptr(db);
}
/* add skb clean up info. */
db->wptr->len = -txd_sizes[nr_frags].bytes;
db->wptr->addr.skb = skb;
bdx_tx_db_inc_wptr(db);
}
/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
* number of frags is used as index to fetch correct descriptors size,
* instead of calculating it each time */
static void __init init_txd_sizes(void)
{
int i, lwords;
/* 7 - is number of lwords in txd with one phys buffer
* 3 - is number of lwords used for every additional phys buffer */
for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
lwords = 7 + (i * 3);
if (lwords & 1)
lwords++; /* pad it with 1 lword */
txd_sizes[i].qwords = lwords >> 1;
txd_sizes[i].bytes = lwords << 2;
}
}
/* bdx_tx_init - initialize all Tx related stuff.
* Namely, TXD and TXF fifos, database etc */
static int bdx_tx_init(struct bdx_priv *priv)
{
if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
regTXD_CFG0_0,
regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
goto err_mem;
if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
regTXF_CFG0_0,
regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
goto err_mem;
/* The TX db has to keep mappings for all packets sent (on TxD)
* and not yet reclaimed (on TxF) */
if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
goto err_mem;
priv->tx_level = BDX_MAX_TX_LEVEL;
#ifdef BDX_DELAY_WPTR
priv->tx_update_mark = priv->tx_level - 1024;
#endif
return 0;
err_mem:
ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
return -ENOMEM;
}
/*
* bdx_tx_space - calculates avalable space in TX fifo
* @priv - NIC private structure
* Returns avaliable space in TX fifo in bytes
*/
static inline int bdx_tx_space(struct bdx_priv *priv)
{
struct txd_fifo *f = &priv->txd_fifo0;
int fsize;
f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
fsize = f->m.rptr - f->m.wptr;
if (fsize <= 0)
fsize = f->m.memsz + fsize;
return (fsize);
}
/* bdx_tx_transmit - send packet to NIC
* @skb - packet to send
* ndev - network device assigned to NIC
* Return codes:
* o NETDEV_TX_OK everything ok.
* o NETDEV_TX_BUSY Cannot transmit packet, try later
* Usually a bug, means queue start/stop flow control is broken in
* the driver. Note: the driver must NOT put the skb in its DMA ring.
* o NETDEV_TX_LOCKED Locking failed, please retry quickly.
*/
static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
{
struct bdx_priv *priv = ndev->priv;
struct txd_fifo *f = &priv->txd_fifo0;
int txd_checksum = 7; /* full checksum */
int txd_lgsnd = 0;
int txd_vlan_id = 0;
int txd_vtag = 0;
int txd_mss = 0;
int nr_frags = skb_shinfo(skb)->nr_frags;
struct txd_desc *txdd;
int len;
unsigned long flags;
ENTER;
local_irq_save(flags);
if (!spin_trylock(&priv->tx_lock)) {
local_irq_restore(flags);
DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
BDX_DRV_NAME, ndev->name);
return NETDEV_TX_LOCKED;
}
/* build tx descriptor */
BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
txd_checksum = 0;
if (skb_shinfo(skb)->gso_size) {
txd_mss = skb_shinfo(skb)->gso_size;
txd_lgsnd = 1;
DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
txd_mss);
}
if (vlan_tx_tag_present(skb)) {
/*Cut VLAN ID to 12 bits */
txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
txd_vtag = 1;
}
txdd->length = CPU_CHIP_SWAP16(skb->len);
txdd->mss = CPU_CHIP_SWAP16(txd_mss);
txdd->txd_val1 =
CPU_CHIP_SWAP32(TXD_W1_VAL
(txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
txd_lgsnd, txd_vlan_id));
DBG("=== TxD desc =====================\n");
DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
bdx_tx_map_skb(priv, skb, txdd);
/* increment TXD write pointer. In case of
fifo wrapping copy reminder of the descriptor
to the beginning */
f->m.wptr += txd_sizes[nr_frags].bytes;
len = f->m.wptr - f->m.memsz;
if (unlikely(len >= 0)) {
f->m.wptr = len;
if (len > 0) {
BDX_ASSERT(len > f->m.memsz);
memcpy(f->m.va, f->m.va + f->m.memsz, len);
}
}
BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
priv->tx_level -= txd_sizes[nr_frags].bytes;
BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
#ifdef BDX_DELAY_WPTR
if (priv->tx_level > priv->tx_update_mark) {
/* Force memory writes to complete before letting h/w
know there are new descriptors to fetch.
(might be needed on platforms like IA64)
wmb(); */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
} else {
if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
priv->tx_noupd = 0;
WRITE_REG(priv, f->m.reg_WPTR,
f->m.wptr & TXF_WPTR_WR_PTR);
}
}
#else
/* Force memory writes to complete before letting h/w
know there are new descriptors to fetch.
(might be needed on platforms like IA64)
wmb(); */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
#endif
ndev->trans_start = jiffies;
priv->net_stats.tx_packets++;
priv->net_stats.tx_bytes += skb->len;
if (priv->tx_level < BDX_MIN_TX_LEVEL) {
DBG("%s: %s: TX Q STOP level %d\n",
BDX_DRV_NAME, ndev->name, priv->tx_level);
netif_stop_queue(ndev);
}
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
/* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
* @priv - bdx adapter
* It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
* that those packets were sent
*/
static void bdx_tx_cleanup(struct bdx_priv *priv)
{
struct txf_fifo *f = &priv->txf_fifo0;
struct txdb *db = &priv->txdb;
int tx_level = 0;
ENTER;
f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
while (f->m.wptr != f->m.rptr) {
f->m.rptr += BDX_TXF_DESC_SZ;
f->m.rptr &= f->m.size_mask;
/* unmap all the fragments */
/* first has to come tx_maps containing dma */
BDX_ASSERT(db->rptr->len == 0);
do {
BDX_ASSERT(db->rptr->addr.dma == 0);
pci_unmap_page(priv->pdev, db->rptr->addr.dma,
db->rptr->len, PCI_DMA_TODEVICE);
bdx_tx_db_inc_rptr(db);
} while (db->rptr->len > 0);
tx_level -= db->rptr->len; /* '-' koz len is negative */
/* now should come skb pointer - free it */
dev_kfree_skb_irq(db->rptr->addr.skb);
bdx_tx_db_inc_rptr(db);
}
/* let h/w know which TXF descriptors were cleaned */
BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
/* We reclaimed resources, so in case the Q is stopped by xmit callback,
* we resume the transmition and use tx_lock to synchronize with xmit.*/
spin_lock(&priv->tx_lock);
priv->tx_level += tx_level;
BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
#ifdef BDX_DELAY_WPTR
if (priv->tx_noupd) {
priv->tx_noupd = 0;
WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
}
#endif
if (unlikely(netif_queue_stopped(priv->ndev)
&& netif_carrier_ok(priv->ndev)
&& (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
DBG("%s: %s: TX Q WAKE level %d\n",
BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
netif_wake_queue(priv->ndev);
}
spin_unlock(&priv->tx_lock);
}
/* bdx_tx_free_skbs - frees all skbs from TXD fifo.
* It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
*/
static void bdx_tx_free_skbs(struct bdx_priv *priv)
{
struct txdb *db = &priv->txdb;
ENTER;
while (db->rptr != db->wptr) {
if (likely(db->rptr->len))
pci_unmap_page(priv->pdev, db->rptr->addr.dma,
db->rptr->len, PCI_DMA_TODEVICE);
else
dev_kfree_skb(db->rptr->addr.skb);
bdx_tx_db_inc_rptr(db);
}
RET();
}
/* bdx_tx_free - frees all Tx resources */
static void bdx_tx_free(struct bdx_priv *priv)
{
ENTER;
bdx_tx_free_skbs(priv);
bdx_fifo_free(priv, &priv->txd_fifo0.m);
bdx_fifo_free(priv, &priv->txf_fifo0.m);
bdx_tx_db_close(&priv->txdb);
}
/* bdx_tx_push_desc - push descriptor to TxD fifo
* @priv - NIC private structure
* @data - desc's data
* @size - desc's size
*
* Pushes desc to TxD fifo and overlaps it if needed.
