2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/drivers/md/dm.c
Mikulas Patocka acfe0ad74d dm: allocate a special workqueue for deferred device removal
The commit 2c140a246d ("dm: allow remove to be deferred") introduced a
deferred removal feature for the device mapper.  When this feature is
used (by passing a flag DM_DEFERRED_REMOVE to DM_DEV_REMOVE_CMD ioctl)
and the user tries to remove a device that is currently in use, the
device will be removed automatically in the future when the last user
closes it.

Device mapper used the system workqueue to perform deferred removals.
However, some targets (dm-raid1, dm-mpath, dm-stripe) flush work items
scheduled for the system workqueue from their destructor.  If the
destructor itself is called from the system workqueue during deferred
removal, it introduces a possible deadlock - the workqueue tries to flush
itself.

Fix this possible deadlock by introducing a new workqueue for deferred
removals.  We allocate just one workqueue for all dm targets.  The
ability of dm targets to process IOs isn't dependent on deferred removal
of unused targets, so a deadlock due to shared workqueue isn't possible.

Also, cleanup local_init() to eliminate potential for returning success
on failure.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org # 3.13+
2014-07-10 16:44:13 -04:00

2958 lines
67 KiB
C

/*
* Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-uevent.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/moduleparam.h>
#include <linux/blkpg.h>
#include <linux/bio.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/hdreg.h>
#include <linux/delay.h>
#include <trace/events/block.h>
#define DM_MSG_PREFIX "core"
#ifdef CONFIG_PRINTK
/*
* ratelimit state to be used in DMXXX_LIMIT().
*/
DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
EXPORT_SYMBOL(dm_ratelimit_state);
#endif
/*
* Cookies are numeric values sent with CHANGE and REMOVE
* uevents while resuming, removing or renaming the device.
*/
#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
#define DM_COOKIE_LENGTH 24
static const char *_name = DM_NAME;
static unsigned int major = 0;
static unsigned int _major = 0;
static DEFINE_IDR(_minor_idr);
static DEFINE_SPINLOCK(_minor_lock);
static void do_deferred_remove(struct work_struct *w);
static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
static struct workqueue_struct *deferred_remove_workqueue;
/*
* For bio-based dm.
* One of these is allocated per bio.
*/
struct dm_io {
struct mapped_device *md;
int error;
atomic_t io_count;
struct bio *bio;
unsigned long start_time;
spinlock_t endio_lock;
struct dm_stats_aux stats_aux;
};
/*
* For request-based dm.
* One of these is allocated per request.
*/
struct dm_rq_target_io {
struct mapped_device *md;
struct dm_target *ti;
struct request *orig, clone;
int error;
union map_info info;
};
/*
* For request-based dm - the bio clones we allocate are embedded in these
* structs.
*
* We allocate these with bio_alloc_bioset, using the front_pad parameter when
* the bioset is created - this means the bio has to come at the end of the
* struct.
*/
struct dm_rq_clone_bio_info {
struct bio *orig;
struct dm_rq_target_io *tio;
struct bio clone;
};
union map_info *dm_get_rq_mapinfo(struct request *rq)
{
if (rq && rq->end_io_data)
return &((struct dm_rq_target_io *)rq->end_io_data)->info;
return NULL;
}
EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
#define MINOR_ALLOCED ((void *)-1)
/*
* Bits for the md->flags field.
*/
#define DMF_BLOCK_IO_FOR_SUSPEND 0
#define DMF_SUSPENDED 1
#define DMF_FROZEN 2
#define DMF_FREEING 3
#define DMF_DELETING 4
#define DMF_NOFLUSH_SUSPENDING 5
#define DMF_MERGE_IS_OPTIONAL 6
#define DMF_DEFERRED_REMOVE 7
/*
* A dummy definition to make RCU happy.
* struct dm_table should never be dereferenced in this file.
*/
struct dm_table {
int undefined__;
};
/*
* Work processed by per-device workqueue.
*/
struct mapped_device {
struct srcu_struct io_barrier;
struct mutex suspend_lock;
atomic_t holders;
atomic_t open_count;
/*
* The current mapping.
* Use dm_get_live_table{_fast} or take suspend_lock for
* dereference.
*/
struct dm_table *map;
unsigned long flags;
struct request_queue *queue;
unsigned type;
/* Protect queue and type against concurrent access. */
struct mutex type_lock;
struct target_type *immutable_target_type;
struct gendisk *disk;
char name[16];
void *interface_ptr;
/*
* A list of ios that arrived while we were suspended.
*/
atomic_t pending[2];
wait_queue_head_t wait;
struct work_struct work;
struct bio_list deferred;
spinlock_t deferred_lock;
/*
* Processing queue (flush)
*/
struct workqueue_struct *wq;
/*
* io objects are allocated from here.
*/
mempool_t *io_pool;
struct bio_set *bs;
/*
* Event handling.
*/
atomic_t event_nr;
wait_queue_head_t eventq;
atomic_t uevent_seq;
struct list_head uevent_list;
spinlock_t uevent_lock; /* Protect access to uevent_list */
/*
* freeze/thaw support require holding onto a super block
*/
struct super_block *frozen_sb;
struct block_device *bdev;
/* forced geometry settings */
struct hd_geometry geometry;
/* kobject and completion */
struct dm_kobject_holder kobj_holder;
/* zero-length flush that will be cloned and submitted to targets */
struct bio flush_bio;
struct dm_stats stats;
};
/*
* For mempools pre-allocation at the table loading time.
*/
struct dm_md_mempools {
mempool_t *io_pool;
struct bio_set *bs;
};
#define RESERVED_BIO_BASED_IOS 16
#define RESERVED_REQUEST_BASED_IOS 256
#define RESERVED_MAX_IOS 1024
static struct kmem_cache *_io_cache;
static struct kmem_cache *_rq_tio_cache;
/*
* Bio-based DM's mempools' reserved IOs set by the user.
*/
static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
/*
* Request-based DM's mempools' reserved IOs set by the user.
*/
static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
unsigned def, unsigned max)
{
unsigned ios = ACCESS_ONCE(*reserved_ios);
unsigned modified_ios = 0;
if (!ios)
modified_ios = def;
else if (ios > max)
modified_ios = max;
if (modified_ios) {
(void)cmpxchg(reserved_ios, ios, modified_ios);
ios = modified_ios;
}
return ios;
}
unsigned dm_get_reserved_bio_based_ios(void)
{
return __dm_get_reserved_ios(&reserved_bio_based_ios,
RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
}
EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
unsigned dm_get_reserved_rq_based_ios(void)
{
return __dm_get_reserved_ios(&reserved_rq_based_ios,
RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
}
EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
static int __init local_init(void)
{
int r = -ENOMEM;
/* allocate a slab for the dm_ios */
_io_cache = KMEM_CACHE(dm_io, 0);
if (!_io_cache)
return r;
_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
if (!_rq_tio_cache)
goto out_free_io_cache;
r = dm_uevent_init();
if (r)
goto out_free_rq_tio_cache;
deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
if (!deferred_remove_workqueue) {
r = -ENOMEM;
goto out_uevent_exit;
}
_major = major;
r = register_blkdev(_major, _name);
if (r < 0)
goto out_free_workqueue;
if (!_major)
_major = r;
return 0;
out_free_workqueue:
destroy_workqueue(deferred_remove_workqueue);
out_uevent_exit:
dm_uevent_exit();
out_free_rq_tio_cache:
kmem_cache_destroy(_rq_tio_cache);
out_free_io_cache:
kmem_cache_destroy(_io_cache);
return r;
}
static void local_exit(void)
{
flush_scheduled_work();
destroy_workqueue(deferred_remove_workqueue);
kmem_cache_destroy(_rq_tio_cache);
kmem_cache_destroy(_io_cache);
unregister_blkdev(_major, _name);
dm_uevent_exit();
_major = 0;
DMINFO("cleaned up");
}
static int (*_inits[])(void) __initdata = {
local_init,
dm_target_init,
dm_linear_init,
dm_stripe_init,
dm_io_init,
dm_kcopyd_init,
dm_interface_init,
dm_statistics_init,
};
static void (*_exits[])(void) = {
local_exit,
dm_target_exit,
dm_linear_exit,
dm_stripe_exit,
dm_io_exit,
dm_kcopyd_exit,
dm_interface_exit,
dm_statistics_exit,
};
static int __init dm_init(void)
{
const int count = ARRAY_SIZE(_inits);
int r, i;
for (i = 0; i < count; i++) {
r = _inits[i]();
if (r)
goto bad;
}
return 0;
bad:
while (i--)
_exits[i]();
return r;
}
static void __exit dm_exit(void)
{
int i = ARRAY_SIZE(_exits);
while (i--)
_exits[i]();
/*
* Should be empty by this point.
