2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/ras/cec.c
Valdis Klētnieks 0a54b809a3 RAS: Fix prototype warnings
When building with C=2 and/or W=1, legitimate warnings are issued about
missing prototypes:

    CHECK   drivers/ras/debugfs.c
  drivers/ras/debugfs.c:4:15: warning: symbol 'ras_debugfs_dir' was not declared. Should it be static?
  drivers/ras/debugfs.c:8:5: warning: symbol 'ras_userspace_consumers' was not declared. Should it be static?
  drivers/ras/debugfs.c:38:12: warning: symbol 'ras_add_daemon_trace' was not declared. Should it be static?
  drivers/ras/debugfs.c:54:13: warning: symbol 'ras_debugfs_init' was not declared. Should it be static?
    CC      drivers/ras/debugfs.o
  drivers/ras/debugfs.c:8:5: warning: no previous prototype for 'ras_userspace_consumers' [-Wmissing-prototypes]
      8 | int ras_userspace_consumers(void)
        |     ^~~~~~~~~~~~~~~~~~~~~~~
  drivers/ras/debugfs.c:38:12: warning: no previous prototype for 'ras_add_daemon_trace' [-Wmissing-prototypes]
     38 | int __init ras_add_daemon_trace(void)
        |            ^~~~~~~~~~~~~~~~~~~~
  drivers/ras/debugfs.c:54:13: warning: no previous prototype for 'ras_debugfs_init' [-Wmissing-prototypes]
     54 | void __init ras_debugfs_init(void)
        |             ^~~~~~~~~~~~~~~~

Provide the proper includes.

 [ bp: Take care of the same warnings for cec.c too. ]

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac@vger.kernel.org
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/7168.1565218769@turing-police
2019-08-08 17:39:57 +02:00

