mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-24 05:04:00 +08:00
a9c01cd608
Commit 7a7ffe65c8
("crypto: skcipher - Add top-level skcipher interface")
dated 20 august 2015 introduced the new skcipher API which is supposed to
replace both blkcipher and ablkcipher. While all consumers of the API have
been converted long ago, some producers of the ablkcipher remain, forcing
us to keep the ablkcipher support routines alive, along with the matching
code to expose [a]blkciphers via the skcipher API.
So switch this driver to the skcipher API, allowing us to finally drop the
ablkcipher code in the near future.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1392 lines
39 KiB
C
1392 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2016 Broadcom
|
|
*/
|
|
|
|
/*
|
|
* This file works with the SPU2 version of the SPU. SPU2 has different message
|
|
* formats than the previous version of the SPU. All SPU message format
|
|
* differences should be hidden in the spux.c,h files.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
|
|
#include "util.h"
|
|
#include "spu.h"
|
|
#include "spu2.h"
|
|
|
|
#define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */
|
|
|
|
/*
|
|
* Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
|
|
* register. Defaults to 2.
|
|
*/
|
|
#define SPU2_RX_STATUS_LEN 2
|
|
|
|
enum spu2_proto_sel {
|
|
SPU2_PROTO_RESV = 0,
|
|
SPU2_MACSEC_SECTAG8_ECB = 1,
|
|
SPU2_MACSEC_SECTAG8_SCB = 2,
|
|
SPU2_MACSEC_SECTAG16 = 3,
|
|
SPU2_MACSEC_SECTAG16_8_XPN = 4,
|
|
SPU2_IPSEC = 5,
|
|
SPU2_IPSEC_ESN = 6,
|
|
SPU2_TLS_CIPHER = 7,
|
|
SPU2_TLS_AEAD = 8,
|
|
SPU2_DTLS_CIPHER = 9,
|
|
SPU2_DTLS_AEAD = 10
|
|
};
|
|
|
|
static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
|
|
"DES", "3DES"
|
|
};
|
|
|
|
static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
|
|
"XTS", "CCM", "GCM"
|
|
};
|
|
|
|
static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
|
|
"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
|
|
"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
|
|
"SHA3-384", "SHA3-512"
|
|
};
|
|
|
|
static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
|
|
"Rabin", "CCM", "GCM", "Reserved"
|
|
};
|
|
|
|
static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
|
|
{
|
|
if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
|
|
return "Reserved";
|
|
return spu2_cipher_type_names[cipher_type];
|
|
}
|
|
|
|
static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
|
|
{
|
|
if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
|
|
return "Reserved";
|
|
return spu2_cipher_mode_names[cipher_mode];
|
|
}
|
|
|
|
static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
|
|
{
|
|
if (hash_type >= SPU2_HASH_TYPE_LAST)
|
|
return "Reserved";
|
|
return spu2_hash_type_names[hash_type];
|
|
}
|
|
|
|
static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
|
|
{
|
|
if (hash_mode >= SPU2_HASH_MODE_LAST)
|
|
return "Reserved";
|
|
return spu2_hash_mode_names[hash_mode];
|
|
}
|
|
|
|
/*
|
|
* Convert from a software cipher mode value to the corresponding value
|
|
* for SPU2.
|
|
*/
|
|
static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
|
|
enum spu2_cipher_mode *spu2_mode)
|
|
{
|
|
switch (cipher_mode) {
|
|
case CIPHER_MODE_ECB:
|
|
*spu2_mode = SPU2_CIPHER_MODE_ECB;
|
|
break;
|
|
case CIPHER_MODE_CBC:
|
|
*spu2_mode = SPU2_CIPHER_MODE_CBC;
|
|
break;
|
|
case CIPHER_MODE_OFB:
|
|
*spu2_mode = SPU2_CIPHER_MODE_OFB;
|
|
break;
|
|
case CIPHER_MODE_CFB:
|
|
*spu2_mode = SPU2_CIPHER_MODE_CFB;
|
|
break;
|
|
case CIPHER_MODE_CTR:
|
|
*spu2_mode = SPU2_CIPHER_MODE_CTR;
|
|
break;
|
|
case CIPHER_MODE_CCM:
|
|
*spu2_mode = SPU2_CIPHER_MODE_CCM;
|
|
break;
|
|
case CIPHER_MODE_GCM:
|
|
*spu2_mode = SPU2_CIPHER_MODE_GCM;
|
|
break;
|
|
case CIPHER_MODE_XTS:
|
|
*spu2_mode = SPU2_CIPHER_MODE_XTS;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
|
|
* cipher type and mode.
|
|
* @cipher_alg: [in] cipher algorithm value from software enumeration
|
|
* @cipher_mode: [in] cipher mode value from software enumeration
|
|
* @cipher_type: [in] cipher type value from software enumeration
|
|
* @spu2_type: [out] cipher type value used by spu2 hardware
|
|
* @spu2_mode: [out] cipher mode value used by spu2 hardware
|
|
*
|
|
* Return: 0 if successful
|
|
*/
|
|
static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
|
|
enum spu_cipher_mode cipher_mode,
|
|
enum spu_cipher_type cipher_type,
|
|
enum spu2_cipher_type *spu2_type,
|
|
enum spu2_cipher_mode *spu2_mode)
|
|
{
|
|
int err;
|
|
|
|
err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
|
|
if (err) {
|
|
flow_log("Invalid cipher mode %d\n", cipher_mode);
|
|
return err;
|
|
}
|
|
|
|
switch (cipher_alg) {
|
|
case CIPHER_ALG_NONE:
|
|
*spu2_type = SPU2_CIPHER_TYPE_NONE;
|
|
break;
|
|
case CIPHER_ALG_RC4:
|
|
/* SPU2 does not support RC4 */
|
|
err = -EINVAL;
|
|
*spu2_type = SPU2_CIPHER_TYPE_NONE;
|
|
break;
|
|
case CIPHER_ALG_DES:
|
|
*spu2_type = SPU2_CIPHER_TYPE_DES;
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
*spu2_type = SPU2_CIPHER_TYPE_3DES;
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
switch (cipher_type) {
|
|
case CIPHER_TYPE_AES128:
|
|
*spu2_type = SPU2_CIPHER_TYPE_AES128;
|
|
break;
|
|
case CIPHER_TYPE_AES192:
|
|
*spu2_type = SPU2_CIPHER_TYPE_AES192;
|
|
break;
|
|
case CIPHER_TYPE_AES256:
|
|
*spu2_type = SPU2_CIPHER_TYPE_AES256;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
break;
|
|
case CIPHER_ALG_LAST:
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (err)
|
|
flow_log("Invalid cipher alg %d or type %d\n",
|
|
cipher_alg, cipher_type);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Convert from a software hash mode value to the corresponding value
|
|
* for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
|
|
*/
|
|
static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
|
|
enum spu2_hash_mode *spu2_mode)
|
|
{
|
|
switch (hash_mode) {
|
|
case HASH_MODE_XCBC:
|
|
*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
|
|
break;
|
|
case HASH_MODE_CMAC:
|
|
*spu2_mode = SPU2_HASH_MODE_CMAC;
|
|
break;
|
|
case HASH_MODE_HMAC:
|
|
*spu2_mode = SPU2_HASH_MODE_HMAC;
|
|
break;
|
|
case HASH_MODE_CCM:
|
|
*spu2_mode = SPU2_HASH_MODE_CCM;
|
|
break;
|
|
case HASH_MODE_GCM:
|
|
*spu2_mode = SPU2_HASH_MODE_GCM;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
|
|
* and mode.