*/
idr_destroy(&_minor_idr);
}
/*
* Block device functions
*/
int dm_deleting_md(struct mapped_device *md)
{
return test_bit(DMF_DELETING, &md->flags);
}
static int dm_blk_open(struct block_device *bdev, fmode_t mode)
{
struct mapped_device *md;
spin_lock(&_minor_lock);
md = bdev->bd_disk->private_data;
if (!md)
goto out;
if (test_bit(DMF_FREEING, &md->flags) ||
dm_deleting_md(md)) {
md = NULL;
goto out;
}
dm_get(md);
atomic_inc(&md->open_count);
out:
spin_unlock(&_minor_lock);
return md ? 0 : -ENXIO;
}
static void dm_blk_close(struct gendisk *disk, fmode_t mode)
{
struct mapped_device *md = disk->private_data;
spin_lock(&_minor_lock);
if (atomic_dec_and_test(&md->open_count) &&
(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
queue_work(deferred_remove_workqueue, &deferred_remove_work);
dm_put(md);
spin_unlock(&_minor_lock);
}
int dm_open_count(struct mapped_device *md)
{
return atomic_read(&md->open_count);
}
/*
* Guarantees nothing is using the device before it's deleted.
*/
int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
{
int r = 0;
spin_lock(&_minor_lock);
if (dm_open_count(md)) {
r = -EBUSY;
if (mark_deferred)
set_bit(DMF_DEFERRED_REMOVE, &md->flags);
} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
r = -EEXIST;
else
set_bit(DMF_DELETING, &md->flags);
spin_unlock(&_minor_lock);
return r;
}
int dm_cancel_deferred_remove(struct mapped_device *md)
{
int r = 0;
spin_lock(&_minor_lock);
if (test_bit(DMF_DELETING, &md->flags))
r = -EBUSY;
else
clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
spin_unlock(&_minor_lock);
return r;
}
static void do_deferred_remove(struct work_struct *w)
{
dm_deferred_remove();
}
sector_t dm_get_size(struct mapped_device *md)
{
return get_capacity(md->disk);
}
struct request_queue *dm_get_md_queue(struct mapped_device *md)
{
return md->queue;
}
struct dm_stats *dm_get_stats(struct mapped_device *md)
{
return &md->stats;
}
static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mapped_device *md = bdev->bd_disk->private_data;
return dm_get_geometry(md, geo);
}
static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct mapped_device *md = bdev->bd_disk->private_data;
int srcu_idx;
struct dm_table *map;
struct dm_target *tgt;
int r = -ENOTTY;
retry:
map = dm_get_live_table(md, &srcu_idx);
if (!map || !dm_table_get_size(map))
goto out;
/* We only support devices that have a single target */
if (dm_table_get_num_targets(map) != 1)
goto out;
tgt = dm_table_get_target(map, 0);
if (dm_suspended_md(md)) {
r = -EAGAIN;
goto out;
}
if (tgt->type->ioctl)
r = tgt->type->ioctl(tgt, cmd, arg);
out:
dm_put_live_table(md, srcu_idx);
if (r == -ENOTCONN) {
msleep(10);
goto retry;
}
return r;
}
static struct dm_io *alloc_io(struct mapped_device *md)
{
return mempool_alloc(md->io_pool, GFP_NOIO);
}
static void free_io(struct mapped_device *md, struct dm_io *io)
{
mempool_free(io, md->io_pool);
}
static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
{
bio_put(&tio->clone);
}
static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
gfp_t gfp_mask)
{
return mempool_alloc(md->io_pool, gfp_mask);
}
static void free_rq_tio(struct dm_rq_target_io *tio)
{
mempool_free(tio, tio->md->io_pool);
}
static int md_in_flight(struct mapped_device *md)
{
return atomic_read(&md->pending[READ]) +
atomic_read(&md->pending[WRITE]);
}
static void start_io_acct(struct dm_io *io)
{
struct mapped_device *md = io->md;
struct bio *bio = io->bio;
int cpu;
int rw = bio_data_dir(bio);
io->start_time = jiffies;
cpu = part_stat_lock();
part_round_stats(cpu, &dm_disk(md)->part0);
part_stat_unlock();
atomic_set(&dm_disk(md)->part0.in_flight[rw],
atomic_inc_return(&md->pending[rw]));
if (unlikely(dm_stats_used(&md->stats)))
dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
bio_sectors(bio), false, 0, &io->stats_aux);
}
static void end_io_acct(struct dm_io *io)
{
struct mapped_device *md = io->md;
struct bio *bio = io->bio;
unsigned long duration = jiffies - io->start_time;
int pending, cpu;
int rw = bio_data_dir(bio);
cpu = part_stat_lock();
part_round_stats(cpu, &dm_disk(md)->part0);
part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
part_stat_unlock();
if (unlikely(dm_stats_used(&md->stats)))
dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
bio_sectors(bio), true, duration, &io->stats_aux);
/*
* After this is decremented the bio must not be touched if it is
* a flush.
*/
pending = atomic_dec_return(&md->pending[rw]);
atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
pending += atomic_read(&md->pending[rw^0x1]);
/* nudge anyone waiting on suspend queue */
if (!pending)
wake_up(&md->wait);
}
/*
* Add the bio to the list of deferred io.
*/
static void queue_io(struct mapped_device *md, struct bio *bio)
{
unsigned long flags;
spin_lock_irqsave(&md->deferred_lock, flags);
bio_list_add(&md->deferred, bio);
spin_unlock_irqrestore(&md->deferred_lock, flags);
queue_work(md->wq, &md->work);
}
/*
* Everyone (including functions in this file), should use this
* function to access the md->map field, and make sure they call
* dm_put_live_table() when finished.
*/
struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
{
*srcu_idx = srcu_read_lock(&md->io_barrier);
return srcu_dereference(md->map, &md->io_barrier);
}
void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
{
srcu_read_unlock(&md->io_barrier, srcu_idx);
}
void dm_sync_table(struct mapped_device *md)
{
synchronize_srcu(&md->io_barrier);
synchronize_rcu_expedited();
}
/*
* A fast alternative to dm_get_live_table/dm_put_live_table.
* The caller must not block between these two functions.
*/
static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
{
rcu_read_lock();
return rcu_dereference(md->map);
}
static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
{
rcu_read_unlock();
}
/*
* Get the geometry associated with a dm device
*/
int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
*geo = md->geometry;
return 0;
}
/*
* Set the geometry of a device.
*/
int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
{
sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
if (geo->start > sz) {
DMWARN("Start sector is beyond the geometry limits.");
return -EINVAL;
}
md->geometry = *geo;
return 0;
}
/*-----------------------------------------------------------------
* CRUD START:
* A more elegant soln is in the works that uses the queue
* merge fn, unfortunately there are a couple of changes to
* the block layer that I want to make for this. So in the
* interests of getting something for people to use I give
* you this clearly demarcated crap.
*---------------------------------------------------------------*/
static int __noflush_suspending(struct mapped_device *md)
{
return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
}
/*
* Decrements the number of outstanding ios that a bio has been
* cloned into, completing the original io if necc.
*/
static void dec_pending(struct dm_io *io, int error)
{
unsigned long flags;
int io_error;
struct bio *bio;
struct mapped_device *md = io->md;
/* Push-back supersedes any I/O errors */
if (unlikely(error)) {
spin_lock_irqsave(&io->endio_lock, flags);
if (!(io->error > 0 && __noflush_suspending(md)))
io->error = error;
spin_unlock_irqrestore(&io->endio_lock, flags);
}
if (atomic_dec_and_test(&io->io_count)) {
if (io->error == DM_ENDIO_REQUEUE) {
/*
* Target requested pushing back the I/O.
*/
spin_lock_irqsave(&md->deferred_lock, flags);
if (__noflush_suspending(md))
bio_list_add_head(&md->deferred, io->bio);
else
/* noflush suspend was interrupted. */
io->error = -EIO;
spin_unlock_irqrestore(&md->deferred_lock, flags);
}
io_error = io->error;
bio = io->bio;
end_io_acct(io);
free_io(md, io);
if (io_error == DM_ENDIO_REQUEUE)
return;
if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
/*
* Preflush done for flush with data, reissue
* without REQ_FLUSH.
