2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/drivers/lguest/lguest_asm.S
Rusty Russell bbbd2bf00b fix modules oopsing in lguest guests
The assembly templates for lguest guest patching are in the .init.text
section.  This means that modules get patched with "cc cc cc cc" or similar
junk.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-25 08:51:04 -07:00

94 lines
4.2 KiB
ArmAsm

#include <linux/linkage.h>
#include <linux/lguest.h>
#include <asm/asm-offsets.h>
#include <asm/thread_info.h>
#include <asm/processor-flags.h>
/*G:020 This is where we begin: we have a magic signature which the launcher
* looks for. The plan is that the Linux boot protocol will be extended with a
* "platform type" field which will guide us here from the normal entry point,
* but for the moment this suffices. The normal boot code uses %esi for the
* boot header, so we do too. We convert it to a virtual address by adding
* PAGE_OFFSET, and hand it to lguest_init() as its argument (ie. %eax).
*
* The .section line puts this code in .init.text so it will be discarded after
* boot. */
.section .init.text, "ax", @progbits
.ascii "GenuineLguest"
/* Set up initial stack. */
movl $(init_thread_union+THREAD_SIZE),%esp
movl %esi, %eax
addl $__PAGE_OFFSET, %eax
jmp lguest_init
/*G:055 We create a macro which puts the assembler code between lgstart_ and
* lgend_ markers. These templates are put in the .text section: they can't be
* discarded after boot as we may need to patch modules, too. */
.text
#define LGUEST_PATCH(name, insns...) \
lgstart_##name: insns; lgend_##name:; \
.globl lgstart_##name; .globl lgend_##name
LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(sti, movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(popf, movl %eax, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)
/*:*/
/* These demark the EIP range where host should never deliver interrupts. */
.global lguest_noirq_start
.global lguest_noirq_end
/*M:004 When the Host reflects a trap or injects an interrupt into the Guest,
* it sets the eflags interrupt bit on the stack based on
* lguest_data.irq_enabled, so the Guest iret logic does the right thing when
* restoring it. However, when the Host sets the Guest up for direct traps,
* such as system calls, the processor is the one to push eflags onto the
* stack, and the interrupt bit will be 1 (in reality, interrupts are always
* enabled in the Guest).
*
* This turns out to be harmless: the only trap which should happen under Linux
* with interrupts disabled is Page Fault (due to our lazy mapping of vmalloc
* regions), which has to be reflected through the Host anyway. If another
* trap *does* go off when interrupts are disabled, the Guest will panic, and
* we'll never get to this iret! :*/
/*G:045 There is one final paravirt_op that the Guest implements, and glancing
* at it you can see why I left it to last. It's *cool*! It's in *assembler*!
*
* The "iret" instruction is used to return from an interrupt or trap. The
* stack looks like this:
* old address
* old code segment & privilege level
* old processor flags ("eflags")
*
* The "iret" instruction pops those values off the stack and restores them all
* at once. The only problem is that eflags includes the Interrupt Flag which
* the Guest can't change: the CPU will simply ignore it when we do an "iret".
* So we have to copy eflags from the stack to lguest_data.irq_enabled before
* we do the "iret".
*
* There are two problems with this: firstly, we need to use a register to do
* the copy and secondly, the whole thing needs to be atomic. The first
* problem is easy to solve: push %eax on the stack so we can use it, and then
* restore it at the end just before the real "iret".
*
* The second is harder: copying eflags to lguest_data.irq_enabled will turn
* interrupts on before we're finished, so we could be interrupted before we
* return to userspace or wherever. Our solution to this is to surround the
* code with lguest_noirq_start: and lguest_noirq_end: labels. We tell the
* Host that it is *never* to interrupt us there, even if interrupts seem to be
* enabled. */
ENTRY(lguest_iret)
pushl %eax
movl 12(%esp), %eax
lguest_noirq_start:
/* Note the %ss: segment prefix here. Normal data accesses use the
* "ds" segment, but that will have already been restored for whatever
* we're returning to (such as userspace): we can't trust it. The %ss:
* prefix makes sure we use the stack segment, which is still valid. */
movl %eax,%ss:lguest_data+LGUEST_DATA_irq_enabled
popl %eax
iret
lguest_noirq_end: