2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-20 19:23:57 +08:00
linux-next/net/ipv4/ipvs/ip_vs_sync.c
Sven Wegener ba6fd85021 ipvs: Put backup thread on mcast socket wait queue
Instead of doing an endless loop with sleeping for one second, we now put the
backup thread onto the mcast socket wait queue and it gets woken up as soon as
we have data to process.

Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Acked-by: Simon Horman <horms@verge.net.au>
2008-07-16 22:33:20 +00:00

931 lines
23 KiB
C

/*
* IPVS An implementation of the IP virtual server support for the
* LINUX operating system. IPVS is now implemented as a module
* over the NetFilter framework. IPVS can be used to build a
* high-performance and highly available server based on a
* cluster of servers.
*
* Authors: Wensong Zhang <wensong@linuxvirtualserver.org>
*
* ip_vs_sync: sync connection info from master load balancer to backups
* through multicast
*
* Changes:
* Alexandre Cassen : Added master & backup support at a time.
* Alexandre Cassen : Added SyncID support for incoming sync
* messages filtering.
* Justin Ossevoort : Fix endian problem on sync message size.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/inetdevice.h>
#include <linux/net.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/igmp.h> /* for ip_mc_join_group */
#include <linux/udp.h>
#include <linux/err.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <net/ip.h>
#include <net/sock.h>
#include <net/ip_vs.h>
#define IP_VS_SYNC_GROUP 0xe0000051 /* multicast addr - 224.0.0.81 */
#define IP_VS_SYNC_PORT 8848 /* multicast port */
/*
* IPVS sync connection entry
*/
struct ip_vs_sync_conn {
__u8 reserved;
/* Protocol, addresses and port numbers */
__u8 protocol; /* Which protocol (TCP/UDP) */
__be16 cport;
__be16 vport;
__be16 dport;
__be32 caddr; /* client address */
__be32 vaddr; /* virtual address */
__be32 daddr; /* destination address */
/* Flags and state transition */
__be16 flags; /* status flags */
__be16 state; /* state info */
/* The sequence options start here */
};
struct ip_vs_sync_conn_options {
struct ip_vs_seq in_seq; /* incoming seq. struct */
struct ip_vs_seq out_seq; /* outgoing seq. struct */
};
struct ip_vs_sync_thread_data {
struct socket *sock;
char *buf;
};
#define SIMPLE_CONN_SIZE (sizeof(struct ip_vs_sync_conn))
#define FULL_CONN_SIZE \
(sizeof(struct ip_vs_sync_conn) + sizeof(struct ip_vs_sync_conn_options))
/*
The master mulitcasts messages to the backup load balancers in the
following format.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Count Conns | SyncID | Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPVS Sync Connection (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPVS Sync Connection (n) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
#define SYNC_MESG_HEADER_LEN 4
struct ip_vs_sync_mesg {
__u8 nr_conns;
__u8 syncid;
__u16 size;
/* ip_vs_sync_conn entries start here */
};
/* the maximum length of sync (sending/receiving) message */
static int sync_send_mesg_maxlen;
static int sync_recv_mesg_maxlen;
struct ip_vs_sync_buff {
struct list_head list;
unsigned long firstuse;
/* pointers for the message data */
struct ip_vs_sync_mesg *mesg;
unsigned char *head;
unsigned char *end;
};
/* the sync_buff list head and the lock */
static LIST_HEAD(ip_vs_sync_queue);
static DEFINE_SPINLOCK(ip_vs_sync_lock);
/* current sync_buff for accepting new conn entries */
static struct ip_vs_sync_buff *curr_sb = NULL;
static DEFINE_SPINLOCK(curr_sb_lock);
/* ipvs sync daemon state */
volatile int ip_vs_sync_state = IP_VS_STATE_NONE;
volatile int ip_vs_master_syncid = 0;
volatile int ip_vs_backup_syncid = 0;
/* multicast interface name */
char ip_vs_master_mcast_ifn[IP_VS_IFNAME_MAXLEN];
char ip_vs_backup_mcast_ifn[IP_VS_IFNAME_MAXLEN];
/* sync daemon tasks */
static struct task_struct *sync_master_thread;
static struct task_struct *sync_backup_thread;
/* multicast addr */
static struct sockaddr_in mcast_addr = {
.sin_family = AF_INET,
.sin_port = __constant_htons(IP_VS_SYNC_PORT),
.sin_addr.s_addr = __constant_htonl(IP_VS_SYNC_GROUP),
};
static inline struct ip_vs_sync_buff *sb_dequeue(void)
{
struct ip_vs_sync_buff *sb;
spin_lock_bh(&ip_vs_sync_lock);
if (list_empty(&ip_vs_sync_queue)) {
sb = NULL;
} else {
sb = list_entry(ip_vs_sync_queue.next,
struct ip_vs_sync_buff,
list);
list_del(&sb->list);
}
spin_unlock_bh(&ip_vs_sync_lock);
return sb;
}
static inline struct ip_vs_sync_buff * ip_vs_sync_buff_create(void)
{
struct ip_vs_sync_buff *sb;
if (!(sb=kmalloc(sizeof(struct ip_vs_sync_buff), GFP_ATOMIC)))
return NULL;
if (!(sb->mesg=kmalloc(sync_send_mesg_maxlen, GFP_ATOMIC))) {
kfree(sb);
return NULL;
}
sb->mesg->nr_conns = 0;
sb->mesg->syncid = ip_vs_master_syncid;
sb->mesg->size = 4;
sb->head = (unsigned char *)sb->mesg + 4;
sb->end = (unsigned char *)sb->mesg + sync_send_mesg_maxlen;
sb->firstuse = jiffies;
return sb;
}
static inline void ip_vs_sync_buff_release(struct ip_vs_sync_buff *sb)
{
kfree(sb->mesg);
kfree(sb);
}
static inline void sb_queue_tail(struct ip_vs_sync_buff *sb)
{
spin_lock(&ip_vs_sync_lock);
if (ip_vs_sync_state & IP_VS_STATE_MASTER)
list_add_tail(&sb->list, &ip_vs_sync_queue);
else
ip_vs_sync_buff_release(sb);
spin_unlock(&ip_vs_sync_lock);
}
/*
* Get the current sync buffer if it has been created for more
* than the specified time or the specified time is zero.
*/
static inline struct ip_vs_sync_buff *
get_curr_sync_buff(unsigned long time)
{
struct ip_vs_sync_buff *sb;
spin_lock_bh(&curr_sb_lock);
if (curr_sb && (time == 0 ||
time_before(jiffies - curr_sb->firstuse, time))) {
sb = curr_sb;
curr_sb = NULL;
} else
sb = NULL;
spin_unlock_bh(&curr_sb_lock);
return sb;
}
/*
* Add an ip_vs_conn information into the current sync_buff.
* Called by ip_vs_in.
*/
void ip_vs_sync_conn(struct ip_vs_conn *cp)
{
struct ip_vs_sync_mesg *m;
struct ip_vs_sync_conn *s;
int len;
spin_lock(&curr_sb_lock);
if (!curr_sb) {
if (!(curr_sb=ip_vs_sync_buff_create())) {
spin_unlock(&curr_sb_lock);
IP_VS_ERR("ip_vs_sync_buff_create failed.\n");
return;
}
}
len = (cp->flags & IP_VS_CONN_F_SEQ_MASK) ? FULL_CONN_SIZE :
SIMPLE_CONN_SIZE;
m = curr_sb->mesg;
s = (struct ip_vs_sync_conn *)curr_sb->head;
/* copy members */
s->protocol = cp->protocol;
s->cport = cp->cport;
s->vport = cp->vport;
s->dport = cp->dport;
s->caddr = cp->caddr;
s->vaddr = cp->vaddr;
s->daddr = cp->daddr;
s->flags = htons(cp->flags & ~IP_VS_CONN_F_HASHED);
s->state = htons(cp->state);
if (cp->flags & IP_VS_CONN_F_SEQ_MASK) {
struct ip_vs_sync_conn_options *opt =
(struct ip_vs_sync_conn_options *)&s[1];
memcpy(opt, &cp->in_seq, sizeof(*opt));
}
m->nr_conns++;
m->size += len;
curr_sb->head += len;
/* check if there is a space for next one */
if (curr_sb->head+FULL_CONN_SIZE > curr_sb->end) {
sb_queue_tail(curr_sb);
curr_sb = NULL;
}
spin_unlock(&curr_sb_lock);
/* synchronize its controller if it has */
if (cp->control)
ip_vs_sync_conn(cp->control);
}
/*
* Process received multicast message and create the corresponding
* ip_vs_conn entries.
*/
static void ip_vs_process_message(const char *buffer, const size_t buflen)
{
struct ip_vs_sync_mesg *m = (struct ip_vs_sync_mesg *)buffer;
struct ip_vs_sync_conn *s;
struct ip_vs_sync_conn_options *opt;
struct ip_vs_conn *cp;
struct ip_vs_protocol *pp;
struct ip_vs_dest *dest;
char *p;
int i;
if (buflen < sizeof(struct ip_vs_sync_mesg)) {
IP_VS_ERR_RL("sync message header too short\n");
return;
}
/* Convert size back to host byte order */
m->size = ntohs(m->size);
if (buflen != m->size) {
IP_VS_ERR_RL("bogus sync message size\n");
return;
}
/* SyncID sanity check */
if (ip_vs_backup_syncid != 0 && m->syncid != ip_vs_backup_syncid) {
IP_VS_DBG(7, "Ignoring incoming msg with syncid = %d\n",
m->syncid);
return;
}
p = (char *)buffer + sizeof(struct ip_vs_sync_mesg);
for (i=0; i<m->nr_conns; i++) {
unsigned flags, state;
if (p + SIMPLE_CONN_SIZE > buffer+buflen) {
IP_VS_ERR_RL("bogus conn in sync message\n");
return;
}
s = (struct ip_vs_sync_conn *) p;
flags = ntohs(s->flags) | IP_VS_CONN_F_SYNC;
flags &= ~IP_VS_CONN_F_HASHED;
if (flags & IP_VS_CONN_F_SEQ_MASK) {
opt = (struct ip_vs_sync_conn_options *)&s[1];
p += FULL_CONN_SIZE;
if (p > buffer+buflen) {
IP_VS_ERR_RL("bogus conn options in sync message\n");
return;
}
} else {
opt = NULL;
p += SIMPLE_CONN_SIZE;
}
state = ntohs(s->state);
if (!(flags & IP_VS_CONN_F_TEMPLATE)) {
pp = ip_vs_proto_get(s->protocol);
if (!pp) {
IP_VS_ERR_RL("Unsupported protocol %u in sync msg\n",
s->protocol);
continue;
}
if (state >= pp->num_states) {
IP_VS_DBG(2, "Invalid %s state %u in sync msg\n",
pp->name, state);
continue;
}
} else {
/* protocol in templates is not used for state/timeout */
pp = NULL;
if (state > 0) {
IP_VS_DBG(2, "Invalid template state %u in sync msg\n",
state);
state = 0;
}
}
if (!(flags & IP_VS_CONN_F_TEMPLATE))
cp = ip_vs_conn_in_get(s->protocol,
s->caddr, s->cport,
s->vaddr, s->vport);
else
cp = ip_vs_ct_in_get(s->protocol,
s->caddr, s->cport,
s->vaddr, s->vport);
if (!cp) {
/*
* Find the appropriate destination for the connection.
* If it is not found the connection will remain unbound
* but still handled.
*/
dest = ip_vs_find_dest(s->daddr, s->dport,
s->vaddr, s->vport,
s->protocol);
/* Set the approprite ativity flag */
if (s->protocol == IPPROTO_TCP) {
if (state != IP_VS_TCP_S_ESTABLISHED)
flags |= IP_VS_CONN_F_INACTIVE;
else
flags &= ~IP_VS_CONN_F_INACTIVE;
}
cp = ip_vs_conn_new(s->protocol,
s->caddr, s->cport,
s->vaddr, s->vport,
s->daddr, s->dport,
flags, dest);
if (dest)
atomic_dec(&dest->refcnt);
if (!cp) {
IP_VS_ERR("ip_vs_conn_new failed\n");
return;
}
} else if (!cp->dest) {
dest = ip_vs_try_bind_dest(cp);
if (dest)
atomic_dec(&dest->refcnt);
} else if ((cp->dest) && (cp->protocol == IPPROTO_TCP) &&
(cp->state != state)) {
/* update active/inactive flag for the connection */
dest = cp->dest;
if (!(cp->flags & IP_VS_CONN_F_INACTIVE) &&
(state != IP_VS_TCP_S_ESTABLISHED)) {
atomic_dec(&dest->activeconns);
atomic_inc(&dest->inactconns);
cp->flags |= IP_VS_CONN_F_INACTIVE;
} else if ((cp->flags & IP_VS_CONN_F_INACTIVE) &&
(state == IP_VS_TCP_S_ESTABLISHED)) {
atomic_inc(&dest->activeconns);
atomic_dec(&dest->inactconns);
cp->flags &= ~IP_VS_CONN_F_INACTIVE;
}
}
if (opt)
memcpy(&cp->in_seq, opt, sizeof(*opt));
atomic_set(&cp->in_pkts, sysctl_ip_vs_sync_threshold[0]);
cp->state = state;
cp->old_state = cp->state;
/*
* We can not recover the right timeout for templates
* in all cases, we can not find the right fwmark
* virtual service. If needed, we can do it for
* non-fwmark persistent services.
*/
if (!(flags & IP_VS_CONN_F_TEMPLATE) && pp->timeout_table)
cp->timeout = pp->timeout_table[state];
else
cp->timeout = (3*60*HZ);
ip_vs_conn_put(cp);
}
}
/*
* Setup loopback of outgoing multicasts on a sending socket
*/
static void set_mcast_loop(struct sock *sk, u_char loop)
{
struct inet_sock *inet = inet_sk(sk);
/* setsockopt(sock, SOL_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop)); */
lock_sock(sk);
inet->mc_loop = loop ? 1 : 0;
release_sock(sk);
}
/*
* Specify TTL for outgoing multicasts on a sending socket
*/
static void set_mcast_ttl(struct sock *sk, u_char ttl)
{
struct inet_sock *inet = inet_sk(sk);
/* setsockopt(sock, SOL_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)); */
lock_sock(sk);
inet->mc_ttl = ttl;
release_sock(sk);
}
/*
* Specifiy default interface for outgoing multicasts
*/
static int set_mcast_if(struct sock *sk, char *ifname)
{
struct net_device *dev;
struct inet_sock *inet = inet_sk(sk);
if ((dev = __dev_get_by_name(&init_net, ifname)) == NULL)
return -ENODEV;
if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if)
return -EINVAL;
lock_sock(sk);
inet->mc_index = dev->ifindex;
/* inet->mc_addr = 0; */
release_sock(sk);
return 0;
}
/*
* Set the maximum length of sync message according to the
* specified interface's MTU.