*/
bio->bi_rw &= ~REQ_FLUSH;
queue_io(md, bio);
} else {
/* done with normal IO or empty flush */
trace_block_bio_complete(md->queue, bio, io_error);
bio_endio(bio, io_error);
}
}
}
static void disable_write_same(struct mapped_device *md)
{
struct queue_limits *limits = dm_get_queue_limits(md);
/* device doesn't really support WRITE SAME, disable it */
limits->max_write_same_sectors = 0;
}
static void clone_endio(struct bio *bio, int error)
{
int r = 0;
struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
struct dm_io *io = tio->io;
struct mapped_device *md = tio->io->md;
dm_endio_fn endio = tio->ti->type->end_io;
if (!bio_flagged(bio, BIO_UPTODATE) && !error)
error = -EIO;
if (endio) {
r = endio(tio->ti, bio, error);
if (r < 0 || r == DM_ENDIO_REQUEUE)
/*
* error and requeue request are handled
* in dec_pending().
*/
error = r;
else if (r == DM_ENDIO_INCOMPLETE)
/* The target will handle the io */
return;
else if (r) {
DMWARN("unimplemented target endio return value: %d", r);
BUG();
}
}
if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
!bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
disable_write_same(md);
free_tio(md, tio);
dec_pending(io, error);
}
/*
* Partial completion handling for request-based dm
*/
static void end_clone_bio(struct bio *clone, int error)
{
struct dm_rq_clone_bio_info *info =
container_of(clone, struct dm_rq_clone_bio_info, clone);
struct dm_rq_target_io *tio = info->tio;
struct bio *bio = info->orig;
unsigned int nr_bytes = info->orig->bi_iter.bi_size;
bio_put(clone);
if (tio->error)
/*
* An error has already been detected on the request.
* Once error occurred, just let clone->end_io() handle
* the remainder.
*/
return;
else if (error) {
/*
* Don't notice the error to the upper layer yet.
* The error handling decision is made by the target driver,
* when the request is completed.
*/
tio->error = error;
return;
}
/*
* I/O for the bio successfully completed.
* Notice the data completion to the upper layer.
*/
/*
* bios are processed from the head of the list.
* So the completing bio should always be rq->bio.
* If it's not, something wrong is happening.
*/
if (tio->orig->bio != bio)
DMERR("bio completion is going in the middle of the request");
/*
* Update the original request.
* Do not use blk_end_request() here, because it may complete
* the original request before the clone, and break the ordering.
*/
blk_update_request(tio->orig, 0, nr_bytes);
}
/*
* Don't touch any member of the md after calling this function because
* the md may be freed in dm_put() at the end of this function.
* Or do dm_get() before calling this function and dm_put() later.
*/
static void rq_completed(struct mapped_device *md, int rw, int run_queue)
{
atomic_dec(&md->pending[rw]);
/* nudge anyone waiting on suspend queue */
if (!md_in_flight(md))
wake_up(&md->wait);
/*
* Run this off this callpath, as drivers could invoke end_io while
* inside their request_fn (and holding the queue lock). Calling
* back into ->request_fn() could deadlock attempting to grab the
* queue lock again.
*/
if (run_queue)
blk_run_queue_async(md->queue);
/*
* dm_put() must be at the end of this function. See the comment above
*/
dm_put(md);
}
static void free_rq_clone(struct request *clone)
{
struct dm_rq_target_io *tio = clone->end_io_data;
blk_rq_unprep_clone(clone);
free_rq_tio(tio);
}
/*
* Complete the clone and the original request.
* Must be called without queue lock.
*/
static void dm_end_request(struct request *clone, int error)
{
int rw = rq_data_dir(clone);
struct dm_rq_target_io *tio = clone->end_io_data;
struct mapped_device *md = tio->md;
struct request *rq = tio->orig;
if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
rq->errors = clone->errors;
rq->resid_len = clone->resid_len;
if (rq->sense)
/*
* We are using the sense buffer of the original
* request.
* So setting the length of the sense data is enough.
*/
rq->sense_len = clone->sense_len;
}
free_rq_clone(clone);
blk_end_request_all(rq, error);
rq_completed(md, rw, true);
}
static void dm_unprep_request(struct request *rq)
{
struct request *clone = rq->special;
rq->special = NULL;
rq->cmd_flags &= ~REQ_DONTPREP;
free_rq_clone(clone);
}
/*
* Requeue the original request of a clone.
*/
void dm_requeue_unmapped_request(struct request *clone)
{
int rw = rq_data_dir(clone);
struct dm_rq_target_io *tio = clone->end_io_data;
struct mapped_device *md = tio->md;
struct request *rq = tio->orig;
struct request_queue *q = rq->q;
unsigned long flags;
dm_unprep_request(rq);
spin_lock_irqsave(q->queue_lock, flags);
blk_requeue_request(q, rq);
spin_unlock_irqrestore(q->queue_lock, flags);
rq_completed(md, rw, 0);
}
EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
static void __stop_queue(struct request_queue *q)
{
blk_stop_queue(q);
}
static void stop_queue(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__stop_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
static void __start_queue(struct request_queue *q)
{
if (blk_queue_stopped(q))
blk_start_queue(q);
}
static void start_queue(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
static void dm_done(struct request *clone, int error, bool mapped)
{
int r = error;
struct dm_rq_target_io *tio = clone->end_io_data;
dm_request_endio_fn rq_end_io = NULL;
if (tio->ti) {
rq_end_io = tio->ti->type->rq_end_io;
if (mapped && rq_end_io)
r = rq_end_io(tio->ti, clone, error, &tio->info);
}
if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
!clone->q->limits.max_write_same_sectors))
disable_write_same(tio->md);
if (r <= 0)
/* The target wants to complete the I/O */
dm_end_request(clone, r);
else if (r == DM_ENDIO_INCOMPLETE)
/* The target will handle the I/O */
return;
else if (r == DM_ENDIO_REQUEUE)
/* The target wants to requeue the I/O */
dm_requeue_unmapped_request(clone);
else {
DMWARN("unimplemented target endio return value: %d", r);
BUG();
}
}
/*
* Request completion handler for request-based dm
*/
static void dm_softirq_done(struct request *rq)
{
bool mapped = true;
struct request *clone = rq->completion_data;
struct dm_rq_target_io *tio = clone->end_io_data;
if (rq->cmd_flags & REQ_FAILED)
mapped = false;
dm_done(clone, tio->error, mapped);
}
/*
* Complete the clone and the original request with the error status
* through softirq context.
*/
static void dm_complete_request(struct request *clone, int error)
{
struct dm_rq_target_io *tio = clone->end_io_data;
struct request *rq = tio->orig;
tio->error = error;
rq->completion_data = clone;
blk_complete_request(rq);
}
/*
* Complete the not-mapped clone and the original request with the error status
* through softirq context.
* Target's rq_end_io() function isn't called.
* This may be used when the target's map_rq() function fails.
*/
void dm_kill_unmapped_request(struct request *clone, int error)
{
struct dm_rq_target_io *tio = clone->end_io_data;
struct request *rq = tio->orig;
rq->cmd_flags |= REQ_FAILED;
dm_complete_request(clone, error);
}
EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
/*
* Called with the queue lock held
*/
static void end_clone_request(struct request *clone, int error)
{
/*
* For just cleaning up the information of the queue in which
* the clone was dispatched.
* The clone is *NOT* freed actually here because it is alloced from
* dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
*/
__blk_put_request(clone->q, clone);
/*
* Actual request completion is done in a softirq context which doesn't
* hold the queue lock. Otherwise, deadlock could occur because:
* - another request may be submitted by the upper level driver
* of the stacking during the completion
* - the submission which requires queue lock may be done
* against this queue
*/
dm_complete_request(clone, error);
}
/*
* Return maximum size of I/O possible at the supplied sector up to the current
* target boundary.
*/
static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
{
sector_t target_offset = dm_target_offset(ti, sector);
return ti->len - target_offset;
}
static sector_t max_io_len(sector_t sector, struct dm_target *ti)
{
sector_t len = max_io_len_target_boundary(sector, ti);
sector_t offset, max_len;
/*
* Does the target need to split even further?