* NOTE: this func does not check for available space. this is responsibility
* of the caller. Neither does it check that data size is smaller then
* fifo size.
*/
static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
{
struct txd_fifo *f = &priv->txd_fifo0;
int i = f->m.memsz - f->m.wptr;
if (size == 0)
return;
if (i > size) {
memcpy(f->m.va + f->m.wptr, data, size);
f->m.wptr += size;
} else {
memcpy(f->m.va + f->m.wptr, data, i);
f->m.wptr = size - i;
memcpy(f->m.va, data + i, f->m.wptr);
}
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
}
/* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
* @priv - NIC private structure
* @data - desc's data
* @size - desc's size
*
* NOTE: this func does check for available space and, if neccessary, waits for
* NIC to read existing data before writing new one.
*/
static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
{
int timer = 0;
ENTER;
while (size > 0) {
/* we substruct 8 because when fifo is full rptr == wptr
which also means that fifo is empty, we can understand
the difference, but could hw do the same ??? :) */
int avail = bdx_tx_space(priv) - 8;
if (avail <= 0) {
if (timer++ > 300) { /* prevent endless loop */
DBG("timeout while writing desc to TxD fifo\n");
break;
}
udelay(50); /* give hw a chance to clean fifo */
continue;
}
avail = MIN(avail, size);
DBG("about to push %d bytes starting %p size %d\n", avail,
data, size);
bdx_tx_push_desc(priv, data, avail);
size -= avail;
data += avail;
}
RET();
}
/**
* bdx_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in bdx_pci_tbl
*
* Returns 0 on success, negative on failure
*
* bdx_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*
* functions and their order used as explained in
* /usr/src/linux/Documentation/DMA-{API,mapping}.txt
*
*/
/* TBD: netif_msg should be checked and implemented. I disable it for now */
static int __devinit
bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *ndev;
struct bdx_priv *priv;
int err, pci_using_dac, port;
unsigned long pciaddr;
u32 regionSize;
struct pci_nic *nic;
ENTER;
nic = vmalloc(sizeof(*nic));
if (!nic)
RET(-ENOMEM);
/************** pci *****************/
if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
goto err_pci; /* it's not a problem though */
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
!(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
pci_using_dac = 1;
} else {
if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
(err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
printk(KERN_ERR "tehuti: No usable DMA configuration"
", aborting\n");
goto err_dma;
}
pci_using_dac = 0;
}
if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
goto err_dma;
pci_set_master(pdev);
pciaddr = pci_resource_start(pdev, 0);
if (!pciaddr) {
err = -EIO;
ERR("tehuti: no MMIO resource\n");
goto err_out_res;
}
if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
err = -EIO;
ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
goto err_out_res;
}
nic->regs = ioremap(pciaddr, regionSize);
if (!nic->regs) {
err = -EIO;
ERR("tehuti: ioremap failed\n");
goto err_out_res;
}
if (pdev->irq < 2) {
err = -EIO;
ERR("tehuti: invalid irq (%d)\n", pdev->irq);
goto err_out_iomap;
}
pci_set_drvdata(pdev, nic);
if (pdev->device == 0x3014)
nic->port_num = 2;
else
nic->port_num = 1;
print_hw_id(pdev);
bdx_hw_reset_direct(nic->regs);
nic->irq_type = IRQ_INTX;
#ifdef BDX_MSI
if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
if ((err = pci_enable_msi(pdev)))
ERR("Tehuti: Can't eneble msi. error is %d\n", err);
else
nic->irq_type = IRQ_MSI;
} else
DBG("HW does not support MSI\n");
#endif
/************** netdev **************/
for (port = 0; port < nic->port_num; port++) {