*/
static int set_sync_mesg_maxlen(int sync_state)
{
struct net_device *dev;
int num;
if (sync_state == IP_VS_STATE_MASTER) {
if ((dev = __dev_get_by_name(&init_net, ip_vs_master_mcast_ifn)) == NULL)
return -ENODEV;
num = (dev->mtu - sizeof(struct iphdr) -
sizeof(struct udphdr) -
SYNC_MESG_HEADER_LEN - 20) / SIMPLE_CONN_SIZE;
sync_send_mesg_maxlen =
SYNC_MESG_HEADER_LEN + SIMPLE_CONN_SIZE * num;
IP_VS_DBG(7, "setting the maximum length of sync sending "
"message %d.\n", sync_send_mesg_maxlen);
} else if (sync_state == IP_VS_STATE_BACKUP) {
if ((dev = __dev_get_by_name(&init_net, ip_vs_backup_mcast_ifn)) == NULL)
return -ENODEV;
sync_recv_mesg_maxlen = dev->mtu -
sizeof(struct iphdr) - sizeof(struct udphdr);
IP_VS_DBG(7, "setting the maximum length of sync receiving "
"message %d.\n", sync_recv_mesg_maxlen);
}
return 0;
}
/*
* Join a multicast group.
* the group is specified by a class D multicast address 224.0.0.0/8
* in the in_addr structure passed in as a parameter.
*/
static int
join_mcast_group(struct sock *sk, struct in_addr *addr, char *ifname)
{
struct ip_mreqn mreq;
struct net_device *dev;
int ret;
memset(&mreq, 0, sizeof(mreq));
memcpy(&mreq.imr_multiaddr, addr, sizeof(struct in_addr));
if ((dev = __dev_get_by_name(&init_net, ifname)) == NULL)
return -ENODEV;
if (sk->sk_bound_dev_if && dev->ifindex != sk->sk_bound_dev_if)
return -EINVAL;
mreq.imr_ifindex = dev->ifindex;
lock_sock(sk);
ret = ip_mc_join_group(sk, &mreq);
release_sock(sk);
return ret;
}
static int bind_mcastif_addr(struct socket *sock, char *ifname)
{
struct net_device *dev;
__be32 addr;
struct sockaddr_in sin;
if ((dev = __dev_get_by_name(&init_net, ifname)) == NULL)
return -ENODEV;
addr = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
if (!addr)
IP_VS_ERR("You probably need to specify IP address on "
"multicast interface.\n");
IP_VS_DBG(7, "binding socket with (%s) %u.%u.%u.%u\n",
ifname, NIPQUAD(addr));
/* Now bind the socket with the address of multicast interface */
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = addr;
sin.sin_port = 0;
return sock->ops->bind(sock, (struct sockaddr*)&sin, sizeof(sin));
}
/*
* Set up sending multicast socket over UDP
*/
static struct socket * make_send_sock(void)
{
struct socket *sock;
int result;
/* First create a socket */
result = sock_create_kern(PF_INET, SOCK_DGRAM, IPPROTO_UDP, &sock);
if (result < 0) {
IP_VS_ERR("Error during creation of socket; terminating\n");
return ERR_PTR(result);
}
result = set_mcast_if(sock->sk, ip_vs_master_mcast_ifn);
if (result < 0) {
IP_VS_ERR("Error setting outbound mcast interface\n");
goto error;
}
set_mcast_loop(sock->sk, 0);
set_mcast_ttl(sock->sk, 1);
result = bind_mcastif_addr(sock, ip_vs_master_mcast_ifn);
if (result < 0) {
IP_VS_ERR("Error binding address of the mcast interface\n");
goto error;
}
result = sock->ops->connect(sock, (struct sockaddr *) &mcast_addr,
sizeof(struct sockaddr), 0);
if (result < 0) {
IP_VS_ERR("Error connecting to the multicast addr\n");
goto error;
}
return sock;
error:
sock_release(sock);
return ERR_PTR(result);
}
/*
* Set up receiving multicast socket over UDP
*/