|
|
* @hash_alg: [in] hash algorithm value from software enumeration
|
|
* @hash_mode: [in] hash mode value from software enumeration
|
|
* @hash_type: [in] hash type value from software enumeration
|
|
* @ciph_type: [in] cipher type value from software enumeration
|
|
* @spu2_type: [out] hash type value used by SPU2 hardware
|
|
* @spu2_mode: [out] hash mode value used by SPU2 hardware
|
|
*
|
|
* Return: 0 if successful
|
|
*/
|
|
static int
|
|
spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
|
|
enum hash_type hash_type, enum spu_cipher_type ciph_type,
|
|
enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
|
|
{
|
|
int err;
|
|
|
|
err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
|
|
if (err) {
|
|
flow_log("Invalid hash mode %d\n", hash_mode);
|
|
return err;
|
|
}
|
|
|
|
switch (hash_alg) {
|
|
case HASH_ALG_NONE:
|
|
*spu2_type = SPU2_HASH_TYPE_NONE;
|
|
break;
|
|
case HASH_ALG_MD5:
|
|
*spu2_type = SPU2_HASH_TYPE_MD5;
|
|
break;
|
|
case HASH_ALG_SHA1:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA1;
|
|
break;
|
|
case HASH_ALG_SHA224:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA224;
|
|
break;
|
|
case HASH_ALG_SHA256:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA256;
|
|
break;
|
|
case HASH_ALG_SHA384:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA384;
|
|
break;
|
|
case HASH_ALG_SHA512:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA512;
|
|
break;
|
|
case HASH_ALG_AES:
|
|
switch (ciph_type) {
|
|
case CIPHER_TYPE_AES128:
|
|
*spu2_type = SPU2_HASH_TYPE_AES128;
|
|
break;
|
|
case CIPHER_TYPE_AES192:
|
|
*spu2_type = SPU2_HASH_TYPE_AES192;
|
|
break;
|
|
case CIPHER_TYPE_AES256:
|
|
*spu2_type = SPU2_HASH_TYPE_AES256;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
break;
|
|
case HASH_ALG_SHA3_224:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA3_224;
|
|
break;
|
|
case HASH_ALG_SHA3_256:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA3_256;
|
|
break;
|
|
case HASH_ALG_SHA3_384:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA3_384;
|
|
break;
|
|
case HASH_ALG_SHA3_512:
|
|
*spu2_type = SPU2_HASH_TYPE_SHA3_512;
|
|
break;
|
|
case HASH_ALG_LAST:
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (err)
|
|
flow_log("Invalid hash alg %d or type %d\n",
|
|
hash_alg, hash_type);
|
|
return err;
|
|
}
|
|
|
|
/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
|
|
static void spu2_dump_fmd_ctrl0(u64 ctrl0)
|
|
{
|
|
enum spu2_cipher_type ciph_type;
|
|
enum spu2_cipher_mode ciph_mode;
|
|
enum spu2_hash_type hash_type;
|
|
enum spu2_hash_mode hash_mode;
|
|
char *ciph_name;
|
|
char *ciph_mode_name;
|
|
char *hash_name;
|
|
char *hash_mode_name;
|
|
u8 cfb;
|
|
u8 proto;
|
|
|
|
packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
|
|
if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
|
|
packet_log(" encrypt\n");
|
|
else
|
|
packet_log(" decrypt\n");
|
|
|
|
ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
|
|
ciph_name = spu2_ciph_type_name(ciph_type);
|
|
packet_log(" Cipher type: %s\n", ciph_name);
|
|
|
|
if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
|
|
ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
|
|
ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
|
|
packet_log(" Cipher mode: %s\n", ciph_mode_name);
|
|
}
|
|
|
|
cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
|
|
packet_log(" CFB %#x\n", cfb);
|
|
|
|
proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
|
|
packet_log(" protocol %#x\n", proto);
|
|
|
|
if (ctrl0 & SPU2_HASH_FIRST)
|
|
packet_log(" hash first\n");
|
|
else
|
|
packet_log(" cipher first\n");
|
|
|
|
if (ctrl0 & SPU2_CHK_TAG)
|
|
packet_log(" check tag\n");
|
|
|
|
hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
|
|
hash_name = spu2_hash_type_name(hash_type);
|
|
packet_log(" Hash type: %s\n", hash_name);
|
|
|
|
if (hash_type != SPU2_HASH_TYPE_NONE) {
|
|
hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
|
|
hash_mode_name = spu2_hash_mode_name(hash_mode);
|
|
packet_log(" Hash mode: %s\n", hash_mode_name);
|
|
}
|
|
|
|
if (ctrl0 & SPU2_CIPH_PAD_EN) {
|
|
packet_log(" Cipher pad: %#2llx\n",
|
|
(ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
|
|
}
|
|
}
|
|
|
|
/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
|
|
static void spu2_dump_fmd_ctrl1(u64 ctrl1)
|
|
{
|
|
u8 hash_key_len;
|
|
u8 ciph_key_len;
|
|
u8 ret_iv_len;
|
|
u8 iv_offset;
|
|
u8 iv_len;
|
|
u8 hash_tag_len;
|
|
u8 ret_md;
|
|
|
|
packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
|
|
if (ctrl1 & SPU2_TAG_LOC)
|
|
packet_log(" Tag after payload\n");
|
|
|
|
packet_log(" Msg includes ");
|
|
if (ctrl1 & SPU2_HAS_FR_DATA)
|
|
packet_log("FD ");
|
|
if (ctrl1 & SPU2_HAS_AAD1)
|
|
packet_log("AAD1 ");
|
|
if (ctrl1 & SPU2_HAS_NAAD)
|
|
packet_log("NAAD ");
|
|
if (ctrl1 & SPU2_HAS_AAD2)