if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
err = -ENOMEM;
printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
goto err_out_iomap;
}
ndev->open = bdx_open;
ndev->stop = bdx_close;
ndev->hard_start_xmit = bdx_tx_transmit;
ndev->do_ioctl = bdx_ioctl;
ndev->set_multicast_list = bdx_setmulti;
ndev->get_stats = bdx_get_stats;
ndev->change_mtu = bdx_change_mtu;
ndev->set_mac_address = bdx_set_mac;
ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
ndev->vlan_rx_register = bdx_vlan_rx_register;
ndev->vlan_rx_add_vid = bdx_vlan_rx_add_vid;
ndev->vlan_rx_kill_vid = bdx_vlan_rx_kill_vid;
bdx_ethtool_ops(ndev); /* ethtool interface */
/* these fields are used for info purposes only
* so we can have them same for all ports of the board */
ndev->if_port = port;
ndev->base_addr = pciaddr;
ndev->mem_start = pciaddr;
ndev->mem_end = pciaddr + regionSize;
ndev->irq = pdev->irq;
ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
| NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER
/*| NETIF_F_FRAGLIST */
;
if (pci_using_dac)
ndev->features |= NETIF_F_HIGHDMA;
/************** priv ****************/
priv = nic->priv[port] = ndev->priv;
memset(priv, 0, sizeof(struct bdx_priv));
priv->pBdxRegs = nic->regs + port * 0x8000;
priv->port = port;
priv->pdev = pdev;
priv->ndev = ndev;
priv->nic = nic;
priv->msg_enable = BDX_DEF_MSG_ENABLE;
netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
DBG("HW statistics not supported\n");
priv->stats_flag = 0;
} else {
priv->stats_flag = 1;
}
/* Initialize fifo sizes. */
priv->txd_size = 2;
priv->txf_size = 2;
priv->rxd_size = 2;
priv->rxf_size = 3;
/* Initialize the initial coalescing registers. */
priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
/* ndev->xmit_lock spinlock is not used.
* Private priv->tx_lock is used for synchronization
* between transmit and TX irq cleanup. In addition
* set multicast list callback has to use priv->tx_lock.
*/
#ifdef BDX_LLTX
ndev->features |= NETIF_F_LLTX;
#endif
spin_lock_init(&priv->tx_lock);
/*bdx_hw_reset(priv); */
if (bdx_read_mac(priv)) {
printk(KERN_ERR "tehuti: load MAC address failed\n");
goto err_out_iomap;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
if ((err = register_netdev(ndev))) {
printk(KERN_ERR "tehuti: register_netdev failed\n");
goto err_out_free;
}
netif_carrier_off(ndev);
netif_stop_queue(ndev);
print_eth_id(ndev);
}
RET(0);
err_out_free:
free_netdev(ndev);
err_out_iomap:
iounmap(nic->regs);
err_out_res:
pci_release_regions(pdev);
err_dma:
pci_disable_device(pdev);
err_pci:
vfree(nic);
RET(err);
}
/****************** Ethtool interface *********************/
/* get strings for tests */
static const char
bdx_test_names[][ETH_GSTRING_LEN] = {
"No tests defined"
};
/* get strings for statistics counters */
static const char
bdx_stat_names[][ETH_GSTRING_LEN] = {
"InUCast", /* 0x7200 */
"InMCast", /* 0x7210 */
"InBCast", /* 0x7220 */
"InPkts", /* 0x7230 */
"InErrors", /* 0x7240 */
"InDropped", /* 0x7250 */
"FrameTooLong", /* 0x7260 */
"FrameSequenceErrors", /* 0x7270 */
"InVLAN", /* 0x7280 */
"InDroppedDFE", /* 0x7290 */
"InDroppedIntFull", /* 0x72A0 */
"InFrameAlignErrors", /* 0x72B0 */
/* 0x72C0-0x72E0 RSRV */
"OutUCast", /* 0x72F0 */
"OutMCast", /* 0x7300 */
"OutBCast", /* 0x7310 */
"OutPkts", /* 0x7320 */
/* 0x7330-0x7360 RSRV */
"OutVLAN", /* 0x7370 */
"InUCastOctects", /* 0x7380 */
"OutUCastOctects", /* 0x7390 */
/* 0x73A0-0x73B0 RSRV */
"InBCastOctects", /* 0x73C0 */
"OutBCastOctects", /* 0x73D0 */
"InOctects", /* 0x73E0 */
"OutOctects", /* 0x73F0 */
};
/*
* bdx_get_settings - get device-specific settings
* @netdev
* @ecmd
*/
static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
u32 rdintcm;
u32 tdintcm;
struct bdx_priv *priv = netdev->priv;