567 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs.
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/ras.h>
#include <linux/kernel.h>
#include <linux/workqueue.h>
#include <asm/mce.h>
#include "debugfs.h"
/*
* RAS Correctable Errors Collector
*
* This is a simple gadget which collects correctable errors and counts their
* occurrence per physical page address.
*
* We've opted for possibly the simplest data structure to collect those - an
* array of the size of a memory page. It stores 512 u64's with the following
* structure:
*
* [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
*
* The generation in the two highest order bits is two bits which are set to 11b
* on every insertion. During the course of each entry's existence, the
* generation field gets decremented during spring cleaning to 10b, then 01b and
* then 00b.
*
* This way we're employing the natural numeric ordering to make sure that newly
* inserted/touched elements have higher 12-bit counts (which we've manufactured)
* and thus iterating over the array initially won't kick out those elements
* which were inserted last.
*
* Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
* elements entered into the array, during which, we're decaying all elements.
* If, after decay, an element gets inserted again, its generation is set to 11b
* to make sure it has higher numerical count than other, older elements and
* thus emulate an an LRU-like behavior when deleting elements to free up space
* in the page.
*
* When an element reaches it's max count of action_threshold, we try to poison
* it by assuming that errors triggered action_threshold times in a single page
* are excessive and that page shouldn't be used anymore. action_threshold is
* initialized to COUNT_MASK which is the maximum.
*
* That error event entry causes cec_add_elem() to return !0 value and thus
* signal to its callers to log the error.
*
* To the question why we've chosen a page and moving elements around with
* memmove(), it is because it is a very simple structure to handle and max data
* movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
* We wanted to avoid the pointer traversal of more complex structures like a
* linked list or some sort of a balancing search tree.
*
* Deleting an element takes O(n) but since it is only a single page, it should
* be fast enough and it shouldn't happen all too often depending on error
* patterns.
*/
#undef pr_fmt
#define pr_fmt(fmt) "RAS: " fmt
/*
* We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
* elements have stayed in the array without having been accessed again.
*/
#define DECAY_BITS 2
#define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
#define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
/*
* Threshold amount of inserted elements after which we start spring
* cleaning.
*/
#define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
/* Bits which count the number of errors happened in this 4K page. */
#define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
#define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
#define FULL_COUNT_MASK (PAGE_SIZE - 1)
/*
* u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
*/
#define PFN(e) ((e) >> PAGE_SHIFT)
#define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
#define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
#define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
static struct ce_array {
u64 *array; /* container page */
unsigned int n; /* number of elements in the array */
unsigned int decay_count; /*
* number of element insertions/increments
* since the last spring cleaning.
*/
u64 pfns_poisoned; /*
* number of PFNs which got poisoned.
*/
u64 ces_entered; /*
* The number of correctable errors
* entered into the collector.
*/
u64 decays_done; /*
* Times we did spring cleaning.
*/
union {
struct {
__u32 disabled : 1, /* cmdline disabled */
__resv : 31;
};
__u32 flags;
};
} ce_arr;
static DEFINE_MUTEX(ce_mutex);
static u64 dfs_pfn;
/* Amount of errors after which we offline */
static u64 action_threshold = COUNT_MASK;
/* Each element "decays" each decay_interval which is 24hrs by default. */
#define CEC_DECAY_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
#define CEC_DECAY_MIN_INTERVAL 1 * 60 * 60 /* 1h */
#define CEC_DECAY_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
static struct delayed_work cec_work;
static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;
/*
* Decrement decay value. We're using DECAY_BITS bits to denote decay of an
* element in the array. On insertion and any access, it gets reset to max.
*/
static void do_spring_cleaning(struct ce_array *ca)
{
int i;
for (i = 0; i < ca->n; i++) {
u8 decay = DECAY(ca->array[i]);
if (!decay)
continue;
decay--;
ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
ca->array[i] |= (decay << COUNT_BITS);
}
ca->decay_count = 0;
ca->decays_done++;
}
/*
* @interval in seconds
*/
static void cec_mod_work(unsigned long interval)
{
unsigned long iv;
iv = interval * HZ;
mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
}
static void cec_work_fn(struct work_struct *work)
{
mutex_lock(&ce_mutex);
do_spring_cleaning(&ce_arr);
mutex_unlock(&ce_mutex);
cec_mod_work(decay_interval);
}
/*
* @to: index of the smallest element which is >= then @pfn.
*
* Return the index of the pfn if found, otherwise negative value.
*/
static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
int min = 0, max = ca->n - 1;
u64 this_pfn;
while (min <= max) {
int i = (min + max) >> 1;
this_pfn = PFN(ca->array[i]);
if (this_pfn < pfn)
min = i + 1;
else if (this_pfn > pfn)
max = i - 1;
else if (this_pfn == pfn) {
if (to)
*to = i;
return i;
}
}
/*
* When the loop terminates without finding @pfn, min has the index of
* the element slot where the new @pfn should be inserted. The loop
* terminates when min > max, which means the min index points to the
* bigger element while the max index to the smaller element, in-between
* which the new @pfn belongs to.
*
* For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
*/
if (to)
*to = min;
return -ENOKEY;
}
static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
WARN_ON(!to);