|
|
packet_log("AAD2 ");
|
|
if (ctrl1 & SPU2_HAS_ESN)
|
|
packet_log("ESN ");
|
|
packet_log("\n");
|
|
|
|
hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
|
|
packet_log(" Hash key len %u\n", hash_key_len);
|
|
|
|
ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
|
|
packet_log(" Cipher key len %u\n", ciph_key_len);
|
|
|
|
if (ctrl1 & SPU2_GENIV)
|
|
packet_log(" Generate IV\n");
|
|
|
|
if (ctrl1 & SPU2_HASH_IV)
|
|
packet_log(" IV included in hash\n");
|
|
|
|
if (ctrl1 & SPU2_RET_IV)
|
|
packet_log(" Return IV in output before payload\n");
|
|
|
|
ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
|
|
packet_log(" Length of returned IV %u bytes\n",
|
|
ret_iv_len ? ret_iv_len : 16);
|
|
|
|
iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
|
|
packet_log(" IV offset %u\n", iv_offset);
|
|
|
|
iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
|
|
packet_log(" Input IV len %u bytes\n", iv_len);
|
|
|
|
hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
|
|
packet_log(" Hash tag length %u bytes\n", hash_tag_len);
|
|
|
|
packet_log(" Return ");
|
|
ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
|
|
if (ret_md)
|
|
packet_log("FMD ");
|
|
if (ret_md == SPU2_RET_FMD_OMD)
|
|
packet_log("OMD ");
|
|
else if (ret_md == SPU2_RET_FMD_OMD_IV)
|
|
packet_log("OMD IV ");
|
|
if (ctrl1 & SPU2_RETURN_FD)
|
|
packet_log("FD ");
|
|
if (ctrl1 & SPU2_RETURN_AAD1)
|
|
packet_log("AAD1 ");
|
|
if (ctrl1 & SPU2_RETURN_NAAD)
|
|
packet_log("NAAD ");
|
|
if (ctrl1 & SPU2_RETURN_AAD2)
|
|
packet_log("AAD2 ");
|
|
if (ctrl1 & SPU2_RETURN_PAY)
|
|
packet_log("Payload");
|
|
packet_log("\n");
|
|
}
|
|
|
|
/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
|
|
static void spu2_dump_fmd_ctrl2(u64 ctrl2)
|
|
{
|
|
packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
|
|
|
|
packet_log(" AAD1 offset %llu length %llu bytes\n",
|
|
ctrl2 & SPU2_AAD1_OFFSET,
|
|
(ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
|
|
packet_log(" AAD2 offset %llu\n",
|
|
(ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
|
|
packet_log(" Payload offset %llu\n",
|
|
(ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
|
|
}
|
|
|
|
/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
|
|
static void spu2_dump_fmd_ctrl3(u64 ctrl3)
|
|
{
|
|
packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
|
|
|
|
packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
|
|
packet_log(" TLS length %llu bytes\n",
|
|
(ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
|
|
}
|
|
|
|
static void spu2_dump_fmd(struct SPU2_FMD *fmd)
|
|
{
|
|
spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
|
|
spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
|
|
spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
|
|
spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
|
|
}
|
|
|
|
static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
|
|
u16 hash_iv_len, u16 ciph_iv_len)
|
|
{
|
|
u8 *ptr = omd;
|
|
|
|
packet_log(" OMD:\n");
|
|
|
|
if (hash_key_len) {
|
|
packet_log(" Hash Key Length %u bytes\n", hash_key_len);
|
|
packet_dump(" KEY: ", ptr, hash_key_len);
|
|
ptr += hash_key_len;
|
|
}
|
|
|
|
if (ciph_key_len) {
|
|
packet_log(" Cipher Key Length %u bytes\n", ciph_key_len);
|
|
packet_dump(" KEY: ", ptr, ciph_key_len);
|
|
ptr += ciph_key_len;
|
|
}
|
|
|
|
if (hash_iv_len) {
|
|
packet_log(" Hash IV Length %u bytes\n", hash_iv_len);
|
|
packet_dump(" hash IV: ", ptr, hash_iv_len);
|
|
ptr += ciph_key_len;
|
|
}
|
|
|
|
if (ciph_iv_len) {
|
|
packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len);
|
|
packet_dump(" cipher IV: ", ptr, ciph_iv_len);
|
|
}
|
|
}
|
|
|
|
/* Dump a SPU2 header for debug */
|
|
void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
|
|
{
|
|
struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
|
|
u8 *omd;
|
|
u64 ctrl1;
|
|
u16 hash_key_len;
|
|
u16 ciph_key_len;
|
|
u16 hash_iv_len;
|
|
u16 ciph_iv_len;
|
|
u16 omd_len;
|
|
|
|
packet_log("\n");
|
|
packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
|
|
|
|
spu2_dump_fmd(fmd);
|
|
omd = (u8 *)(fmd + 1);
|
|
|
|
ctrl1 = le64_to_cpu(fmd->ctrl1);
|
|
hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
|
|
ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
|
|
hash_iv_len = 0;
|
|
ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
|
|
spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
|
|
ciph_iv_len);
|
|
|
|
/* Double check sanity */
|
|
omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
|
|
if (FMD_SIZE + omd_len != buf_len) {
|
|
packet_log
|
|
(" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
|
|
buf_len, FMD_SIZE + omd_len);
|
|
}
|
|
packet_log("\n");
|
|
}
|
|
|
|
/**
|
|
* spu2_fmd_init() - At setkey time, initialize the fixed meta data for
|
|
* subsequent skcipher requests for this context.
