2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/mm/sparse-vmemmap.c
Mike Rapoport e31cf2f4ca mm: don't include asm/pgtable.h if linux/mm.h is already included
Patch series "mm: consolidate definitions of page table accessors", v2.

The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once.  For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.

Most of these definitions are actually identical and typically it boils
down to, e.g.

static inline unsigned long pmd_index(unsigned long address)
{
        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}

static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
        return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}

These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.

For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.

These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.

This patch (of 12):

The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g.  pte_alloc() and
pmd_alloc().  So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.

The include statements in such cases are remove with a simple loop:

	for f in $(git grep -l "include <linux/mm.h>") ; do
		sed -i -e '/include <asm\/pgtable.h>/ d' $f
	done

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00

270 lines
6.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Virtual Memory Map support
*
* (C) 2007 sgi. Christoph Lameter.
*
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
* virt_to_page, page_address() to be implemented as a base offset
* calculation without memory access.
*
* However, virtual mappings need a page table and TLBs. Many Linux
* architectures already map their physical space using 1-1 mappings
* via TLBs. For those arches the virtual memory map is essentially
* for free if we use the same page size as the 1-1 mappings. In that
* case the overhead consists of a few additional pages that are
* allocated to create a view of memory for vmemmap.
*
* The architecture is expected to provide a vmemmap_populate() function
* to instantiate the mapping.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/memremap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <asm/dma.h>
#include <asm/pgalloc.h>
/*
* Allocate a block of memory to be used to back the virtual memory map
* or to back the page tables that are used to create the mapping.
* Uses the main allocators if they are available, else bootmem.
*/
static void * __ref __earlyonly_bootmem_alloc(int node,
unsigned long size,
unsigned long align,
unsigned long goal)
{
return memblock_alloc_try_nid_raw(size, align, goal,
MEMBLOCK_ALLOC_ACCESSIBLE, node);
}
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
/* If the main allocator is up use that, fallback to bootmem. */
if (slab_is_available()) {
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
int order = get_order(size);
static bool warned;
struct page *page;
page = alloc_pages_node(node, gfp_mask, order);
if (page)
return page_address(page);
if (!warned) {
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
"vmemmap alloc failure: order:%u", order);
warned = true;
}
return NULL;
} else
return __earlyonly_bootmem_alloc(node, size, size,
__pa(MAX_DMA_ADDRESS));
}
/* need to make sure size is all the same during early stage */
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
{
void *ptr = sparse_buffer_alloc(size);
if (!ptr)
ptr = vmemmap_alloc_block(size, node);
return ptr;
}
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
{
return altmap->base_pfn + altmap->reserve + altmap->alloc
+ altmap->align;
}
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
{
unsigned long allocated = altmap->alloc + altmap->align;
if (altmap->free > allocated)
return altmap->free - allocated;
return 0;
}
/**
* altmap_alloc_block_buf - allocate pages from the device page map
* @altmap: device page map
* @size: size (in bytes) of the allocation
*
* Allocations are aligned to the size of the request.
*/
void * __meminit altmap_alloc_block_buf(unsigned long size,
struct vmem_altmap *altmap)
{
unsigned long pfn, nr_pfns, nr_align;
if (size & ~PAGE_MASK) {
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
__func__, size);
return NULL;
}
pfn = vmem_altmap_next_pfn(altmap);
nr_pfns = size >> PAGE_SHIFT;
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
nr_align = ALIGN(pfn, nr_align) - pfn;
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
return NULL;
altmap->alloc += nr_pfns;
altmap->align += nr_align;
pfn += nr_align;
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
return __va(__pfn_to_phys(pfn));
}
void __meminit vmemmap_verify(pte_t *pte, int node,
unsigned long start, unsigned long end)
{
unsigned long pfn = pte_pfn(*pte);
int actual_node = early_pfn_to_nid(pfn);
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
pr_warn("[%lx-%lx] potential offnode page_structs\n",
start, end - 1);
}
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) {
pte_t entry;
void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
if (!p)
return NULL;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
}
return pte;
}
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
{
void *p = vmemmap_alloc_block(size, node);
if (!p)
return NULL;
memset(p, 0, size);
return p;
}
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
pmd_t *pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pmd_populate_kernel(&init_mm, pmd, p);
}
return pmd;
}
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
{
pud_t *pud = pud_offset(p4d, addr);
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pud_populate(&init_mm, pud, p);
}
return pud;
}
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
{
p4d_t *p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
p4d_populate(&init_mm, p4d, p);
}
return p4d;
}
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
pgd_t *pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pgd_populate(&init_mm, pgd, p);
}
return pgd;
}
int __meminit vmemmap_populate_basepages(unsigned long start,
unsigned long end, int node)
{
unsigned long addr = start;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
for (; addr < end; addr += PAGE_SIZE) {
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
p4d = vmemmap_p4d_populate(pgd, addr, node);
if (!p4d)
return -ENOMEM;
pud = vmemmap_pud_populate(p4d, addr, node);
if (!pud)
return -ENOMEM;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return -ENOMEM;
pte = vmemmap_pte_populate(pmd, addr, node);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
}
return 0;
}
struct page * __meminit __populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
unsigned long start;
unsigned long end;
/*
* The minimum granularity of memmap extensions is
* PAGES_PER_SUBSECTION as allocations are tracked in the
* 'subsection_map' bitmap of the section.
*/
end = ALIGN(pfn + nr_pages, PAGES_PER_SUBSECTION);
pfn &= PAGE_SUBSECTION_MASK;
nr_pages = end - pfn;
start = (unsigned long) pfn_to_page(pfn);
end = start + nr_pages * sizeof(struct page);
if (vmemmap_populate(start, end, nid, altmap))
return NULL;
return pfn_to_page(pfn);
}