*/
if (ti->max_io_len) {
offset = dm_target_offset(ti, sector);
if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
max_len = sector_div(offset, ti->max_io_len);
else
max_len = offset & (ti->max_io_len - 1);
max_len = ti->max_io_len - max_len;
if (len > max_len)
len = max_len;
}
return len;
}
int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
{
if (len > UINT_MAX) {
DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
(unsigned long long)len, UINT_MAX);
ti->error = "Maximum size of target IO is too large";
return -EINVAL;
}
ti->max_io_len = (uint32_t) len;
return 0;
}
EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
/*
* A target may call dm_accept_partial_bio only from the map routine. It is
* allowed for all bio types except REQ_FLUSH.
*
* dm_accept_partial_bio informs the dm that the target only wants to process
* additional n_sectors sectors of the bio and the rest of the data should be
* sent in a next bio.
*
* A diagram that explains the arithmetics:
* +--------------------+---------------+-------+
* | 1 | 2 | 3 |
* +--------------------+---------------+-------+
*
* <-------------- *tio->len_ptr --------------->
* <------- bi_size ------->
* <-- n_sectors -->
*
* Region 1 was already iterated over with bio_advance or similar function.
* (it may be empty if the target doesn't use bio_advance)
* Region 2 is the remaining bio size that the target wants to process.
* (it may be empty if region 1 is non-empty, although there is no reason
* to make it empty)
* The target requires that region 3 is to be sent in the next bio.
*
* If the target wants to receive multiple copies of the bio (via num_*bios, etc),
* the partially processed part (the sum of regions 1+2) must be the same for all
* copies of the bio.
*/
void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
{
struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
BUG_ON(bio->bi_rw & REQ_FLUSH);
BUG_ON(bi_size > *tio->len_ptr);
BUG_ON(n_sectors > bi_size);
*tio->len_ptr -= bi_size - n_sectors;
bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
}
EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
static void __map_bio(struct dm_target_io *tio)
{
int r;
sector_t sector;
struct mapped_device *md;
struct bio *clone = &tio->clone;
struct dm_target *ti = tio->ti;
clone->bi_end_io = clone_endio;
/*
* Map the clone. If r == 0 we don't need to do
* anything, the target has assumed ownership of
* this io.
*/
atomic_inc(&tio->io->io_count);
sector = clone->bi_iter.bi_sector;
r = ti->type->map(ti, clone);
if (r == DM_MAPIO_REMAPPED) {
/* the bio has been remapped so dispatch it */
trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
tio->io->bio->bi_bdev->bd_dev, sector);
generic_make_request(clone);
} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
/* error the io and bail out, or requeue it if needed */
md = tio->io->md;
dec_pending(tio->io, r);
free_tio(md, tio);
} else if (r) {
DMWARN("unimplemented target map return value: %d", r);
BUG();
}
}
struct clone_info {
struct mapped_device *md;
struct dm_table *map;
struct bio *bio;
struct dm_io *io;
sector_t sector;
unsigned sector_count;
};
static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
{
bio->bi_iter.bi_sector = sector;
bio->bi_iter.bi_size = to_bytes(len);
}
/*
* Creates a bio that consists of range of complete bvecs.
*/
static void clone_bio(struct dm_target_io *tio, struct bio *bio,
sector_t sector, unsigned len)
{
struct bio *clone = &tio->clone;
__bio_clone_fast(clone, bio);
if (bio_integrity(bio))
bio_integrity_clone(clone, bio, GFP_NOIO);
bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
clone->bi_iter.bi_size = to_bytes(len);
if (bio_integrity(bio))
bio_integrity_trim(clone, 0, len);
}
static struct dm_target_io *alloc_tio(struct clone_info *ci,
struct dm_target *ti, int nr_iovecs,
unsigned target_bio_nr)
{
struct dm_target_io *tio;
struct bio *clone;
clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
tio = container_of(clone, struct dm_target_io, clone);
tio->io = ci->io;
tio->ti = ti;
tio->target_bio_nr = target_bio_nr;
return tio;
}
static void __clone_and_map_simple_bio(struct clone_info *ci,
struct dm_target *ti,
unsigned target_bio_nr, unsigned *len)
{
struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
struct bio *clone = &tio->clone;
tio->len_ptr = len;
/*
* Discard requests require the bio's inline iovecs be initialized.
* ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
* and discard, so no need for concern about wasted bvec allocations.
*/
__bio_clone_fast(clone, ci->bio);
if (len)
bio_setup_sector(clone, ci->sector, *len);
__map_bio(tio);
}
static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
unsigned num_bios, unsigned *len)
{
unsigned target_bio_nr;
for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
}
static int __send_empty_flush(struct clone_info *ci)
{
unsigned target_nr = 0;
struct dm_target *ti;
BUG_ON(bio_has_data(ci->bio));
while ((ti = dm_table_get_target(ci->map, target_nr++)))
__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
return 0;
}
static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
sector_t sector, unsigned *len)
{
struct bio *bio = ci->bio;
struct dm_target_io *tio;
unsigned target_bio_nr;
unsigned num_target_bios = 1;
/*
* Does the target want to receive duplicate copies of the bio?
*/
if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
num_target_bios = ti->num_write_bios(ti, bio);
for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
tio = alloc_tio(ci, ti, 0, target_bio_nr);
tio->len_ptr = len;
clone_bio(tio, bio, sector, *len);
__map_bio(tio);
}
}
typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
static unsigned get_num_discard_bios(struct dm_target *ti)
{
return ti->num_discard_bios;
}
static unsigned get_num_write_same_bios(struct dm_target *ti)
{
return ti->num_write_same_bios;
}
typedef bool (*is_split_required_fn)(struct dm_target *ti);
static bool is_split_required_for_discard(struct dm_target *ti)
{
return ti->split_discard_bios;
}
static int __send_changing_extent_only(struct clone_info *ci,
get_num_bios_fn get_num_bios,
is_split_required_fn is_split_required)
{
struct dm_target *ti;
unsigned len;
unsigned num_bios;
do {
ti = dm_table_find_target(ci->map, ci->sector);
if (!dm_target_is_valid(ti))
return -EIO;
/*
* Even though the device advertised support for this type of
* request, that does not mean every target supports it, and
* reconfiguration might also have changed that since the
* check was performed.
*/
num_bios = get_num_bios ? get_num_bios(ti) : 0;
if (!num_bios)
return -EOPNOTSUPP;
if (is_split_required && !is_split_required(ti))
len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
else
len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
__send_duplicate_bios(ci, ti, num_bios, &len);
ci->sector += len;
} while (ci->sector_count -= len);
return 0;
}
static int __send_discard(struct clone_info *ci)
{
return __send_changing_extent_only(ci, get_num_discard_bios,
is_split_required_for_discard);
}
static int __send_write_same(struct clone_info *ci)
{
return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
}
/*
* Select the correct strategy for processing a non-flush bio.
*/
static int __split_and_process_non_flush(struct clone_info *ci)
{
struct bio *bio = ci->bio;
struct dm_target *ti;
unsigned len;
if (unlikely(bio->bi_rw & REQ_DISCARD))
return __send_discard(ci);
else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
return __send_write_same(ci);
ti = dm_table_find_target(ci->map, ci->sector);
if (!dm_target_is_valid(ti))
return -EIO;
len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
__clone_and_map_data_bio(ci, ti, ci->sector, &len);
ci->sector += len;
ci->sector_count -= len;
return 0;
}
/*
* Entry point to split a bio into clones and submit them to the targets.