|
|
* @spu2_cipher_type: Cipher algorithm
|
|
* @spu2_mode: Cipher mode
|
|
* @cipher_key_len: Length of cipher key, in bytes
|
|
* @cipher_iv_len: Length of cipher initialization vector, in bytes
|
|
*
|
|
* Return: 0 (success)
|
|
*/
|
|
static int spu2_fmd_init(struct SPU2_FMD *fmd,
|
|
enum spu2_cipher_type spu2_type,
|
|
enum spu2_cipher_mode spu2_mode,
|
|
u32 cipher_key_len, u32 cipher_iv_len)
|
|
{
|
|
u64 ctrl0;
|
|
u64 ctrl1;
|
|
u64 ctrl2;
|
|
u64 ctrl3;
|
|
u32 aad1_offset;
|
|
u32 aad2_offset;
|
|
u16 aad1_len = 0;
|
|
u64 payload_offset;
|
|
|
|
ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
|
|
(spu2_mode << SPU2_CIPH_MODE_SHIFT);
|
|
|
|
ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
|
|
((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
|
|
((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
|
|
|
|
/*
|
|
* AAD1 offset is from start of FD. FD length is always 0 for this
|
|
* driver. So AAD1_offset is always 0.
|
|
*/
|
|
aad1_offset = 0;
|
|
aad2_offset = aad1_offset;
|
|
payload_offset = 0;
|
|
ctrl2 = aad1_offset |
|
|
(aad1_len << SPU2_AAD1_LEN_SHIFT) |
|
|
(aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
|
|
(payload_offset << SPU2_PL_OFFSET_SHIFT);
|
|
|
|
ctrl3 = 0;
|
|
|
|
fmd->ctrl0 = cpu_to_le64(ctrl0);
|
|
fmd->ctrl1 = cpu_to_le64(ctrl1);
|
|
fmd->ctrl2 = cpu_to_le64(ctrl2);
|
|
fmd->ctrl3 = cpu_to_le64(ctrl3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
|
|
* SPU request packet.
|
|
* @fmd: Start of FMD field to be written
|
|
* @is_inbound: true if decrypting. false if encrypting.
|
|
* @authFirst: true if alg authenticates before encrypting
|
|
* @protocol: protocol selector
|
|
* @cipher_type: cipher algorithm
|
|
* @cipher_mode: cipher mode
|
|
* @auth_type: authentication type
|
|
* @auth_mode: authentication mode
|
|
*/
|
|
static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
|
|
bool is_inbound, bool auth_first,
|
|
enum spu2_proto_sel protocol,
|
|
enum spu2_cipher_type cipher_type,
|
|
enum spu2_cipher_mode cipher_mode,
|
|
enum spu2_hash_type auth_type,
|
|
enum spu2_hash_mode auth_mode)
|
|
{
|
|
u64 ctrl0 = 0;
|
|
|
|
if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
|
|
ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
|
|
|
|
ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
|
|
((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
|
|
|
|
if (protocol)
|
|
ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
|
|
|
|
if (auth_first)
|
|
ctrl0 |= SPU2_HASH_FIRST;
|
|
|
|
if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
|
|
ctrl0 |= SPU2_CHK_TAG;
|
|
|
|
ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
|
|
((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
|
|
|
|
fmd->ctrl0 = cpu_to_le64(ctrl0);
|
|
}
|
|
|
|
/**
|
|
* spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
|
|
* SPU request packet.
|
|
* @fmd: Start of FMD field to be written
|
|
* @assoc_size: Length of additional associated data, in bytes
|
|
* @auth_key_len: Length of authentication key, in bytes
|
|
* @cipher_key_len: Length of cipher key, in bytes
|
|
* @gen_iv: If true, hw generates IV and returns in response
|
|
* @hash_iv: IV participates in hash. Used for IPSEC and TLS.
|
|
* @return_iv: Return IV in output packet before payload
|
|
* @ret_iv_len: Length of IV returned from SPU, in bytes
|
|
* @ret_iv_offset: Offset into full IV of start of returned IV
|
|
* @cipher_iv_len: Length of input cipher IV, in bytes
|
|
* @digest_size: Length of digest (aka, hash tag or ICV), in bytes
|
|
* @return_payload: Return payload in SPU response
|
|
* @return_md : return metadata in SPU response
|
|
*
|
|
* Packet can have AAD2 w/o AAD1. For algorithms currently supported,
|
|
* associated data goes in AAD2.
|
|
*/
|
|
static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
|
|
u64 assoc_size,
|
|
u64 auth_key_len, u64 cipher_key_len,
|
|
bool gen_iv, bool hash_iv, bool return_iv,
|
|
u64 ret_iv_len, u64 ret_iv_offset,
|
|
u64 cipher_iv_len, u64 digest_size,
|
|
bool return_payload, bool return_md)
|
|
{
|
|
u64 ctrl1 = 0;
|
|
|
|
if (is_inbound && digest_size)
|
|
ctrl1 |= SPU2_TAG_LOC;
|
|
|
|
if (assoc_size) {
|
|
ctrl1 |= SPU2_HAS_AAD2;
|
|
ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */
|
|
}
|
|
|
|
if (auth_key_len)
|
|
ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
|
|
SPU2_HASH_KEY_LEN);
|
|
|
|
if (cipher_key_len)
|
|
ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
|
|
SPU2_CIPH_KEY_LEN);
|
|
|
|
if (gen_iv)
|
|
ctrl1 |= SPU2_GENIV;
|
|
|
|
if (hash_iv)
|
|
ctrl1 |= SPU2_HASH_IV;
|
|
|
|
if (return_iv) {
|
|
ctrl1 |= SPU2_RET_IV;
|
|
ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
|
|
ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
|
|
}
|
|
|
|
ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
|
|
|
|
if (digest_size)
|
|
ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
|
|
SPU2_HASH_TAG_LEN);
|
|
|
|
/* Let's ask for the output pkt to include FMD, but don't need to
|
|
* get keys and IVs back in OMD.
|
|
*/
|
|
if (return_md)
|
|
ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
|
|
else
|
|
ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
|
|
|
|
/* Crypto API does not get assoc data back. So no need for AAD2. */
|
|
|
|
if (return_payload)
|
|
ctrl1 |= SPU2_RETURN_PAY;
|
|
|
|
fmd->ctrl1 = cpu_to_le64(ctrl1);
|
|
}
|
|
|
|
/**
|
|
* spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
|
|
* SPU2 header.