static struct socket * make_receive_sock(void)
{
struct socket *sock;
int result;
/* First create a socket */
result = sock_create_kern(PF_INET, SOCK_DGRAM, IPPROTO_UDP, &sock);
if (result < 0) {
IP_VS_ERR("Error during creation of socket; terminating\n");
return ERR_PTR(result);
}
/* it is equivalent to the REUSEADDR option in user-space */
sock->sk->sk_reuse = 1;
result = sock->ops->bind(sock, (struct sockaddr *) &mcast_addr,
sizeof(struct sockaddr));
if (result < 0) {
IP_VS_ERR("Error binding to the multicast addr\n");
goto error;
}
/* join the multicast group */
result = join_mcast_group(sock->sk,
(struct in_addr *) &mcast_addr.sin_addr,
ip_vs_backup_mcast_ifn);
if (result < 0) {
IP_VS_ERR("Error joining to the multicast group\n");
goto error;
}
return sock;
error:
sock_release(sock);
return ERR_PTR(result);
}
static int
ip_vs_send_async(struct socket *sock, const char *buffer, const size_t length)
{
struct msghdr msg = {.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL};
struct kvec iov;
int len;
EnterFunction(7);
iov.iov_base = (void *)buffer;
iov.iov_len = length;
len = kernel_sendmsg(sock, &msg, &iov, 1, (size_t)(length));
LeaveFunction(7);
return len;
}
static void
ip_vs_send_sync_msg(struct socket *sock, struct ip_vs_sync_mesg *msg)
{
int msize;
msize = msg->size;
/* Put size in network byte order */
msg->size = htons(msg->size);
if (ip_vs_send_async(sock, (char *)msg, msize) != msize)
IP_VS_ERR("ip_vs_send_async error\n");
}
static int
ip_vs_receive(struct socket *sock, char *buffer, const size_t buflen)
{
struct msghdr msg = {NULL,};
struct kvec iov;
int len;
EnterFunction(7);
/* Receive a packet */
iov.iov_base = buffer;
iov.iov_len = (size_t)buflen;
len = kernel_recvmsg(sock, &msg, &iov, 1, buflen, 0);
if (len < 0)
return -1;
LeaveFunction(7);
return len;
}
static int sync_thread_master(void *data)
{
struct ip_vs_sync_thread_data *tinfo = data;
struct ip_vs_sync_buff *sb;
IP_VS_INFO("sync thread started: state = MASTER, mcast_ifn = %s, "
"syncid = %d\n",
ip_vs_master_mcast_ifn, ip_vs_master_syncid);
while (!kthread_should_stop()) {
while ((sb = sb_dequeue())) {
ip_vs_send_sync_msg(tinfo->sock, sb->mesg);
ip_vs_sync_buff_release(sb);
}
/* check if entries stay in curr_sb for 2 seconds */
sb = get_curr_sync_buff(2 * HZ);
if (sb) {
ip_vs_send_sync_msg(tinfo->sock, sb->mesg);
ip_vs_sync_buff_release(sb);
}
msleep_interruptible(1000);
}
/* clean up the sync_buff queue */
while ((sb=sb_dequeue())) {
ip_vs_sync_buff_release(sb);
}
/* clean up the current sync_buff */
if ((sb = get_curr_sync_buff(0))) {
ip_vs_sync_buff_release(sb);
}
/* release the sending multicast socket */
sock_release(tinfo->sock);
kfree(tinfo);
return 0;
}
static int sync_thread_backup(void *data)
{
struct ip_vs_sync_thread_data *tinfo = data;
int len;
IP_VS_INFO("sync thread started: state = BACKUP, mcast_ifn = %s, "
"syncid = %d\n",
ip_vs_backup_mcast_ifn, ip_vs_backup_syncid);
while (!kthread_should_stop()) {
wait_event_interruptible(*tinfo->sock->sk->sk_sleep,
!skb_queue_empty(&tinfo->sock->sk->sk_receive_queue)
|| kthread_should_stop());
/* do we have data now? */