*/
static void __split_and_process_bio(struct mapped_device *md,
struct dm_table *map, struct bio *bio)
{
struct clone_info ci;
int error = 0;
if (unlikely(!map)) {
bio_io_error(bio);
return;
}
ci.map = map;
ci.md = md;
ci.io = alloc_io(md);
ci.io->error = 0;
atomic_set(&ci.io->io_count, 1);
ci.io->bio = bio;
ci.io->md = md;
spin_lock_init(&ci.io->endio_lock);
ci.sector = bio->bi_iter.bi_sector;
start_io_acct(ci.io);
if (bio->bi_rw & REQ_FLUSH) {
ci.bio = &ci.md->flush_bio;
ci.sector_count = 0;
error = __send_empty_flush(&ci);
/* dec_pending submits any data associated with flush */
} else {
ci.bio = bio;
ci.sector_count = bio_sectors(bio);
while (ci.sector_count && !error)
error = __split_and_process_non_flush(&ci);
}
/* drop the extra reference count */
dec_pending(ci.io, error);
}
/*-----------------------------------------------------------------
* CRUD END
*---------------------------------------------------------------*/
static int dm_merge_bvec(struct request_queue *q,
struct bvec_merge_data *bvm,
struct bio_vec *biovec)
{
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_live_table_fast(md);
struct dm_target *ti;
sector_t max_sectors;
int max_size = 0;
if (unlikely(!map))
goto out;
ti = dm_table_find_target(map, bvm->bi_sector);
if (!dm_target_is_valid(ti))
goto out;
/*
* Find maximum amount of I/O that won't need splitting
*/
max_sectors = min(max_io_len(bvm->bi_sector, ti),
(sector_t) BIO_MAX_SECTORS);
max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
if (max_size < 0)
max_size = 0;
/*
* merge_bvec_fn() returns number of bytes
* it can accept at this offset
* max is precomputed maximal io size
*/
if (max_size && ti->type->merge)
max_size = ti->type->merge(ti, bvm, biovec, max_size);
/*
* If the target doesn't support merge method and some of the devices
* provided their merge_bvec method (we know this by looking at
* queue_max_hw_sectors), then we can't allow bios with multiple vector
* entries. So always set max_size to 0, and the code below allows
* just one page.
*/
else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
max_size = 0;
out:
dm_put_live_table_fast(md);
/*
* Always allow an entire first page
*/
if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
max_size = biovec->bv_len;
return max_size;
}
/*
* The request function that just remaps the bio built up by
* dm_merge_bvec.
*/
static void _dm_request(struct request_queue *q, struct bio *bio)
{
int rw = bio_data_dir(bio);
struct mapped_device *md = q->queuedata;
int cpu;
int srcu_idx;
struct dm_table *map;
map = dm_get_live_table(md, &srcu_idx);
cpu = part_stat_lock();
part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
part_stat_unlock();
/* if we're suspended, we have to queue this io for later */
if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
dm_put_live_table(md, srcu_idx);
if (bio_rw(bio) != READA)
queue_io(md, bio);
else
bio_io_error(bio);
return;
}
__split_and_process_bio(md, map, bio);
dm_put_live_table(md, srcu_idx);
return;
}
int dm_request_based(struct mapped_device *md)
{
return blk_queue_stackable(md->queue);
}
static void dm_request(struct request_queue *q, struct bio *bio)
{
struct mapped_device *md = q->queuedata;
if (dm_request_based(md))
blk_queue_bio(q, bio);
else
_dm_request(q, bio);
}
void dm_dispatch_request(struct request *rq)
{
int r;
if (blk_queue_io_stat(rq->q))
rq->cmd_flags |= REQ_IO_STAT;
rq->start_time = jiffies;
r = blk_insert_cloned_request(rq->q, rq);
if (r)
dm_complete_request(rq, r);
}
EXPORT_SYMBOL_GPL(dm_dispatch_request);
static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
void *data)
{
struct dm_rq_target_io *tio = data;
struct dm_rq_clone_bio_info *info =
container_of(bio, struct dm_rq_clone_bio_info, clone);
info->orig = bio_orig;
info->tio = tio;
bio->bi_end_io = end_clone_bio;
return 0;
}
static int setup_clone(struct request *clone, struct request *rq,
struct dm_rq_target_io *tio)
{
int r;
r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
dm_rq_bio_constructor, tio);
if (r)
return r;
clone->cmd = rq->cmd;
clone->cmd_len = rq->cmd_len;
clone->sense = rq->sense;
clone->end_io = end_clone_request;
clone->end_io_data = tio;
return 0;
}
static struct request *clone_rq(struct request *rq, struct mapped_device *md,
gfp_t gfp_mask)
{
struct request *clone;
struct dm_rq_target_io *tio;
tio = alloc_rq_tio(md, gfp_mask);
if (!tio)
return NULL;
tio->md = md;
tio->ti = NULL;
tio->orig = rq;
tio->error = 0;
memset(&tio->info, 0, sizeof(tio->info));
clone = &tio->clone;
if (setup_clone(clone, rq, tio)) {
/* -ENOMEM */
free_rq_tio(tio);
return NULL;
}
return clone;
}
/*
* Called with the queue lock held.
*/
static int dm_prep_fn(struct request_queue *q, struct request *rq)
{
struct mapped_device *md = q->queuedata;
struct request *clone;
if (unlikely(rq->special)) {
DMWARN("Already has something in rq->special.");
return BLKPREP_KILL;
}
clone = clone_rq(rq, md, GFP_ATOMIC);
if (!clone)
return BLKPREP_DEFER;
rq->special = clone;
rq->cmd_flags |= REQ_DONTPREP;
return BLKPREP_OK;
}
/*
* Returns:
* 0 : the request has been processed (not requeued)
* !0 : the request has been requeued
*/
static int map_request(struct dm_target *ti, struct request *clone,
struct mapped_device *md)
{
int r, requeued = 0;
struct dm_rq_target_io *tio = clone->end_io_data;
tio->ti = ti;
r = ti->type->map_rq(ti, clone, &tio->info);
switch (r) {
case DM_MAPIO_SUBMITTED:
/* The target has taken the I/O to submit by itself later */
break;
case DM_MAPIO_REMAPPED:
/* The target has remapped the I/O so dispatch it */
trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
blk_rq_pos(tio->orig));
dm_dispatch_request(clone);
break;
case DM_MAPIO_REQUEUE:
/* The target wants to requeue the I/O */
dm_requeue_unmapped_request(clone);
requeued = 1;
break;
default:
if (r > 0) {
DMWARN("unimplemented target map return value: %d", r);
BUG();
}
/* The target wants to complete the I/O */
dm_kill_unmapped_request(clone, r);
break;
}
return requeued;
}
static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
{
struct request *clone;
blk_start_request(orig);
clone = orig->special;
atomic_inc(&md->pending[rq_data_dir(clone)]);
/*
* Hold the md reference here for the in-flight I/O.
* We can't rely on the reference count by device opener,
* because the device may be closed during the request completion
* when all bios are completed.
* See the comment in rq_completed() too.
*/
dm_get(md);
return clone;
}
/*
* q->request_fn for request-based dm.
* Called with the queue lock held.
*/
static void dm_request_fn(struct request_queue *q)
{
struct mapped_device *md = q->queuedata;
int srcu_idx;
struct dm_table *map = dm_get_live_table(md, &srcu_idx);
struct dm_target *ti;
struct request *rq, *clone;
sector_t pos;
/*
* For suspend, check blk_queue_stopped() and increment
* ->pending within a single queue_lock not to increment the
* number of in-flight I/Os after the queue is stopped in
* dm_suspend().
*/
while (!blk_queue_stopped(q)) {
rq = blk_peek_request(q);
if (!rq)
goto delay_and_out;
/* always use block 0 to find the target for flushes for now */
pos = 0;
if (!(rq->cmd_flags & REQ_FLUSH))
pos = blk_rq_pos(rq);
ti = dm_table_find_target(map, pos);
if (!dm_target_is_valid(ti)) {
/*
* Must perform setup, that dm_done() requires,
* before calling dm_kill_unmapped_request
*/
DMERR_LIMIT("request attempted access beyond the end of device");
clone = dm_start_request(md, rq);
dm_kill_unmapped_request(clone, -EIO);
continue;
}
if (ti->type->busy && ti->type->busy(ti))
goto delay_and_out;
clone = dm_start_request(md, rq);
spin_unlock(q->queue_lock);
if (map_request(ti, clone, md))
goto requeued;
BUG_ON(!irqs_disabled());
spin_lock(q->queue_lock);
}
goto out;
requeued:
BUG_ON(!irqs_disabled());
spin_lock(q->queue_lock);
delay_and_out:
blk_delay_queue(q, HZ / 10);
out:
dm_put_live_table(md, srcu_idx);
}
int dm_underlying_device_busy(struct request_queue *q)
{
return blk_lld_busy(q);
}
EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
static int dm_lld_busy(struct request_queue *q)
{
int r;
struct mapped_device *md = q->queuedata;
struct dm_table *map = dm_get_live_table_fast(md);
if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
r = 1;
else
r = dm_table_any_busy_target(map);
dm_put_live_table_fast(md);
return r;
}
static int dm_any_congested(void *congested_data, int bdi_bits)
{
int r = bdi_bits;
struct mapped_device *md = congested_data;
struct dm_table *map;
if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
map = dm_get_live_table_fast(md);
if (map) {
/*
* Request-based dm cares about only own queue for
* the query about congestion status of request_queue
*/
if (dm_request_based(md))
r = md->queue->backing_dev_info.state &
bdi_bits;
else
r = dm_table_any_congested(map, bdi_bits);
}
dm_put_live_table_fast(md);
}
return r;
}
/*-----------------------------------------------------------------
* An IDR is used to keep track of allocated minor numbers.