|
|
* @fmd: Start of FMD field to be written
|
|
* @cipher_offset: Number of bytes from Start of Packet (end of FD field) where
|
|
* data to be encrypted or decrypted begins
|
|
* @auth_key_len: Length of authentication key, in bytes
|
|
* @auth_iv_len: Length of authentication initialization vector, in bytes
|
|
* @cipher_key_len: Length of cipher key, in bytes
|
|
* @cipher_iv_len: Length of cipher IV, in bytes
|
|
*/
|
|
static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
|
|
u64 auth_key_len, u64 auth_iv_len,
|
|
u64 cipher_key_len, u64 cipher_iv_len)
|
|
{
|
|
u64 ctrl2;
|
|
u64 aad1_offset;
|
|
u64 aad2_offset;
|
|
u16 aad1_len = 0;
|
|
u64 payload_offset;
|
|
|
|
/* AAD1 offset is from start of FD. FD length always 0. */
|
|
aad1_offset = 0;
|
|
|
|
aad2_offset = aad1_offset;
|
|
payload_offset = cipher_offset;
|
|
ctrl2 = aad1_offset |
|
|
(aad1_len << SPU2_AAD1_LEN_SHIFT) |
|
|
(aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
|
|
(payload_offset << SPU2_PL_OFFSET_SHIFT);
|
|
|
|
fmd->ctrl2 = cpu_to_le64(ctrl2);
|
|
}
|
|
|
|
/**
|
|
* spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
|
|
* @fmd: Fixed meta data. First field in SPU2 msg header.
|
|
* @payload_len: Length of payload, in bytes
|
|
*/
|
|
static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
|
|
{
|
|
u64 ctrl3;
|
|
|
|
ctrl3 = payload_len & SPU2_PL_LEN;
|
|
|
|
fmd->ctrl3 = cpu_to_le64(ctrl3);
|
|
}
|
|
|
|
/**
|
|
* spu2_ctx_max_payload() - Determine the maximum length of the payload for a
|
|
* SPU message for a given cipher and hash alg context.
|
|
* @cipher_alg: The cipher algorithm
|
|
* @cipher_mode: The cipher mode
|
|
* @blocksize: The size of a block of data for this algo
|
|
*
|
|
* For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
|
|
* FMD and just keeps computing until it receives a DMA descriptor with the EOF
|
|
* flag set. So we consider the max payload to be infinite. AES CCM is an
|
|
* exception.
|
|
*
|
|
* Return: Max payload length in bytes
|
|
*/
|
|
u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
|
|
enum spu_cipher_mode cipher_mode,
|
|
unsigned int blocksize)
|
|
{
|
|
if ((cipher_alg == CIPHER_ALG_AES) &&
|
|
(cipher_mode == CIPHER_MODE_CCM)) {
|
|
u32 excess = SPU2_MAX_PAYLOAD % blocksize;
|
|
|
|
return SPU2_MAX_PAYLOAD - excess;
|
|
} else {
|
|
return SPU_MAX_PAYLOAD_INF;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spu_payload_length() - Given a SPU2 message header, extract the payload
|
|
* length.
|
|
* @spu_hdr: Start of SPU message header (FMD)
|
|
*
|
|
* Return: payload length, in bytes
|
|
*/
|
|
u32 spu2_payload_length(u8 *spu_hdr)
|
|
{
|
|
struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
|
|
u32 pl_len;
|
|
u64 ctrl3;
|
|
|
|
ctrl3 = le64_to_cpu(fmd->ctrl3);
|
|
pl_len = ctrl3 & SPU2_PL_LEN;
|
|
|
|
return pl_len;
|
|
}
|
|
|
|
/**
|
|
* spu_response_hdr_len() - Determine the expected length of a SPU response
|
|
* header.
|
|
* @auth_key_len: Length of authentication key, in bytes
|
|
* @enc_key_len: Length of encryption key, in bytes
|
|
*
|
|
* For SPU2, includes just FMD. OMD is never requested.
|
|
*
|
|
* Return: Length of FMD, in bytes
|
|
*/
|
|
u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
|
|
{
|
|
return FMD_SIZE;
|
|
}
|
|
|
|
/**
|
|
* spu_hash_pad_len() - Calculate the length of hash padding required to extend
|
|
* data to a full block size.
|
|
* @hash_alg: hash algorithm
|
|
* @hash_mode: hash mode
|
|
* @chunksize: length of data, in bytes
|
|
* @hash_block_size: size of a hash block, in bytes
|
|
*
|
|
* SPU2 hardware does all hash padding
|
|
*
|
|
* Return: length of hash pad in bytes
|
|
*/
|
|
u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
|
|
u32 chunksize, u16 hash_block_size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_gcm_ccm_padlen() - Determine the length of GCM/CCM padding for either
|
|
* the AAD field or the data.
|
|
*
|
|
* Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
|
|
*/
|
|
u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
|
|
unsigned int data_size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
|
|
* associated data in a SPU2 output packet.
|
|
* @cipher_mode: cipher mode
|
|
* @assoc_len: length of additional associated data, in bytes
|
|
* @iv_len: length of initialization vector, in bytes
|
|
* @is_encrypt: true if encrypting. false if decrypt.
|
|
*
|
|
* Return: Length of buffer to catch associated data in response
|
|
*/
|
|
u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
|
|
unsigned int assoc_len, unsigned int iv_len,
|
|
bool is_encrypt)
|
|
{
|
|
u32 resp_len = assoc_len;
|
|
|
|
if (is_encrypt)
|
|
/* gcm aes esp has to write 8-byte IV in response */
|
|
resp_len += iv_len;
|
|
return resp_len;
|
|
}
|
|
|
|
/*
|
|
* spu_aead_ivlen() - Calculate the length of the AEAD IV to be included
|
|
* in a SPU request after the AAD and before the payload.
|
|
* @cipher_mode: cipher mode
|
|
* @iv_ctr_len: initialization vector length in bytes
|
|
*
|
|
* For SPU2, AEAD IV is included in OMD and does not need to be repeated
|
|
* prior to the payload.
|
|
*
|
|
* Return: Length of AEAD IV in bytes
|
|
*/
|
|
u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_hash_type() - Determine the type of hash operation.
|
|
* @src_sent: The number of bytes in the current request that have already
|
|
* been sent to the SPU to be hashed.
|
|
*
|
|
* SPU2 always does a FULL hash operation
|
|
*/
|
|
enum hash_type spu2_hash_type(u32 src_sent)
|
|
{
|
|
return HASH_TYPE_FULL;
|
|
}
|
|
|
|
/**
|
|
* spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
|
|
* return.