if (!ca->n) {
*to = 0;
return -ENOKEY;
}
return __find_elem(ca, pfn, to);
}
static void del_elem(struct ce_array *ca, int idx)
{
/* Save us a function call when deleting the last element. */
if (ca->n - (idx + 1))
memmove((void *)&ca->array[idx],
(void *)&ca->array[idx + 1],
(ca->n - (idx + 1)) * sizeof(u64));
ca->n--;
}
static u64 del_lru_elem_unlocked(struct ce_array *ca)
{
unsigned int min = FULL_COUNT_MASK;
int i, min_idx = 0;
for (i = 0; i < ca->n; i++) {
unsigned int this = FULL_COUNT(ca->array[i]);
if (min > this) {
min = this;
min_idx = i;
}
}
del_elem(ca, min_idx);
return PFN(ca->array[min_idx]);
}
/*
* We return the 0th pfn in the error case under the assumption that it cannot
* be poisoned and excessive CEs in there are a serious deal anyway.
*/
static u64 __maybe_unused del_lru_elem(void)
{
struct ce_array *ca = &ce_arr;
u64 pfn;
if (!ca->n)
return 0;
mutex_lock(&ce_mutex);
pfn = del_lru_elem_unlocked(ca);
mutex_unlock(&ce_mutex);
return pfn;
}
static bool sanity_check(struct ce_array *ca)
{
bool ret = false;
u64 prev = 0;
int i;
for (i = 0; i < ca->n; i++) {
u64 this = PFN(ca->array[i]);
if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this))
ret = true;
prev = this;
}
if (!ret)
return ret;
pr_info("Sanity check dump:\n{ n: %d\n", ca->n);
for (i = 0; i < ca->n; i++) {
u64 this = PFN(ca->array[i]);
pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
}
pr_info("}\n");
return ret;
}
int cec_add_elem(u64 pfn)
{
struct ce_array *ca = &ce_arr;
unsigned int to = 0;
int count, ret = 0;
/*
* We can be called very early on the identify_cpu() path where we are
* not initialized yet. We ignore the error for simplicity.
*/
if (!ce_arr.array || ce_arr.disabled)
return -ENODEV;
mutex_lock(&ce_mutex);
ca->ces_entered++;
/* Array full, free the LRU slot. */
if (ca->n == MAX_ELEMS)
WARN_ON(!del_lru_elem_unlocked(ca));
ret = find_elem(ca, pfn, &to);
if (ret < 0) {
/*
* Shift range [to-end] to make room for one more element.
*/
memmove((void *)&ca->array[to + 1],
(void *)&ca->array[to],
(ca->n - to) * sizeof(u64));
ca->array[to] = pfn << PAGE_SHIFT;
ca->n++;
}
/* Add/refresh element generation and increment count */
ca->array[to] |= DECAY_MASK << COUNT_BITS;
ca->array[to]++;
/* Check action threshold and soft-offline, if reached. */
count = COUNT(ca->array[to]);
if (count >= action_threshold) {
u64 pfn = ca->array[to] >> PAGE_SHIFT;
if (!pfn_valid(pfn)) {
pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
} else {
/* We have reached max count for this page, soft-offline it. */
pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
memory_failure_queue(pfn, MF_SOFT_OFFLINE);
ca->pfns_poisoned++;
}
del_elem(ca, to);
/*
* Return a >0 value to callers, to denote that we've reached
* the offlining threshold.
*/
ret = 1;
goto unlock;
}
ca->decay_count++;
if (ca->decay_count >= CLEAN_ELEMS)
do_spring_cleaning(ca);
WARN_ON_ONCE(sanity_check(ca));
unlock:
mutex_unlock(&ce_mutex);
return ret;
}
static int u64_get(void *data, u64 *val)
{
*val = *(u64 *)data;
return 0;
}
static int pfn_set(void *data, u64 val)
{
*(u64 *)data = val;
cec_add_elem(val);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
static int decay_interval_set(void *data, u64 val)
{
if (val < CEC_DECAY_MIN_INTERVAL)
return -EINVAL;
if (val > CEC_DECAY_MAX_INTERVAL)
return -EINVAL;
*(u64 *)data = val;
decay_interval = val;
cec_mod_work(decay_interval);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
static int action_threshold_set(void *data, u64 val)
{
*(u64 *)data = val;
if (val > COUNT_MASK)
val = COUNT_MASK;
action_threshold = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n");
static const char * const bins[] = { "00", "01", "10", "11" };
static int array_dump(struct seq_file *m, void *v)
{
struct ce_array *ca = &ce_arr;
int i;
mutex_lock(&ce_mutex);
seq_printf(m, "{ n: %d\n", ca->n);
for (i = 0; i < ca->n; i++) {
u64 this = PFN(ca->array[i]);
seq_printf(m, " %3d: [%016llx|%s|%03llx]\n",
i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i]));
}
seq_printf(m, "}\n");
seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
ca->ces_entered, ca->pfns_poisoned);
seq_printf(m, "Flags: 0x%x\n", ca->flags);
seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
seq_printf(m, "Decays: %lld\n", ca->decays_done);
seq_printf(m, "Action threshold: %lld\n", action_threshold);
mutex_unlock(&ce_mutex);
return 0;
}
static int array_open(struct inode *inode, struct file *filp)
{
return single_open(filp, array_dump, NULL);
}
static const struct file_operations array_ops = {
.owner = THIS_MODULE,
.open = array_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init create_debugfs_nodes(void)
{
struct dentry *d, *pfn, *decay, *count, *array;
d = debugfs_create_dir("cec", ras_debugfs_dir);
if (!d) {
pr_warn("Error creating cec debugfs node!\n");
return -1;
}
decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
&decay_interval, &decay_interval_ops);
if (!decay) {
pr_warn("Error creating decay_interval debugfs node!\n");
goto err;
}
count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d,
&action_threshold, &action_threshold_ops);
if (!count) {
pr_warn("Error creating action_threshold debugfs node!\n");
goto err;
}
if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG))
return 0;
pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
if (!pfn) {
pr_warn("Error creating pfn debugfs node!\n");
goto err;
}
array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
if (!array) {
pr_warn("Error creating array debugfs node!\n");
goto err;
}
return 0;
err:
debugfs_remove_recursive(d);
return 1;
}
void __init cec_init(void)
{
if (ce_arr.disabled)
return;
ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
if (!ce_arr.array) {
pr_err("Error allocating CE array page!\n");
return;
}
if (create_debugfs_nodes()) {
free_page((unsigned long)ce_arr.array);
return;
}
INIT_DELAYED_WORK(&cec_work, cec_work_fn);
schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);
pr_info("Correctable Errors collector initialized.\n");
}
int __init parse_cec_param(char *str)
{
if (!str)
return 0;
if (*str == '=')
str++;
if (!strcmp(str, "cec_disable"))
ce_arr.disabled = 1;
else
return 0;
return 1;
}