*---------------------------------------------------------------*/
static void free_minor(int minor)
{
spin_lock(&_minor_lock);
idr_remove(&_minor_idr, minor);
spin_unlock(&_minor_lock);
}
/*
* See if the device with a specific minor # is free.
*/
static int specific_minor(int minor)
{
int r;
if (minor >= (1 << MINORBITS))
return -EINVAL;
idr_preload(GFP_KERNEL);
spin_lock(&_minor_lock);
r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
spin_unlock(&_minor_lock);
idr_preload_end();
if (r < 0)
return r == -ENOSPC ? -EBUSY : r;
return 0;
}
static int next_free_minor(int *minor)
{
int r;
idr_preload(GFP_KERNEL);
spin_lock(&_minor_lock);
r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
spin_unlock(&_minor_lock);
idr_preload_end();
if (r < 0)
return r;
*minor = r;
return 0;
}
static const struct block_device_operations dm_blk_dops;
static void dm_wq_work(struct work_struct *work);
static void dm_init_md_queue(struct mapped_device *md)
{
/*
* Request-based dm devices cannot be stacked on top of bio-based dm
* devices. The type of this dm device has not been decided yet.
* The type is decided at the first table loading time.
* To prevent problematic device stacking, clear the queue flag
* for request stacking support until then.
*
* This queue is new, so no concurrency on the queue_flags.
*/
queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
md->queue->queuedata = md;
md->queue->backing_dev_info.congested_fn = dm_any_congested;
md->queue->backing_dev_info.congested_data = md;
blk_queue_make_request(md->queue, dm_request);
blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
blk_queue_merge_bvec(md->queue, dm_merge_bvec);
}
/*
* Allocate and initialise a blank device with a given minor.
*/
static struct mapped_device *alloc_dev(int minor)
{
int r;
struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
void *old_md;
if (!md) {
DMWARN("unable to allocate device, out of memory.");
return NULL;
}
if (!try_module_get(THIS_MODULE))
goto bad_module_get;
/* get a minor number for the dev */
if (minor == DM_ANY_MINOR)
r = next_free_minor(&minor);
else
r = specific_minor(minor);
if (r < 0)
goto bad_minor;
r = init_srcu_struct(&md->io_barrier);
if (r < 0)
goto bad_io_barrier;
md->type = DM_TYPE_NONE;
mutex_init(&md->suspend_lock);
mutex_init(&md->type_lock);
spin_lock_init(&md->deferred_lock);
atomic_set(&md->holders, 1);
atomic_set(&md->open_count, 0);
atomic_set(&md->event_nr, 0);
atomic_set(&md->uevent_seq, 0);
INIT_LIST_HEAD(&md->uevent_list);
spin_lock_init(&md->uevent_lock);
md->queue = blk_alloc_queue(GFP_KERNEL);
if (!md->queue)
goto bad_queue;
dm_init_md_queue(md);
md->disk = alloc_disk(1);
if (!md->disk)
goto bad_disk;
atomic_set(&md->pending[0], 0);
atomic_set(&md->pending[1], 0);
init_waitqueue_head(&md->wait);
INIT_WORK(&md->work, dm_wq_work);
init_waitqueue_head(&md->eventq);
init_completion(&md->kobj_holder.completion);
md->disk->major = _major;
md->disk->first_minor = minor;
md->disk->fops = &dm_blk_dops;
md->disk->queue = md->queue;
md->disk->private_data = md;
sprintf(md->disk->disk_name, "dm-%d", minor);
add_disk(md->disk);
format_dev_t(md->name, MKDEV(_major, minor));
md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
if (!md->wq)
goto bad_thread;
md->bdev = bdget_disk(md->disk, 0);
if (!md->bdev)
goto bad_bdev;
bio_init(&md->flush_bio);
md->flush_bio.bi_bdev = md->bdev;
md->flush_bio.bi_rw = WRITE_FLUSH;
dm_stats_init(&md->stats);
/* Populate the mapping, nobody knows we exist yet */
spin_lock(&_minor_lock);
old_md = idr_replace(&_minor_idr, md, minor);
spin_unlock(&_minor_lock);
BUG_ON(old_md != MINOR_ALLOCED);
return md;
bad_bdev:
destroy_workqueue(md->wq);
bad_thread:
del_gendisk(md->disk);
put_disk(md->disk);
bad_disk:
blk_cleanup_queue(md->queue);
bad_queue:
cleanup_srcu_struct(&md->io_barrier);
bad_io_barrier:
free_minor(minor);
bad_minor:
module_put(THIS_MODULE);
bad_module_get:
kfree(md);
return NULL;
}
static void unlock_fs(struct mapped_device *md);
static void free_dev(struct mapped_device *md)
{
int minor = MINOR(disk_devt(md->disk));
unlock_fs(md);
bdput(md->bdev);
destroy_workqueue(md->wq);
if (md->io_pool)
mempool_destroy(md->io_pool);
if (md->bs)
bioset_free(md->bs);
blk_integrity_unregister(md->disk);
del_gendisk(md->disk);
cleanup_srcu_struct(&md->io_barrier);
free_minor(minor);
spin_lock(&_minor_lock);
md->disk->private_data = NULL;
spin_unlock(&_minor_lock);
put_disk(md->disk);
blk_cleanup_queue(md->queue);
dm_stats_cleanup(&md->stats);
module_put(THIS_MODULE);
kfree(md);
}
static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
{
struct dm_md_mempools *p = dm_table_get_md_mempools(t);
if (md->io_pool && md->bs) {
/* The md already has necessary mempools. */
if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
/*
* Reload bioset because front_pad may have changed
* because a different table was loaded.
*/
bioset_free(md->bs);
md->bs = p->bs;
p->bs = NULL;
} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
/*
* There's no need to reload with request-based dm
* because the size of front_pad doesn't change.
* Note for future: If you are to reload bioset,
* prep-ed requests in the queue may refer
* to bio from the old bioset, so you must walk
* through the queue to unprep.
*/
}
goto out;
}
BUG_ON(!p || md->io_pool || md->bs);
md->io_pool = p->io_pool;
p->io_pool = NULL;
md->bs = p->bs;
p->bs = NULL;
out:
/* mempool bind completed, now no need any mempools in the table */
dm_table_free_md_mempools(t);
}
/*
* Bind a table to the device.
*/
static void event_callback(void *context)
{
unsigned long flags;
LIST_HEAD(uevents);
struct mapped_device *md = (struct mapped_device *) context;
spin_lock_irqsave(&md->uevent_lock, flags);
list_splice_init(&md->uevent_list, &uevents);
spin_unlock_irqrestore(&md->uevent_lock, flags);
dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
atomic_inc(&md->event_nr);
wake_up(&md->eventq);
}
/*
* Protected by md->suspend_lock obtained by dm_swap_table().
*/
static void __set_size(struct mapped_device *md, sector_t size)
{
set_capacity(md->disk, size);
i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
}
/*
* Return 1 if the queue has a compulsory merge_bvec_fn function.
*
* If this function returns 0, then the device is either a non-dm
* device without a merge_bvec_fn, or it is a dm device that is
* able to split any bios it receives that are too big.
*/
int dm_queue_merge_is_compulsory(struct request_queue *q)
{
struct mapped_device *dev_md;
if (!q->merge_bvec_fn)
return 0;
if (q->make_request_fn == dm_request) {
dev_md = q->queuedata;
if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
return 0;
}
return 1;
}
static int dm_device_merge_is_compulsory(struct dm_target *ti,
struct dm_dev *dev, sector_t start,
sector_t len, void *data)
{
struct block_device *bdev = dev->bdev;
struct request_queue *q = bdev_get_queue(bdev);
return dm_queue_merge_is_compulsory(q);
}
/*
* Return 1 if it is acceptable to ignore merge_bvec_fn based
* on the properties of the underlying devices.
*/
static int dm_table_merge_is_optional(struct dm_table *table)
{
unsigned i = 0;
struct dm_target *ti;
while (i < dm_table_get_num_targets(table)) {
ti = dm_table_get_target(table, i++);
if (ti->type->iterate_devices &&
ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
return 0;
}
return 1;
}
/*
* Returns old map, which caller must destroy.
*/
static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
struct queue_limits *limits)
{
struct dm_table *old_map;
struct request_queue *q = md->queue;
sector_t size;
int merge_is_optional;
size = dm_table_get_size(t);
/*
* Wipe any geometry if the size of the table changed.
*/
if (size != dm_get_size(md))
memset(&md->geometry, 0, sizeof(md->geometry));
__set_size(md, size);
dm_table_event_callback(t, event_callback, md);
/*
* The queue hasn't been stopped yet, if the old table type wasn't
* for request-based during suspension. So stop it to prevent
* I/O mapping before resume.
* This must be done before setting the queue restrictions,
* because request-based dm may be run just after the setting.
*/
if (dm_table_request_based(t) && !blk_queue_stopped(q))
stop_queue(q);
__bind_mempools(md, t);
merge_is_optional = dm_table_merge_is_optional(t);
old_map = md->map;
rcu_assign_pointer(md->map, t);
md->immutable_target_type = dm_table_get_immutable_target_type(t);
dm_table_set_restrictions(t, q, limits);
if (merge_is_optional)
set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
else
clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
dm_sync_table(md);
return old_map;
}
/*
* Returns unbound table for the caller to free.
*/
static struct dm_table *__unbind(struct mapped_device *md)
{
struct dm_table *map = md->map;
if (!map)
return NULL;
dm_table_event_callback(map, NULL, NULL);
RCU_INIT_POINTER(md->map, NULL);
dm_sync_table(md);
return map;
}
/*
* Constructor for a new device.
*/
int dm_create(int minor, struct mapped_device **result)
{
struct mapped_device *md;
md = alloc_dev(minor);
if (!md)
return -ENXIO;
dm_sysfs_init(md);
*result = md;
return 0;
}
/*
* Functions to manage md->type.
* All are required to hold md->type_lock.
*/
void dm_lock_md_type(struct mapped_device *md)
{
mutex_lock(&md->type_lock);
}
void dm_unlock_md_type(struct mapped_device *md)
{
mutex_unlock(&md->type_lock);
}
void dm_set_md_type(struct mapped_device *md, unsigned type)
{
BUG_ON(!mutex_is_locked(&md->type_lock));
md->type = type;
}
unsigned dm_get_md_type(struct mapped_device *md)
{
BUG_ON(!mutex_is_locked(&md->type_lock));
return md->type;
}
struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
{
return md->immutable_target_type;
}
/*
* The queue_limits are only valid as long as you have a reference
* count on 'md'.
*/
struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
{
BUG_ON(!atomic_read(&md->holders));
return &md->queue->limits;
}
EXPORT_SYMBOL_GPL(dm_get_queue_limits);
/*
* Fully initialize a request-based queue (->elevator, ->request_fn, etc).
*/
static int dm_init_request_based_queue(struct mapped_device *md)
{
struct request_queue *q = NULL;
if (md->queue->elevator)
return 1;
/* Fully initialize the queue */
q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
if (!q)
return 0;
md->queue = q;
dm_init_md_queue(md);
blk_queue_softirq_done(md->queue, dm_softirq_done);
blk_queue_prep_rq(md->queue, dm_prep_fn);
blk_queue_lld_busy(md->queue, dm_lld_busy);
elv_register_queue(md->queue);
return 1;
}
/*
* Setup the DM device's queue based on md's type
*/
int dm_setup_md_queue(struct mapped_device *md)
{
if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
!dm_init_request_based_queue(md)) {
DMWARN("Cannot initialize queue for request-based mapped device");
return -EINVAL;
}
return 0;
}
static struct mapped_device *dm_find_md(dev_t dev)
{
struct mapped_device *md;
unsigned minor = MINOR(dev);
if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
return NULL;
spin_lock(&_minor_lock);
md = idr_find(&_minor_idr, minor);
if (md && (md == MINOR_ALLOCED ||
(MINOR(disk_devt(dm_disk(md))) != minor) ||
dm_deleting_md(md) ||
test_bit(DMF_FREEING, &md->flags))) {
md = NULL;
goto out;
}
out:
spin_unlock(&_minor_lock);
return md;
}
struct mapped_device *dm_get_md(dev_t dev)
{
struct mapped_device *md = dm_find_md(dev);
if (md)
dm_get(md);
return md;
}
EXPORT_SYMBOL_GPL(dm_get_md);
void *dm_get_mdptr(struct mapped_device *md)
{
return md->interface_ptr;
}
void dm_set_mdptr(struct mapped_device *md, void *ptr)
{
md->interface_ptr = ptr;
}
void dm_get(struct mapped_device *md)
{
atomic_inc(&md->holders);
BUG_ON(test_bit(DMF_FREEING, &md->flags));
}
const char *dm_device_name(struct mapped_device *md)
{
return md->name;
}
EXPORT_SYMBOL_GPL(dm_device_name);
static void __dm_destroy(struct mapped_device *md, bool wait)
{
struct dm_table *map;
int srcu_idx;
might_sleep();
spin_lock(&_minor_lock);
map = dm_get_live_table(md, &srcu_idx);
idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
set_bit(DMF_FREEING, &md->flags);
spin_unlock(&_minor_lock);
if (!dm_suspended_md(md)) {
dm_table_presuspend_targets(map);
dm_table_postsuspend_targets(map);
}
/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
dm_put_live_table(md, srcu_idx);
/*
* Rare, but there may be I/O requests still going to complete,
* for example. Wait for all references to disappear.
* No one should increment the reference count of the mapped_device,
* after the mapped_device state becomes DMF_FREEING.
*/
if (wait)
while (atomic_read(&md->holders))
msleep(1);
else if (atomic_read(&md->holders))
DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
dm_device_name(md), atomic_read(&md->holders));
dm_sysfs_exit(md);
dm_table_destroy(__unbind(md));
free_dev(md);
}
void dm_destroy(struct mapped_device *md)
{
__dm_destroy(md, true);
}
void dm_destroy_immediate(struct mapped_device *md)
{
__dm_destroy(md, false);
}
void dm_put(struct mapped_device *md)
{
atomic_dec(&md->holders);
}
EXPORT_SYMBOL_GPL(dm_put);
static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
{
int r = 0;
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&md->wait, &wait);
while (1) {
set_current_state(interruptible);
if (!md_in_flight(md))
break;
if (interruptible == TASK_INTERRUPTIBLE &&
signal_pending(current)) {
r = -EINTR;
break;
}
io_schedule();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&md->wait, &wait);
return r;
}
/*
* Process the deferred bios
*/
static void dm_wq_work(struct work_struct *work)
{
struct mapped_device *md = container_of(work, struct mapped_device,
work);
struct bio *c;
int srcu_idx;
struct dm_table *map;
map = dm_get_live_table(md, &srcu_idx);
while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
spin_lock_irq(&md->deferred_lock);
c = bio_list_pop(&md->deferred);
spin_unlock_irq(&md->deferred_lock);
if (!c)
break;
if (dm_request_based(md))
generic_make_request(c);
else
__split_and_process_bio(md, map, c);
}
dm_put_live_table(md, srcu_idx);
}
static void dm_queue_flush(struct mapped_device *md)
{
clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
smp_mb__after_atomic();
queue_work(md->wq, &md->work);
}
/*
* Swap in a new table, returning the old one for the caller to destroy.
*/
struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
{
struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
struct queue_limits limits;
int r;
mutex_lock(&md->suspend_lock);
/* device must be suspended */
if (!dm_suspended_md(md))
goto out;
/*
* If the new table has no data devices, retain the existing limits.
* This helps multipath with queue_if_no_path if all paths disappear,
* then new I/O is queued based on these limits, and then some paths
* reappear.
*/
if (dm_table_has_no_data_devices(table)) {
live_map = dm_get_live_table_fast(md);
if (live_map)
limits = md->queue->limits;
dm_put_live_table_fast(md);
}
if (!live_map) {
r = dm_calculate_queue_limits(table, &limits);
if (r) {
map = ERR_PTR(r);
goto out;
}
}
map = __bind(md, table, &limits);
out:
mutex_unlock(&md->suspend_lock);
return map;
}
/*
* Functions to lock and unlock any filesystem running on the
* device.
*/
static int lock_fs(struct mapped_device *md)
{
int r;
WARN_ON(md->frozen_sb);
md->frozen_sb = freeze_bdev(md->bdev);
if (IS_ERR(md->frozen_sb)) {
r = PTR_ERR(md->frozen_sb);
md->frozen_sb = NULL;
return r;
}
set_bit(DMF_FROZEN, &md->flags);
return 0;
}
static void unlock_fs(struct mapped_device *md)
{
if (!test_bit(DMF_FROZEN, &md->flags))
return;
thaw_bdev(md->bdev, md->frozen_sb);
md->frozen_sb = NULL;
clear_bit(DMF_FROZEN, &md->flags);
}
/*
* We need to be able to change a mapping table under a mounted
* filesystem. For example we might want to move some data in
* the background. Before the table can be swapped with
* dm_bind_table, dm_suspend must be called to flush any in
* flight bios and ensure that any further io gets deferred.
*/
/*
* Suspend mechanism in request-based dm.
*
* 1. Flush all I/Os by lock_fs() if needed.
* 2. Stop dispatching any I/O by stopping the request_queue.
* 3. Wait for all in-flight I/Os to be completed or requeued.
*
* To abort suspend, start the request_queue.
*/
int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
{
struct dm_table *map = NULL;
int r = 0;
int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
mutex_lock(&md->suspend_lock);
if (dm_suspended_md(md)) {
r = -EINVAL;
goto out_unlock;
}
map = md->map;
/*
* DMF_NOFLUSH_SUSPENDING must be set before presuspend.
* This flag is cleared before dm_suspend returns.
*/
if (noflush)
set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
/* This does not get reverted if there's an error later. */
dm_table_presuspend_targets(map);
/*
* Flush I/O to the device.
* Any I/O submitted after lock_fs() may not be flushed.
* noflush takes precedence over do_lockfs.
* (lock_fs() flushes I/Os and waits for them to complete.)
*/
if (!noflush && do_lockfs) {
r = lock_fs(md);
if (r)
goto out_unlock;
}
/*
* Here we must make sure that no processes are submitting requests
* to target drivers i.e. no one may be executing
* __split_and_process_bio. This is called from dm_request and
* dm_wq_work.
*
* To get all processes out of __split_and_process_bio in dm_request,
* we take the write lock. To prevent any process from reentering
* __split_and_process_bio from dm_request and quiesce the thread
* (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
* flush_workqueue(md->wq).
*/
set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
synchronize_srcu(&md->io_barrier);
/*
* Stop md->queue before flushing md->wq in case request-based
* dm defers requests to md->wq from md->queue.
*/
if (dm_request_based(md))
stop_queue(md->queue);
flush_workqueue(md->wq);
/*
* At this point no more requests are entering target request routines.
* We call dm_wait_for_completion to wait for all existing requests
* to finish.
*/
r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
if (noflush)
clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
synchronize_srcu(&md->io_barrier);
/* were we interrupted ? */
if (r < 0) {
dm_queue_flush(md);
if (dm_request_based(md))
start_queue(md->queue);
unlock_fs(md);
goto out_unlock; /* pushback list is already flushed, so skip flush */
}
/*
* If dm_wait_for_completion returned 0, the device is completely
* quiescent now. There is no request-processing activity. All new
* requests are being added to md->deferred list.
*/
set_bit(DMF_SUSPENDED, &md->flags);
dm_table_postsuspend_targets(map);
out_unlock:
mutex_unlock(&md->suspend_lock);
return r;
}
int dm_resume(struct mapped_device *md)
{
int r = -EINVAL;
struct dm_table *map = NULL;
mutex_lock(&md->suspend_lock);
if (!dm_suspended_md(md))
goto out;
map = md->map;
if (!map || !dm_table_get_size(map))
goto out;
r = dm_table_resume_targets(map);
if (r)
goto out;
dm_queue_flush(md);
/*
* Flushing deferred I/Os must be done after targets are resumed
* so that mapping of targets can work correctly.
* Request-based dm is queueing the deferred I/Os in its request_queue.
*/
if (dm_request_based(md))
start_queue(md->queue);
unlock_fs(md);
clear_bit(DMF_SUSPENDED, &md->flags);
r = 0;
out:
mutex_unlock(&md->suspend_lock);
return r;
}
/*
* Internal suspend/resume works like userspace-driven suspend. It waits
* until all bios finish and prevents issuing new bios to the target drivers.
* It may be used only from the kernel.
*
* Internal suspend holds md->suspend_lock, which prevents interaction with
* userspace-driven suspend.
*/
void dm_internal_suspend(struct mapped_device *md)
{
mutex_lock(&md->suspend_lock);
if (dm_suspended_md(md))
return;
set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
synchronize_srcu(&md->io_barrier);
flush_workqueue(md->wq);
dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
}
void dm_internal_resume(struct mapped_device *md)
{
if (dm_suspended_md(md))
goto done;
dm_queue_flush(md);
done:
mutex_unlock(&md->suspend_lock);
}
/*-----------------------------------------------------------------
* Event notification.
*---------------------------------------------------------------*/
int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
unsigned cookie)
{
char udev_cookie[DM_COOKIE_LENGTH];
char *envp[] = { udev_cookie, NULL };
if (!cookie)
return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
else {
snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
DM_COOKIE_ENV_VAR_NAME, cookie);
return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
action, envp);
}
}
uint32_t dm_next_uevent_seq(struct mapped_device *md)
{
return atomic_add_return(1, &md->uevent_seq);
}
uint32_t dm_get_event_nr(struct mapped_device *md)
{
return atomic_read(&md->event_nr);
}
int dm_wait_event(struct mapped_device *md, int event_nr)
{
return wait_event_interruptible(md->eventq,
(event_nr != atomic_read(&md->event_nr)));
}
void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
{
unsigned long flags;
spin_lock_irqsave(&md->uevent_lock, flags);
list_add(elist, &md->uevent_list);
spin_unlock_irqrestore(&md->uevent_lock, flags);
}
/*
* The gendisk is only valid as long as you have a reference
* count on 'md'.
*/
struct gendisk *dm_disk(struct mapped_device *md)
{
return md->disk;
}
struct kobject *dm_kobject(struct mapped_device *md)
{
return &md->kobj_holder.kobj;
}
struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
{
struct mapped_device *md;
md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
if (test_bit(DMF_FREEING, &md->flags) ||
dm_deleting_md(md))
return NULL;
dm_get(md);
return md;
}
int dm_suspended_md(struct mapped_device *md)
{
return test_bit(DMF_SUSPENDED, &md->flags);
}
int dm_test_deferred_remove_flag(struct mapped_device *md)
{
return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
}
int dm_suspended(struct dm_target *ti)
{
return dm_suspended_md(dm_table_get_md(ti->table));
}
EXPORT_SYMBOL_GPL(dm_suspended);
int dm_noflush_suspending(struct dm_target *ti)
{
return __noflush_suspending(dm_table_get_md(ti->table));
}
EXPORT_SYMBOL_GPL(dm_noflush_suspending);
struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
{
struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
struct kmem_cache *cachep;
unsigned int pool_size;
unsigned int front_pad;
if (!pools)
return NULL;
if (type == DM_TYPE_BIO_BASED) {
cachep = _io_cache;
pool_size = dm_get_reserved_bio_based_ios();
front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
} else if (type == DM_TYPE_REQUEST_BASED) {
cachep = _rq_tio_cache;
pool_size = dm_get_reserved_rq_based_ios();
front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
/* per_bio_data_size is not used. See __bind_mempools(). */
WARN_ON(per_bio_data_size != 0);
} else
goto out;
pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
if (!pools->io_pool)
goto out;
pools->bs = bioset_create(pool_size, front_pad);
if (!pools->bs)
goto out;
if (integrity && bioset_integrity_create(pools->bs, pool_size))
goto out;
return pools;
out:
dm_free_md_mempools(pools);
return NULL;
}
void dm_free_md_mempools(struct dm_md_mempools *pools)
{
if (!pools)
return;
if (pools->io_pool)
mempool_destroy(pools->io_pool);
if (pools->bs)
bioset_free(pools->bs);
kfree(pools);
}
static const struct block_device_operations dm_blk_dops = {
.open = dm_blk_open,
.release = dm_blk_close,
.ioctl = dm_blk_ioctl,
.getgeo = dm_blk_getgeo,
.owner = THIS_MODULE
};
/*
* module hooks
*/
module_init(dm_init);
module_exit(dm_exit);
module_param(major, uint, 0);
MODULE_PARM_DESC(major, "The major number of the device mapper");
module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
MODULE_DESCRIPTION(DM_NAME " driver");
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");