|
|
* alg_digest_size: Number of bytes in the final digest for the given algo
|
|
* alg: The hash algorithm
|
|
* htype: Type of hash operation (init, update, full, etc)
|
|
*
|
|
*/
|
|
u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
|
|
enum hash_type htype)
|
|
{
|
|
return alg_digest_size;
|
|
}
|
|
|
|
/**
|
|
* spu_create_request() - Build a SPU2 request message header, includint FMD and
|
|
* OMD.
|
|
* @spu_hdr: Start of buffer where SPU request header is to be written
|
|
* @req_opts: SPU request message options
|
|
* @cipher_parms: Parameters related to cipher algorithm
|
|
* @hash_parms: Parameters related to hash algorithm
|
|
* @aead_parms: Parameters related to AEAD operation
|
|
* @data_size: Length of data to be encrypted or authenticated. If AEAD, does
|
|
* not include length of AAD.
|
|
*
|
|
* Construct the message starting at spu_hdr. Caller should allocate this buffer
|
|
* in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
|
|
*
|
|
* Return: the length of the SPU header in bytes. 0 if an error occurs.
|
|
*/
|
|
u32 spu2_create_request(u8 *spu_hdr,
|
|
struct spu_request_opts *req_opts,
|
|
struct spu_cipher_parms *cipher_parms,
|
|
struct spu_hash_parms *hash_parms,
|
|
struct spu_aead_parms *aead_parms,
|
|
unsigned int data_size)
|
|
{
|
|
struct SPU2_FMD *fmd;
|
|
u8 *ptr;
|
|
unsigned int buf_len;
|
|
int err;
|
|
enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
|
|
enum spu2_cipher_mode spu2_ciph_mode;
|
|
enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
|
|
enum spu2_hash_mode spu2_auth_mode;
|
|
bool return_md = true;
|
|
enum spu2_proto_sel proto = SPU2_PROTO_RESV;
|
|
|
|
/* size of the payload */
|
|
unsigned int payload_len =
|
|
hash_parms->prebuf_len + data_size + hash_parms->pad_len -
|
|
((req_opts->is_aead && req_opts->is_inbound) ?
|
|
hash_parms->digestsize : 0);
|
|
|
|
/* offset of prebuf or data from start of AAD2 */
|
|
unsigned int cipher_offset = aead_parms->assoc_size +
|
|
aead_parms->aad_pad_len + aead_parms->iv_len;
|
|
|
|
#ifdef DEBUG
|
|
/* total size of the data following OMD (without STAT word padding) */
|
|
unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
|
|
aead_parms->iv_len,
|
|
hash_parms->prebuf_len,
|
|
data_size,
|
|
aead_parms->aad_pad_len,
|
|
aead_parms->data_pad_len,
|
|
hash_parms->pad_len);
|
|
#endif
|
|
unsigned int assoc_size = aead_parms->assoc_size;
|
|
|
|
if (req_opts->is_aead &&
|
|
(cipher_parms->alg == CIPHER_ALG_AES) &&
|
|
(cipher_parms->mode == CIPHER_MODE_GCM))
|
|
/*
|
|
* On SPU 2, aes gcm cipher first on encrypt, auth first on
|
|
* decrypt
|
|
*/
|
|
req_opts->auth_first = req_opts->is_inbound;
|
|
|
|
/* and do opposite for ccm (auth 1st on encrypt) */
|
|
if (req_opts->is_aead &&
|
|
(cipher_parms->alg == CIPHER_ALG_AES) &&
|
|
(cipher_parms->mode == CIPHER_MODE_CCM))
|
|
req_opts->auth_first = !req_opts->is_inbound;
|
|
|
|
flow_log("%s()\n", __func__);
|
|
flow_log(" in:%u authFirst:%u\n",
|
|
req_opts->is_inbound, req_opts->auth_first);
|
|
flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
|
|
cipher_parms->mode, cipher_parms->type);
|
|
flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
|
|
flow_log(" key: %d\n", cipher_parms->key_len);
|
|
flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
|
|
flow_log(" iv: %d\n", cipher_parms->iv_len);
|
|
flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
|
|
flow_log(" auth alg:%u mode:%u type %u\n",
|
|
hash_parms->alg, hash_parms->mode, hash_parms->type);
|
|
flow_log(" digestsize: %u\n", hash_parms->digestsize);
|
|
flow_log(" authkey: %d\n", hash_parms->key_len);
|
|
flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len);
|
|
flow_log(" assoc_size:%u\n", assoc_size);
|
|
flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len);
|
|
flow_log(" data_size:%u\n", data_size);
|
|
flow_log(" hash_pad_len:%u\n", hash_parms->pad_len);
|
|
flow_log(" real_db_size:%u\n", real_db_size);
|
|
flow_log(" cipher_offset:%u payload_len:%u\n",
|
|
cipher_offset, payload_len);
|
|
flow_log(" aead_iv: %u\n", aead_parms->iv_len);
|
|
|
|
/* Convert to spu2 values for cipher alg, hash alg */
|
|
err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
|
|
cipher_parms->type,
|
|
&spu2_ciph_type, &spu2_ciph_mode);
|
|
|
|
/* If we are doing GCM hashing only - either via rfc4543 transform
|
|
* or because we happen to do GCM with AAD only and no payload - we
|
|
* need to configure hardware to use hash key rather than cipher key
|
|
* and put data into payload. This is because unlike SPU-M, running
|
|
* GCM cipher with 0 size payload is not permitted.