while (!skb_queue_empty(&(tinfo->sock->sk->sk_receive_queue))) {
len = ip_vs_receive(tinfo->sock, tinfo->buf,
sync_recv_mesg_maxlen);
if (len <= 0) {
IP_VS_ERR("receiving message error\n");
break;
}
/* disable bottom half, because it accesses the data
shared by softirq while getting/creating conns */
local_bh_disable();
ip_vs_process_message(tinfo->buf, len);
local_bh_enable();
}
}
/* release the sending multicast socket */
sock_release(tinfo->sock);
kfree(tinfo->buf);
kfree(tinfo);
return 0;
}
int start_sync_thread(int state, char *mcast_ifn, __u8 syncid)
{
struct ip_vs_sync_thread_data *tinfo;
struct task_struct **realtask, *task;
struct socket *sock;
char *name, *buf = NULL;
int (*threadfn)(void *data);
int result = -ENOMEM;
IP_VS_DBG(7, "%s: pid %d\n", __func__, task_pid_nr(current));
IP_VS_DBG(7, "Each ip_vs_sync_conn entry needs %Zd bytes\n",
sizeof(struct ip_vs_sync_conn));
if (state == IP_VS_STATE_MASTER) {
if (sync_master_thread)
return -EEXIST;
strlcpy(ip_vs_master_mcast_ifn, mcast_ifn,
sizeof(ip_vs_master_mcast_ifn));
ip_vs_master_syncid = syncid;
realtask = &sync_master_thread;
name = "ipvs_syncmaster";
threadfn = sync_thread_master;
sock = make_send_sock();
} else if (state == IP_VS_STATE_BACKUP) {
if (sync_backup_thread)
return -EEXIST;
strlcpy(ip_vs_backup_mcast_ifn, mcast_ifn,
sizeof(ip_vs_backup_mcast_ifn));
ip_vs_backup_syncid = syncid;
realtask = &sync_backup_thread;
name = "ipvs_syncbackup";
threadfn = sync_thread_backup;
sock = make_receive_sock();
} else {
return -EINVAL;
}
if (IS_ERR(sock)) {
result = PTR_ERR(sock);
goto out;
}
set_sync_mesg_maxlen(state);
if (state == IP_VS_STATE_BACKUP) {
buf = kmalloc(sync_recv_mesg_maxlen, GFP_KERNEL);
if (!buf)
goto outsocket;
}
tinfo = kmalloc(sizeof(*tinfo), GFP_KERNEL);
if (!tinfo)
goto outbuf;
tinfo->sock = sock;
tinfo->buf = buf;
task = kthread_run(threadfn, tinfo, name);
if (IS_ERR(task)) {
result = PTR_ERR(task);
goto outtinfo;
}
/* mark as active */
*realtask = task;
ip_vs_sync_state |= state;
/* increase the module use count */
ip_vs_use_count_inc();
return 0;
outtinfo:
kfree(tinfo);
outbuf:
kfree(buf);
outsocket:
sock_release(sock);
out:
return result;
}
int stop_sync_thread(int state)
{
IP_VS_DBG(7, "%s: pid %d\n", __func__, task_pid_nr(current));
if (state == IP_VS_STATE_MASTER) {
if (!sync_master_thread)
return -ESRCH;
IP_VS_INFO("stopping master sync thread %d ...\n",
task_pid_nr(sync_master_thread));
/*
* The lock synchronizes with sb_queue_tail(), so that we don't
* add sync buffers to the queue, when we are already in
* progress of stopping the master sync daemon.
*/
spin_lock(&ip_vs_sync_lock);
ip_vs_sync_state &= ~IP_VS_STATE_MASTER;
spin_unlock(&ip_vs_sync_lock);
kthread_stop(sync_master_thread);
sync_master_thread = NULL;
} else if (state == IP_VS_STATE_BACKUP) {
if (!sync_backup_thread)
return -ESRCH;
IP_VS_INFO("stopping backup sync thread %d ...\n",
task_pid_nr(sync_backup_thread));
ip_vs_sync_state &= ~IP_VS_STATE_BACKUP;
kthread_stop(sync_backup_thread);
sync_backup_thread = NULL;
} else {
return -EINVAL;
}
/* decrease the module use count */
ip_vs_use_count_dec();
return 0;
}