rdintcm = priv->rdintcm;
tdintcm = priv->tdintcm;
ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
ecmd->speed = SPEED_10000;
ecmd->duplex = DUPLEX_FULL;
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
ecmd->autoneg = AUTONEG_DISABLE;
/* PCK_TH measures in multiples of FIFO bytes
We translate to packets */
ecmd->maxtxpkt =
((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
ecmd->maxrxpkt =
((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
return 0;
}
/*
* bdx_get_drvinfo - report driver information
* @netdev
* @drvinfo
*/
static void
bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
{
struct bdx_priv *priv = netdev->priv;
strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
strlcat(drvinfo->bus_info, pci_name(priv->pdev),
sizeof(drvinfo->bus_info));
drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = 0;
drvinfo->eedump_len = 0;
}
/*
* bdx_get_rx_csum - report whether receive checksums are turned on or off
* @netdev
*/
static u32 bdx_get_rx_csum(struct net_device *netdev)
{
return 1; /* always on */
}
/*
* bdx_get_tx_csum - report whether transmit checksums are turned on or off
* @netdev
*/
static u32 bdx_get_tx_csum(struct net_device *netdev)
{
return (netdev->features & NETIF_F_IP_CSUM) != 0;
}
/*
* bdx_get_coalesce - get interrupt coalescing parameters
* @netdev
* @ecoal
*/
static int
bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
{
u32 rdintcm;
u32 tdintcm;
struct bdx_priv *priv = netdev->priv;
rdintcm = priv->rdintcm;
tdintcm = priv->tdintcm;
/* PCK_TH measures in multiples of FIFO bytes
We translate to packets */
ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
ecoal->rx_max_coalesced_frames =
((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
ecoal->tx_max_coalesced_frames =
((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
/* adaptive parameters ignored */
return 0;
}
/*
* bdx_set_coalesce - set interrupt coalescing parameters
* @netdev
* @ecoal
*/
static int
bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
{
u32 rdintcm;
u32 tdintcm;
struct bdx_priv *priv = netdev->priv;
int rx_coal;
int tx_coal;
int rx_max_coal;
int tx_max_coal;
/* Check for valid input */
rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
rx_max_coal = ecoal->rx_max_coalesced_frames;
tx_max_coal = ecoal->tx_max_coalesced_frames;
/* Translate from packets to multiples of FIFO bytes */
rx_max_coal =
(((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
/ PCK_TH_MULT);
tx_max_coal =
(((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
/ PCK_TH_MULT);
if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
|| (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
return -EINVAL;
rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
GET_RXF_TH(priv->rdintcm), rx_max_coal);
tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
tx_max_coal);
priv->rdintcm = rdintcm;
priv->tdintcm = tdintcm;
WRITE_REG(priv, regRDINTCM0, rdintcm);
WRITE_REG(priv, regTDINTCM0, tdintcm);
return 0;
}
/* Convert RX fifo size to number of pending packets */
static inline int bdx_rx_fifo_size_to_packets(int rx_size)
{
return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
}
/* Convert TX fifo size to number of pending packets */
static inline int bdx_tx_fifo_size_to_packets(int tx_size)
{
return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
}
/*
* bdx_get_ringparam - report ring sizes
* @netdev
* @ring
*/
static void
bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
{
struct bdx_priv *priv = netdev->priv;
/*max_pending - the maximum-sized FIFO we allow */
ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
}
/*
* bdx_set_ringparam - set ring sizes
* @netdev
* @ring
*/
static int
bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
{
struct bdx_priv *priv = netdev->priv;
int rx_size = 0;
int tx_size = 0;
for (; rx_size < 4; rx_size++) {
if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
break;
}
if (rx_size == 4)
rx_size = 3;
for (; tx_size < 4; tx_size++) {
if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
break;
}
if (tx_size == 4)
tx_size = 3;
/*Is there anything to do? */
if ((rx_size == priv->rxf_size)
&& (tx_size == priv->txd_size))
return 0;
priv->rxf_size = rx_size;
if (rx_size > 1)
priv->rxd_size = rx_size - 1;
else
priv->rxd_size = rx_size;
priv->txf_size = priv->txd_size = tx_size;
if (netif_running(netdev)) {
bdx_close(netdev);
bdx_open(netdev);
}
return 0;
}
/*
* bdx_get_strings - return a set of strings that describe the requested objects
* @netdev
* @data
*/
static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
break;
case ETH_SS_STATS:
memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
break;
}
}
/*
* bdx_get_stats_count - return number of 64bit statistics counters
* @netdev
*/
static int bdx_get_stats_count(struct net_device *netdev)
{
struct bdx_priv *priv = netdev->priv;
BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
!= sizeof(struct bdx_stats) / sizeof(u64));
return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
}
/*
* bdx_get_ethtool_stats - return device's hardware L2 statistics
* @netdev
* @stats
* @data
*/
static void bdx_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct bdx_priv *priv = netdev->priv;
if (priv->stats_flag) {
/* Update stats from HW */
bdx_update_stats(priv);
/* Copy data to user buffer */
memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
}
}
/*
* bdx_ethtool_ops - ethtool interface implementation
* @netdev
*/
static void bdx_ethtool_ops(struct net_device *netdev)
{
static struct ethtool_ops bdx_ethtool_ops = {
.get_settings = bdx_get_settings,
.get_drvinfo = bdx_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_coalesce = bdx_get_coalesce,
.set_coalesce = bdx_set_coalesce,
.get_ringparam = bdx_get_ringparam,
.set_ringparam = bdx_set_ringparam,
.get_rx_csum = bdx_get_rx_csum,
.get_tx_csum = bdx_get_tx_csum,
.get_sg = ethtool_op_get_sg,
.get_tso = ethtool_op_get_tso,
.get_strings = bdx_get_strings,
.get_stats_count = bdx_get_stats_count,
.get_ethtool_stats = bdx_get_ethtool_stats,
};
SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
}
/**
* bdx_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* bdx_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit bdx_remove(struct pci_dev *pdev)
{
struct pci_nic *nic = pci_get_drvdata(pdev);
struct net_device *ndev;
int port;
for (port = 0; port < nic->port_num; port++) {
ndev = nic->priv[port]->ndev;
unregister_netdev(ndev);
free_netdev(ndev);
}
/*bdx_hw_reset_direct(nic->regs); */
#ifdef BDX_MSI
if (nic->irq_type == IRQ_MSI)
pci_disable_msi(pdev);
#endif
iounmap(nic->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
vfree(nic);
RET();
}
static struct pci_driver bdx_pci_driver = {
.name = BDX_DRV_NAME,
.id_table = bdx_pci_tbl,
.probe = bdx_probe,
.remove = __devexit_p(bdx_remove),
};
/*
* print_driver_id - print parameters of the driver build
*/
static void __init print_driver_id(void)
{
printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
BDX_DRV_VERSION);
printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
BDX_MSI_STRING);
}
static int __init bdx_module_init(void)
{
ENTER;
bdx_firmware_endianess();
init_txd_sizes();
print_driver_id();
RET(pci_register_driver(&bdx_pci_driver));
}
module_init(bdx_module_init);
static void __exit bdx_module_exit(void)
{
ENTER;
pci_unregister_driver(&bdx_pci_driver);
RET();
}
module_exit(bdx_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(BDX_DRV_DESC);