|
|
*/
|
|
if ((req_opts->is_rfc4543) ||
|
|
((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
|
|
(payload_len == 0))) {
|
|
/* Use hashing (only) and set up hash key */
|
|
spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
|
|
hash_parms->key_len = cipher_parms->key_len;
|
|
memcpy(hash_parms->key_buf, cipher_parms->key_buf,
|
|
cipher_parms->key_len);
|
|
cipher_parms->key_len = 0;
|
|
|
|
if (req_opts->is_rfc4543)
|
|
payload_len += assoc_size;
|
|
else
|
|
payload_len = assoc_size;
|
|
cipher_offset = 0;
|
|
assoc_size = 0;
|
|
}
|
|
|
|
if (err)
|
|
return 0;
|
|
|
|
flow_log("spu2 cipher type %s, cipher mode %s\n",
|
|
spu2_ciph_type_name(spu2_ciph_type),
|
|
spu2_ciph_mode_name(spu2_ciph_mode));
|
|
|
|
err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
|
|
hash_parms->type,
|
|
cipher_parms->type,
|
|
&spu2_auth_type, &spu2_auth_mode);
|
|
if (err)
|
|
return 0;
|
|
|
|
flow_log("spu2 hash type %s, hash mode %s\n",
|
|
spu2_hash_type_name(spu2_auth_type),
|
|
spu2_hash_mode_name(spu2_auth_mode));
|
|
|
|
fmd = (struct SPU2_FMD *)spu_hdr;
|
|
|
|
spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
|
|
proto, spu2_ciph_type, spu2_ciph_mode,
|
|
spu2_auth_type, spu2_auth_mode);
|
|
|
|
spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
|
|
hash_parms->key_len, cipher_parms->key_len,
|
|
false, false,
|
|
aead_parms->return_iv, aead_parms->ret_iv_len,
|
|
aead_parms->ret_iv_off,
|
|
cipher_parms->iv_len, hash_parms->digestsize,
|
|
!req_opts->bd_suppress, return_md);
|
|
|
|
spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
|
|
cipher_parms->key_len, cipher_parms->iv_len);
|
|
|
|
spu2_fmd_ctrl3_write(fmd, payload_len);
|
|
|
|
ptr = (u8 *)(fmd + 1);
|
|
buf_len = sizeof(struct SPU2_FMD);
|
|
|
|
/* Write OMD */
|
|
if (hash_parms->key_len) {
|
|
memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
|
|
ptr += hash_parms->key_len;
|
|
buf_len += hash_parms->key_len;
|
|
}
|
|
if (cipher_parms->key_len) {
|
|
memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
|
|
ptr += cipher_parms->key_len;
|
|
buf_len += cipher_parms->key_len;
|
|
}
|
|
if (cipher_parms->iv_len) {
|
|
memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
|
|
ptr += cipher_parms->iv_len;
|
|
buf_len += cipher_parms->iv_len;
|
|
}
|
|
|
|
packet_dump(" SPU request header: ", spu_hdr, buf_len);
|
|
|
|
return buf_len;
|
|
}
|
|
|
|
/**
|
|
* spu_cipher_req_init() - Build an skcipher SPU2 request message header,
|
|
* including FMD and OMD.
|
|
* @spu_hdr: Location of start of SPU request (FMD field)
|
|
* @cipher_parms: Parameters describing cipher request
|
|
*
|
|
* Called at setkey time to initialize a msg header that can be reused for all
|
|
* subsequent skcipher requests. Construct the message starting at spu_hdr.
|
|
* Caller should allocate this buffer in DMA-able memory at least
|
|
* SPU_HEADER_ALLOC_LEN bytes long.
|
|
*
|
|
* Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
|
|
* error occurs.
|
|
*/
|
|
u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
|
|
{
|
|
struct SPU2_FMD *fmd;
|
|
u8 *omd;
|
|
enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
|
|
enum spu2_cipher_mode spu2_mode;
|
|
int err;
|
|
|
|
flow_log("%s()\n", __func__);
|
|
flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
|
|
cipher_parms->mode, cipher_parms->type);
|
|
flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len);
|
|
flow_log(" key: %d\n", cipher_parms->key_len);
|
|
flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len);
|
|
|
|
/* Convert to spu2 values */
|
|
err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
|
|
cipher_parms->type, &spu2_type, &spu2_mode);
|
|
if (err)
|
|
return 0;
|
|
|
|
flow_log("spu2 cipher type %s, cipher mode %s\n",
|
|
spu2_ciph_type_name(spu2_type),
|
|
spu2_ciph_mode_name(spu2_mode));
|
|
|
|
/* Construct the FMD header */
|
|
fmd = (struct SPU2_FMD *)spu_hdr;
|
|
err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
|
|
cipher_parms->iv_len);
|
|
if (err)
|
|
return 0;
|
|
|
|
/* Write cipher key to OMD */
|
|
omd = (u8 *)(fmd + 1);
|
|
if (cipher_parms->key_buf && cipher_parms->key_len)
|
|
memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
|
|
|
|
packet_dump(" SPU request header: ", spu_hdr,
|
|
FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
|
|
|
|
return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
|
|
}
|
|
|
|
/**
|
|
* spu_cipher_req_finish() - Finish building a SPU request message header for a
|
|
* block cipher request.
|
|
* @spu_hdr: Start of the request message header (MH field)
|
|
* @spu_req_hdr_len: Length in bytes of the SPU request header
|
|
* @isInbound: 0 encrypt, 1 decrypt
|
|
* @cipher_parms: Parameters describing cipher operation to be performed
|
|
* @update_key: If true, rewrite the cipher key in SCTX
|
|
* @data_size: Length of the data in the BD field
|
|
*
|
|
* Assumes much of the header was already filled in at setkey() time in
|
|
* spu_cipher_req_init().
|
|
* spu_cipher_req_init() fills in the encryption key. For RC4, when submitting a
|
|
* request for a non-first chunk, we use the 260-byte SUPDT field from the
|
|
* previous response as the key. update_key is true for this case. Unused in all
|
|
* other cases.
|
|
*/
|
|
void spu2_cipher_req_finish(u8 *spu_hdr,
|
|
u16 spu_req_hdr_len,
|
|
unsigned int is_inbound,
|
|
struct spu_cipher_parms *cipher_parms,
|
|
bool update_key,
|
|
unsigned int data_size)
|
|
{
|
|
struct SPU2_FMD *fmd;
|
|
u8 *omd; /* start of optional metadata */
|
|
u64 ctrl0;
|
|
u64 ctrl3;
|
|
|
|
flow_log("%s()\n", __func__);
|
|
flow_log(" in: %u\n", is_inbound);
|
|
flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
|
|
cipher_parms->type);
|
|
if (update_key) {
|
|
flow_log(" cipher key len: %u\n", cipher_parms->key_len);
|
|
flow_dump(" key: ", cipher_parms->key_buf,
|
|
cipher_parms->key_len);
|
|
}
|
|
flow_log(" iv len: %d\n", cipher_parms->iv_len);
|
|
flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
|
|
flow_log(" data_size: %u\n", data_size);
|
|
|
|
fmd = (struct SPU2_FMD *)spu_hdr;
|
|
omd = (u8 *)(fmd + 1);
|
|
|
|
/*
|
|
* FMD ctrl0 was initialized at setkey time. update it to indicate
|
|
* whether we are encrypting or decrypting.
|
|
*/
|
|
ctrl0 = le64_to_cpu(fmd->ctrl0);
|
|
if (is_inbound)
|
|
ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */
|
|
else
|
|
ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */
|
|
fmd->ctrl0 = cpu_to_le64(ctrl0);
|
|
|
|
if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
|
|
/* cipher iv provided so put it in here */
|
|
memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
|
|
cipher_parms->iv_len);
|
|
}
|
|
|
|
ctrl3 = le64_to_cpu(fmd->ctrl3);
|
|
data_size &= SPU2_PL_LEN;
|
|
ctrl3 |= data_size;
|
|
fmd->ctrl3 = cpu_to_le64(ctrl3);
|
|
|
|
packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len);
|
|
}
|
|
|
|
/**
|
|
* spu_request_pad() - Create pad bytes at the end of the data.
|
|
* @pad_start: Start of buffer where pad bytes are to be written
|
|
* @gcm_padding: Length of GCM padding, in bytes
|
|
* @hash_pad_len: Number of bytes of padding extend data to full block
|
|
* @auth_alg: Authentication algorithm
|
|
* @auth_mode: Authentication mode
|
|
* @total_sent: Length inserted at end of hash pad
|
|
* @status_padding: Number of bytes of padding to align STATUS word
|
|
*
|
|
* There may be three forms of pad:
|
|
* 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
|
|
* 2. hash pad - pad to a block length, with 0x80 data terminator and
|
|
* size at the end
|
|
* 3. STAT pad - to ensure the STAT field is 4-byte aligned
|
|
*/
|
|
void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
|
|
enum hash_alg auth_alg, enum hash_mode auth_mode,
|
|
unsigned int total_sent, u32 status_padding)
|
|
{
|
|
u8 *ptr = pad_start;
|
|
|
|
/* fix data alignent for GCM */
|
|
if (gcm_padding > 0) {
|
|
flow_log(" GCM: padding to 16 byte alignment: %u bytes\n",
|
|
gcm_padding);
|
|
memset(ptr, 0, gcm_padding);
|
|
ptr += gcm_padding;
|
|
}
|
|
|
|
if (hash_pad_len > 0) {
|
|
/* clear the padding section */
|
|
memset(ptr, 0, hash_pad_len);
|
|
|
|
/* terminate the data */
|
|
*ptr = 0x80;
|
|
ptr += (hash_pad_len - sizeof(u64));
|
|
|
|
/* add the size at the end as required per alg */
|
|
if (auth_alg == HASH_ALG_MD5)
|
|
*(u64 *)ptr = cpu_to_le64((u64)total_sent * 8);
|
|
else /* SHA1, SHA2-224, SHA2-256 */
|
|
*(u64 *)ptr = cpu_to_be64((u64)total_sent * 8);
|
|
ptr += sizeof(u64);
|
|
}
|
|
|
|
/* pad to a 4byte alignment for STAT */
|
|
if (status_padding > 0) {
|
|
flow_log(" STAT: padding to 4 byte alignment: %u bytes\n",
|
|
status_padding);
|
|
|
|
memset(ptr, 0, status_padding);
|
|
ptr += status_padding;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
|
|
* tweak field in the packet payload (it uses IV instead)
|
|
*
|
|
* Return: 0
|
|
*/
|
|
u8 spu2_xts_tweak_in_payload(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spu2_tx_status_len() - Return the length of the STATUS field in a SPU
|
|
* response message.
|
|
*
|
|
* Return: Length of STATUS field in bytes.
|
|
*/
|
|
u8 spu2_tx_status_len(void)
|
|
{
|
|
return SPU2_TX_STATUS_LEN;
|
|
}
|
|
|
|
/**
|
|
* spu2_rx_status_len() - Return the length of the STATUS field in a SPU
|
|
* response message.
|
|
*
|
|
* Return: Length of STATUS field in bytes.
|
|
*/
|
|
u8 spu2_rx_status_len(void)
|
|
{
|
|
return SPU2_RX_STATUS_LEN;
|
|
}
|
|
|
|
/**
|
|
* spu_status_process() - Process the status from a SPU response message.
|
|
* @statp: start of STATUS word
|
|
*
|
|
* Return: 0 - if status is good and response should be processed
|
|
* !0 - status indicates an error and response is invalid
|
|
*/
|
|
int spu2_status_process(u8 *statp)
|
|
{
|
|
/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
|
|
u16 status = le16_to_cpu(*(__le16 *)statp);
|
|
|
|
if (status == 0)
|
|
return 0;
|
|
|
|
flow_log("rx status is %#x\n", status);
|
|
if (status == SPU2_INVALID_ICV)
|
|
return SPU_INVALID_ICV;
|
|
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/**
|
|
* spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
|
|
*
|
|
* @digestsize: Digest size of this request
|
|
* @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len
|
|
* @assoclen: Length of AAD data
|
|
* @chunksize: length of input data to be sent in this req
|
|
* @is_encrypt: true if this is an output/encrypt operation
|
|
* @is_esp: true if this is an ESP / RFC4309 operation
|
|
*
|
|
*/
|
|
void spu2_ccm_update_iv(unsigned int digestsize,
|
|
struct spu_cipher_parms *cipher_parms,
|
|
unsigned int assoclen, unsigned int chunksize,
|
|
bool is_encrypt, bool is_esp)
|
|
{
|
|
int L; /* size of length field, in bytes */
|
|
|
|
/*
|
|
* In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
|
|
* testmgr contains (L-1) in bottom 3 bits of first byte,
|
|
* per RFC 3610.
|
|
*/
|
|
if (is_esp)
|
|
L = CCM_ESP_L_VALUE;
|
|
else
|
|
L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
|
|
CCM_B0_L_PRIME_SHIFT) + 1;
|
|
|
|
/* SPU2 doesn't want these length bytes nor the first byte... */
|
|
cipher_parms->iv_len -= (1 + L);
|
|
memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
|
|
cipher_parms->iv_len);
|
|
}
|
|
|
|
/**
|
|
* spu2_wordalign_padlen() - SPU2 does not require padding.
|
|
* @data_size: length of data field in bytes
|
|
*
|
|
* Return: length of status field padding, in bytes (always 0 on SPU2)
|
|
*/
|
|
u32 spu2_wordalign_padlen(u32 data_size)
|
|
{
|
|
return 0;
|
|
}
|