2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/drivers/firewire/sbp2.c
Stefan Richter 7a4e1e9c68 firewire: sbp2: revert obsolete 'fix stall with "Unsolicited response"'
Now that firewire-core sets the local node's SPLIT_TIMEOUT to 2 seconds
per default, commit a481e97d3c is no
longer required.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2011-03-20 16:45:24 +01:00

1671 lines
48 KiB
C

/*
* SBP2 driver (SCSI over IEEE1394)
*
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* The basic structure of this driver is based on the old storage driver,
* drivers/ieee1394/sbp2.c, originally written by
* James Goodwin <jamesg@filanet.com>
* with later contributions and ongoing maintenance from
* Ben Collins <bcollins@debian.org>,
* Stefan Richter <stefanr@s5r6.in-berlin.de>
* and many others.
*/
#include <linux/blkdev.h>
#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/stringify.h>
#include <linux/workqueue.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
/*
* So far only bridges from Oxford Semiconductor are known to support
* concurrent logins. Depending on firmware, four or two concurrent logins
* are possible on OXFW911 and newer Oxsemi bridges.
*
* Concurrent logins are useful together with cluster filesystems.
*/
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
"(default = Y, use N for concurrent initiators)");
/*
* Flags for firmware oddities
*
* - 128kB max transfer
* Limit transfer size. Necessary for some old bridges.
*
* - 36 byte inquiry
* When scsi_mod probes the device, let the inquiry command look like that
* from MS Windows.
*
* - skip mode page 8
* Suppress sending of mode_sense for mode page 8 if the device pretends to
* support the SCSI Primary Block commands instead of Reduced Block Commands.
*
* - fix capacity
* Tell sd_mod to correct the last sector number reported by read_capacity.
* Avoids access beyond actual disk limits on devices with an off-by-one bug.
* Don't use this with devices which don't have this bug.
*
* - delay inquiry
* Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
*
* - power condition
* Set the power condition field in the START STOP UNIT commands sent by
* sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
* Some disks need this to spin down or to resume properly.
*
* - override internal blacklist
* Instead of adding to the built-in blacklist, use only the workarounds
* specified in the module load parameter.
* Useful if a blacklist entry interfered with a non-broken device.
*/
#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
#define SBP2_WORKAROUND_INQUIRY_36 0x2
#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
#define SBP2_INQUIRY_DELAY 12
#define SBP2_WORKAROUND_POWER_CONDITION 0x20
#define SBP2_WORKAROUND_OVERRIDE 0x100
static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
", set power condition in start stop unit = "
__stringify(SBP2_WORKAROUND_POWER_CONDITION)
", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
", or a combination)");
/* I don't know why the SCSI stack doesn't define something like this... */
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
static const char sbp2_driver_name[] = "sbp2";
/*
* We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
* and one struct scsi_device per sbp2_logical_unit.
*/
struct sbp2_logical_unit {
struct sbp2_target *tgt;
struct list_head link;
struct fw_address_handler address_handler;
struct list_head orb_list;
u64 command_block_agent_address;
u16 lun;
int login_id;
/*
* The generation is updated once we've logged in or reconnected
* to the logical unit. Thus, I/O to the device will automatically
* fail and get retried if it happens in a window where the device
* is not ready, e.g. after a bus reset but before we reconnect.
*/
int generation;
int retries;
struct delayed_work work;
bool has_sdev;
bool blocked;
};
/*
* We create one struct sbp2_target per IEEE 1212 Unit Directory
* and one struct Scsi_Host per sbp2_target.
*/
struct sbp2_target {
struct kref kref;
struct fw_unit *unit;
const char *bus_id;
struct list_head lu_list;
u64 management_agent_address;
u64 guid;
int directory_id;
int node_id;
int address_high;
unsigned int workarounds;
unsigned int mgt_orb_timeout;
unsigned int max_payload;
int dont_block; /* counter for each logical unit */
int blocked; /* ditto */
};
static struct fw_device *target_device(struct sbp2_target *tgt)
{
return fw_parent_device(tgt->unit);
}
/* Impossible login_id, to detect logout attempt before successful login */
#define INVALID_LOGIN_ID 0x10000
#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
#define SBP2_ORB_NULL 0x80000000
#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
/*
* There is no transport protocol limit to the CDB length, but we implement
* a fixed length only. 16 bytes is enough for disks larger than 2 TB.
*/
#define SBP2_MAX_CDB_SIZE 16
/*
* The default maximum s/g segment size of a FireWire controller is
* usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
* be quadlet-aligned, we set the length limit to 0xffff & ~3.
*/
#define SBP2_MAX_SEG_SIZE 0xfffc
/* Unit directory keys */
#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
#define SBP2_CSR_FIRMWARE_REVISION 0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST 0x0
#define SBP2_QUERY_LOGINS_REQUEST 0x1
#define SBP2_RECONNECT_REQUEST 0x3
#define SBP2_SET_PASSWORD_REQUEST 0x4
#define SBP2_LOGOUT_REQUEST 0x7
#define SBP2_ABORT_TASK_REQUEST 0xb
#define SBP2_ABORT_TASK_SET 0xc
#define SBP2_LOGICAL_UNIT_RESET 0xe
#define SBP2_TARGET_RESET_REQUEST 0xf
/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE 0x00
#define SBP2_AGENT_RESET 0x04
#define SBP2_ORB_POINTER 0x08
#define SBP2_DOORBELL 0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE 0x0
#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
#define STATUS_GET_DATA(v) ((v).data)
struct sbp2_status {
u32 status;
u32 orb_low;
u8 data[24];
};
struct sbp2_pointer {
__be32 high;
__be32 low;
};
struct sbp2_orb {
struct fw_transaction t;
struct kref kref;
dma_addr_t request_bus;
int rcode;
struct sbp2_pointer pointer;
void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
struct list_head link;
};
#define MANAGEMENT_ORB_LUN(v) ((v))
#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
struct sbp2_management_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer password;
struct sbp2_pointer response;
__be32 misc;
__be32 length;
struct sbp2_pointer status_fifo;
} request;
__be32 response[4];
dma_addr_t response_bus;
struct completion done;
struct sbp2_status status;
};
struct sbp2_login_response {
__be32 misc;
struct sbp2_pointer command_block_agent;
__be32 reconnect_hold;
};
#define COMMAND_ORB_DATA_SIZE(v) ((v))
#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
#define COMMAND_ORB_SPEED(v) ((v) << 24)
#define COMMAND_ORB_DIRECTION ((1) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
#define COMMAND_ORB_NOTIFY ((1) << 31)
struct sbp2_command_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer next;
struct sbp2_pointer data_descriptor;
__be32 misc;
u8 command_block[SBP2_MAX_CDB_SIZE];
} request;
struct scsi_cmnd *cmd;
scsi_done_fn_t done;
struct sbp2_logical_unit *lu;
struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
dma_addr_t page_table_bus;
};
#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
/*
* List of devices with known bugs.
*
* The firmware_revision field, masked with 0xffff00, is the best
* indicator for the type of bridge chip of a device. It yields a few
* false positives but this did not break correctly behaving devices
* so far.
*/
static const struct {
u32 firmware_revision;
u32 model;
unsigned int workarounds;
} sbp2_workarounds_table[] = {
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
.firmware_revision = 0x002800,
.model = 0x001010,
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
SBP2_WORKAROUND_MODE_SENSE_8 |
SBP2_WORKAROUND_POWER_CONDITION,
},
/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
.firmware_revision = 0x002800,
.model = 0x000000,
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
},
/* Initio bridges, actually only needed for some older ones */ {
.firmware_revision = 0x000200,
.model = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
},
/* PL-3507 bridge with Prolific firmware */ {
.firmware_revision = 0x012800,
.model = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
},
/* Symbios bridge */ {
.firmware_revision = 0xa0b800,
.model = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
.firmware_revision = 0x002600,
.model = SBP2_ROM_VALUE_WILDCARD,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/*
* iPod 2nd generation: needs 128k max transfer size workaround
* iPod 3rd generation: needs fix capacity workaround
*/
{
.firmware_revision = 0x0a2700,
.model = 0x000000,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod 4th generation */ {
.firmware_revision = 0x0a2700,
.model = 0x000021,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model = 0x000022,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model = 0x000023,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod Photo */ {
.firmware_revision = 0x0a2700,
.model = 0x00007e,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
}
};
static void free_orb(struct kref *kref)
{
struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
kfree(orb);
}
static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
struct sbp2_logical_unit *lu = callback_data;
struct sbp2_orb *orb;
struct sbp2_status status;
unsigned long flags;
if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
length < 8 || length > sizeof(status)) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
status.status = be32_to_cpup(payload);
status.orb_low = be32_to_cpup(payload + 4);
memset(status.data, 0, sizeof(status.data));
if (length > 8)
memcpy(status.data, payload + 8, length - 8);
if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
fw_notify("non-orb related status write, not handled\n");
fw_send_response(card, request, RCODE_COMPLETE);
return;
}
/* Lookup the orb corresponding to this status write. */
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(orb, &lu->orb_list, link) {
if (STATUS_GET_ORB_HIGH(status) == 0 &&
STATUS_GET_ORB_LOW(status) == orb->request_bus) {
orb->rcode = RCODE_COMPLETE;
list_del(&orb->link);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&orb->link != &lu->orb_list) {
orb->callback(orb, &status);
kref_put(&orb->kref, free_orb); /* orb callback reference */
} else {
fw_error("status write for unknown orb\n");
}
fw_send_response(card, request, RCODE_COMPLETE);
}
static void complete_transaction(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct sbp2_orb *orb = data;
unsigned long flags;
/*
* This is a little tricky. We can get the status write for
* the orb before we get this callback. The status write
* handler above will assume the orb pointer transaction was
* successful and set the rcode to RCODE_COMPLETE for the orb.
* So this callback only sets the rcode if it hasn't already
* been set and only does the cleanup if the transaction
* failed and we didn't already get a status write.
*/
spin_lock_irqsave(&card->lock, flags);
if (orb->rcode == -1)
orb->rcode = rcode;
if (orb->rcode != RCODE_COMPLETE) {
list_del(&orb->link);
spin_unlock_irqrestore(&card->lock, flags);
orb->callback(orb, NULL);
kref_put(&orb->kref, free_orb); /* orb callback reference */
} else {
spin_unlock_irqrestore(&card->lock, flags);
}
kref_put(&orb->kref, free_orb); /* transaction callback reference */
}
static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
int node_id, int generation, u64 offset)
{
struct fw_device *device = target_device(lu->tgt);
unsigned long flags;
orb->pointer.high = 0;
orb->pointer.low = cpu_to_be32(orb->request_bus);
spin_lock_irqsave(&device->card->lock, flags);
list_add_tail(&orb->link, &lu->orb_list);
spin_unlock_irqrestore(&device->card->lock, flags);
kref_get(&orb->kref); /* transaction callback reference */
kref_get(&orb->kref); /* orb callback reference */
fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
node_id, generation, device->max_speed, offset,
&orb->pointer, 8, complete_transaction, orb);
}
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
{
struct fw_device *device = target_device(lu->tgt);
struct sbp2_orb *orb, *next;
struct list_head list;
unsigned long flags;
int retval = -ENOENT;
INIT_LIST_HEAD(&list);
spin_lock_irqsave(&device->card->lock, flags);
list_splice_init(&lu->orb_list, &list);
spin_unlock_irqrestore(&device->card->lock, flags);
list_for_each_entry_safe(orb, next, &list, link) {
retval = 0;
if (fw_cancel_transaction(device->card, &orb->t) == 0)
continue;
orb->rcode = RCODE_CANCELLED;
orb->callback(orb, NULL);
kref_put(&orb->kref, free_orb); /* orb callback reference */
}
return retval;
}
static void complete_management_orb(struct sbp2_orb *base_orb,
struct sbp2_status *status)
{
struct sbp2_management_orb *orb =
container_of(base_orb, struct sbp2_management_orb, base);
if (status)
memcpy(&orb->status, status, sizeof(*status));
complete(&orb->done);
}
static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
int generation, int function,
int lun_or_login_id, void *response)
{
struct fw_device *device = target_device(lu->tgt);
struct sbp2_management_orb *orb;
unsigned int timeout;
int retval = -ENOMEM;
if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
return 0;
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
if (orb == NULL)
return -ENOMEM;
kref_init(&orb->base.kref);
orb->response_bus =
dma_map_single(device->card->device, &orb->response,
sizeof(orb->response), DMA_FROM_DEVICE);
if (dma_mapping_error(device->card->device, orb->response_bus))
goto fail_mapping_response;
orb->request.response.high = 0;
orb->request.response.low = cpu_to_be32(orb->response_bus);
orb->request.misc = cpu_to_be32(
MANAGEMENT_ORB_NOTIFY |
MANAGEMENT_ORB_FUNCTION(function) |
MANAGEMENT_ORB_LUN(lun_or_login_id));
orb->request.length = cpu_to_be32(
MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
orb->request.status_fifo.high =
cpu_to_be32(lu->address_handler.offset >> 32);
orb->request.status_fifo.low =
cpu_to_be32(lu->address_handler.offset);
if (function == SBP2_LOGIN_REQUEST) {
/* Ask for 2^2 == 4 seconds reconnect grace period */
orb->request.misc |= cpu_to_be32(
MANAGEMENT_ORB_RECONNECT(2) |
MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
timeout = lu->tgt->mgt_orb_timeout;
} else {
timeout = SBP2_ORB_TIMEOUT;
}
init_completion(&orb->done);
orb->base.callback = complete_management_orb;
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof(orb->request), DMA_TO_DEVICE);
if (dma_mapping_error(device->card->device, orb->base.request_bus))
goto fail_mapping_request;
sbp2_send_orb(&orb->base, lu, node_id, generation,
lu->tgt->management_agent_address);
wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
retval = -EIO;
if (sbp2_cancel_orbs(lu) == 0) {
fw_error("%s: orb reply timed out, rcode=0x%02x\n",
lu->tgt->bus_id, orb->base.rcode);
goto out;
}
if (orb->base.rcode != RCODE_COMPLETE) {
fw_error("%s: management write failed, rcode 0x%02x\n",
lu->tgt->bus_id, orb->base.rcode);
goto out;
}
if (STATUS_GET_RESPONSE(orb->status) != 0 ||
STATUS_GET_SBP_STATUS(orb->status) != 0) {
fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
STATUS_GET_RESPONSE(orb->status),
STATUS_GET_SBP_STATUS(orb->status));
goto out;
}
retval = 0;
out:
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof(orb->request), DMA_TO_DEVICE);
fail_mapping_request:
dma_unmap_single(device->card->device, orb->response_bus,
sizeof(orb->response), DMA_FROM_DEVICE);
fail_mapping_response:
if (response)
memcpy(response, orb->response, sizeof(orb->response));
kref_put(&orb->base.kref, free_orb);
return retval;
}
static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
struct fw_device *device = target_device(lu->tgt);
__be32 d = 0;
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
lu->tgt->node_id, lu->generation, device->max_speed,
lu->command_block_agent_address + SBP2_AGENT_RESET,
&d, 4);
}
static void complete_agent_reset_write_no_wait(struct fw_card *card,
int rcode, void *payload, size_t length, void *data)
{
kfree(data);
}
static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
{
struct fw_device *device = target_device(lu->tgt);
struct fw_transaction *t;
static __be32 d;
t = kmalloc(sizeof(*t), GFP_ATOMIC);
if (t == NULL)
return;
fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
lu->tgt->node_id, lu->generation, device->max_speed,
lu->command_block_agent_address + SBP2_AGENT_RESET,
&d, 4, complete_agent_reset_write_no_wait, t);
}
static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
/*
* We may access dont_block without taking card->lock here:
* All callers of sbp2_allow_block() and all callers of sbp2_unblock()
* are currently serialized against each other.
* And a wrong result in sbp2_conditionally_block()'s access of
* dont_block is rather harmless, it simply misses its first chance.
*/
--lu->tgt->dont_block;
}
/*
* Blocks lu->tgt if all of the following conditions are met:
* - Login, INQUIRY, and high-level SCSI setup of all of the target's
* logical units have been finished (indicated by dont_block == 0).
* - lu->generation is stale.
*
* Note, scsi_block_requests() must be called while holding card->lock,
* otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
* unblock the target.
*/
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
struct sbp2_target *tgt = lu->tgt;
struct fw_card *card = target_device(tgt)->card;
struct Scsi_Host *shost =
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
if (!tgt->dont_block && !lu->blocked &&
lu->generation != card->generation) {
lu->blocked = true;
if (++tgt->blocked == 1)
scsi_block_requests(shost);
}
spin_unlock_irqrestore(&card->lock, flags);
}
/*
* Unblocks lu->tgt as soon as all its logical units can be unblocked.
* Note, it is harmless to run scsi_unblock_requests() outside the
* card->lock protected section. On the other hand, running it inside
* the section might clash with shost->host_lock.
*/
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
struct sbp2_target *tgt = lu->tgt;
struct fw_card *card = target_device(tgt)->card;
struct Scsi_Host *shost =
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
unsigned long flags;
bool unblock = false;
spin_lock_irqsave(&card->lock, flags);
if (lu->blocked && lu->generation == card->generation) {
lu->blocked = false;
unblock = --tgt->blocked == 0;
}
spin_unlock_irqrestore(&card->lock, flags);
if (unblock)
scsi_unblock_requests(shost);
}
/*
* Prevents future blocking of tgt and unblocks it.
* Note, it is harmless to run scsi_unblock_requests() outside the
* card->lock protected section. On the other hand, running it inside
* the section might clash with shost->host_lock.
*/
static void sbp2_unblock(struct sbp2_target *tgt)
{
struct fw_card *card = target_device(tgt)->card;
struct Scsi_Host *shost =
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
++tgt->dont_block;
spin_unlock_irqrestore(&card->lock, flags);
scsi_unblock_requests(shost);
}
static int sbp2_lun2int(u16 lun)
{
struct scsi_lun eight_bytes_lun;
memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
eight_bytes_lun.scsi_lun[1] = lun & 0xff;
return scsilun_to_int(&eight_bytes_lun);
}
static void sbp2_release_target(struct kref *kref)
{
struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
struct sbp2_logical_unit *lu, *next;
struct Scsi_Host *shost =
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
struct scsi_device *sdev;
struct fw_device *device = target_device(tgt);
/* prevent deadlocks */
sbp2_unblock(tgt);
list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
if (sdev) {
scsi_remove_device(sdev);
scsi_device_put(sdev);
}
if (lu->login_id != INVALID_LOGIN_ID) {
int generation, node_id;
/*
* tgt->node_id may be obsolete here if we failed
* during initial login or after a bus reset where
* the topology changed.
*/
generation = device->generation;
smp_rmb(); /* node_id vs. generation */
node_id = device->node_id;
sbp2_send_management_orb(lu, node_id, generation,
SBP2_LOGOUT_REQUEST,
lu->login_id, NULL);
}
fw_core_remove_address_handler(&lu->address_handler);
list_del(&lu->link);
kfree(lu);
}
scsi_remove_host(shost);
fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
fw_unit_put(tgt->unit);
scsi_host_put(shost);
fw_device_put(device);
}
static void sbp2_target_get(struct sbp2_target *tgt)
{
kref_get(&tgt->kref);
}
static void sbp2_target_put(struct sbp2_target *tgt)
{
kref_put(&tgt->kref, sbp2_release_target);
}
static struct workqueue_struct *sbp2_wq;
/*
* Always get the target's kref when scheduling work on one its units.
* Each workqueue job is responsible to call sbp2_target_put() upon return.
*/
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
sbp2_target_get(lu->tgt);
if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
sbp2_target_put(lu->tgt);
}
/*
* Write retransmit retry values into the BUSY_TIMEOUT register.
* - The single-phase retry protocol is supported by all SBP-2 devices, but the
* default retry_limit value is 0 (i.e. never retry transmission). We write a
* saner value after logging into the device.
* - The dual-phase retry protocol is optional to implement, and if not
* supported, writes to the dual-phase portion of the register will be
* ignored. We try to write the original 1394-1995 default here.
* - In the case of devices that are also SBP-3-compliant, all writes are
* ignored, as the register is read-only, but contains single-phase retry of
* 15, which is what we're trying to set for all SBP-2 device anyway, so this
* write attempt is safe and yields more consistent behavior for all devices.
*
* See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
* and section 6.4 of the SBP-3 spec for further details.
*/
static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
{
struct fw_device *device = target_device(lu->tgt);
__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
lu->tgt->node_id, lu->generation, device->max_speed,
CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
}
static void sbp2_reconnect(struct work_struct *work);
static void sbp2_login(struct work_struct *work)
{
struct sbp2_logical_unit *lu =
container_of(work, struct sbp2_logical_unit, work.work);
struct sbp2_target *tgt = lu->tgt;
struct fw_device *device = target_device(tgt);
struct Scsi_Host *shost;
struct scsi_device *sdev;
struct sbp2_login_response response;
int generation, node_id, local_node_id;
if (fw_device_is_shutdown(device))
goto out;
generation = device->generation;
smp_rmb(); /* node IDs must not be older than generation */
node_id = device->node_id;
local_node_id = device->card->node_id;
/* If this is a re-login attempt, log out, or we might be rejected. */
if (lu->has_sdev)
sbp2_send_management_orb(lu, device->node_id, generation,
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
if (sbp2_send_management_orb(lu, node_id, generation,
SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
if (lu->retries++ < 5) {
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
} else {
fw_error("%s: failed to login to LUN %04x\n",
tgt->bus_id, lu->lun);
/* Let any waiting I/O fail from now on. */
sbp2_unblock(lu->tgt);
}
goto out;
}
tgt->node_id = node_id;
tgt->address_high = local_node_id << 16;
smp_wmb(); /* node IDs must not be older than generation */
lu->generation = generation;
lu->command_block_agent_address =
((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
<< 32) | be32_to_cpu(response.command_block_agent.low);
lu->login_id = be32_to_cpu(response.misc) & 0xffff;
fw_notify("%s: logged in to LUN %04x (%d retries)\n",
tgt->bus_id, lu->lun, lu->retries);
/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
sbp2_set_busy_timeout(lu);
PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
sbp2_agent_reset(lu);
/* This was a re-login. */
if (lu->has_sdev) {
sbp2_cancel_orbs(lu);
sbp2_conditionally_unblock(lu);
goto out;
}
if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
ssleep(SBP2_INQUIRY_DELAY);
shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
/*
* FIXME: We are unable to perform reconnects while in sbp2_login().
* Therefore __scsi_add_device() will get into trouble if a bus reset
* happens in parallel. It will either fail or leave us with an
* unusable sdev. As a workaround we check for this and retry the
* whole login and SCSI probing.
*/
/* Reported error during __scsi_add_device() */
if (IS_ERR(sdev))
goto out_logout_login;
/* Unreported error during __scsi_add_device() */
smp_rmb(); /* get current card generation */
if (generation != device->card->generation) {
scsi_remove_device(sdev);
scsi_device_put(sdev);
goto out_logout_login;
}
/* No error during __scsi_add_device() */
lu->has_sdev = true;
scsi_device_put(sdev);
sbp2_allow_block(lu);
goto out;
out_logout_login:
smp_rmb(); /* generation may have changed */
generation = device->generation;
smp_rmb(); /* node_id must not be older than generation */
sbp2_send_management_orb(lu, device->node_id, generation,
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
/*
* If a bus reset happened, sbp2_update will have requeued
* lu->work already. Reset the work from reconnect to login.
*/
PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
out:
sbp2_target_put(tgt);
}
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
{
struct sbp2_logical_unit *lu;
lu = kmalloc(sizeof(*lu), GFP_KERNEL);
if (!lu)
return -ENOMEM;
lu->address_handler.length = 0x100;
lu->address_handler.address_callback = sbp2_status_write;
lu->address_handler.callback_data = lu;
if (fw_core_add_address_handler(&lu->address_handler,
&fw_high_memory_region) < 0) {
kfree(lu);
return -ENOMEM;
}
lu->tgt = tgt;
lu->lun = lun_entry & 0xffff;
lu->login_id = INVALID_LOGIN_ID;
lu->retries = 0;
lu->has_sdev = false;
lu->blocked = false;
++tgt->dont_block;
INIT_LIST_HEAD(&lu->orb_list);
INIT_DELAYED_WORK(&lu->work, sbp2_login);
list_add_tail(&lu->link, &tgt->lu_list);
return 0;
}
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
const u32 *directory)
{
struct fw_csr_iterator ci;
int key, value;
fw_csr_iterator_init(&ci, directory);
while (fw_csr_iterator_next(&ci, &key, &value))
if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
sbp2_add_logical_unit(tgt, value) < 0)
return -ENOMEM;
return 0;
}
static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
u32 *model, u32 *firmware_revision)
{
struct fw_csr_iterator ci;
int key, value;
fw_csr_iterator_init(&ci, directory);
while (fw_csr_iterator_next(&ci, &key, &value)) {
switch (key) {
case CSR_DEPENDENT_INFO | CSR_OFFSET:
tgt->management_agent_address =
CSR_REGISTER_BASE + 4 * value;
break;
case CSR_DIRECTORY_ID:
tgt->directory_id = value;
break;
case CSR_MODEL:
*model = value;
break;
case SBP2_CSR_FIRMWARE_REVISION:
*firmware_revision = value;
break;
case SBP2_CSR_UNIT_CHARACTERISTICS:
/* the timeout value is stored in 500ms units */
tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
break;
case SBP2_CSR_LOGICAL_UNIT_NUMBER:
if (sbp2_add_logical_unit(tgt, value) < 0)
return -ENOMEM;
break;
case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
/* Adjust for the increment in the iterator */
if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
return -ENOMEM;
break;
}
}
return 0;
}
/*
* Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
* provided in the config rom. Most devices do provide a value, which
* we'll use for login management orbs, but with some sane limits.
*/
static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
{
unsigned int timeout = tgt->mgt_orb_timeout;
if (timeout > 40000)
fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
tgt->bus_id, timeout / 1000);
tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
}
static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
u32 firmware_revision)
{
int i;
unsigned int w = sbp2_param_workarounds;
if (w)
fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
"if you need the workarounds parameter for %s\n",
tgt->bus_id);
if (w & SBP2_WORKAROUND_OVERRIDE)
goto out;
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
if (sbp2_workarounds_table[i].firmware_revision !=
(firmware_revision & 0xffffff00))
continue;
if (sbp2_workarounds_table[i].model != model &&
sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
continue;
w |= sbp2_workarounds_table[i].workarounds;
break;
}
out:
if (w)
fw_notify("Workarounds for %s: 0x%x "
"(firmware_revision 0x%06x, model_id 0x%06x)\n",
tgt->bus_id, w, firmware_revision, model);
tgt->workarounds = w;
}
static struct scsi_host_template scsi_driver_template;
static int sbp2_probe(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct fw_device *device = fw_parent_device(unit);
struct sbp2_target *tgt;
struct sbp2_logical_unit *lu;
struct Scsi_Host *shost;
u32 model, firmware_revision;
if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
BUG_ON(dma_set_max_seg_size(device->card->device,
SBP2_MAX_SEG_SIZE));
shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
if (shost == NULL)
return -ENOMEM;
tgt = (struct sbp2_target *)shost->hostdata;
dev_set_drvdata(&unit->device, tgt);
tgt->unit = unit;
kref_init(&tgt->kref);
INIT_LIST_HEAD(&tgt->lu_list);
tgt->bus_id = dev_name(&unit->device);
tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
if (fw_device_enable_phys_dma(device) < 0)
goto fail_shost_put;
shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
if (scsi_add_host(shost, &unit->device) < 0)
goto fail_shost_put;
fw_device_get(device);
fw_unit_get(unit);
/* implicit directory ID */
tgt->directory_id = ((unit->directory - device->config_rom) * 4
+ CSR_CONFIG_ROM) & 0xffffff;
firmware_revision = SBP2_ROM_VALUE_MISSING;
model = SBP2_ROM_VALUE_MISSING;
if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
&firmware_revision) < 0)
goto fail_tgt_put;
sbp2_clamp_management_orb_timeout(tgt);
sbp2_init_workarounds(tgt, model, firmware_revision);
/*
* At S100 we can do 512 bytes per packet, at S200 1024 bytes,
* and so on up to 4096 bytes. The SBP-2 max_payload field
* specifies the max payload size as 2 ^ (max_payload + 2), so
* if we set this to max_speed + 7, we get the right value.
*/
tgt->max_payload = min(device->max_speed + 7, 10U);
tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
/* Do the login in a workqueue so we can easily reschedule retries. */
list_for_each_entry(lu, &tgt->lu_list, link)
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
return 0;
fail_tgt_put:
sbp2_target_put(tgt);
return -ENOMEM;
fail_shost_put:
scsi_host_put(shost);
return -ENOMEM;
}
static int sbp2_remove(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
sbp2_target_put(tgt);
return 0;
}
static void sbp2_reconnect(struct work_struct *work)
{
struct sbp2_logical_unit *lu =
container_of(work, struct sbp2_logical_unit, work.work);
struct sbp2_target *tgt = lu->tgt;
struct fw_device *device = target_device(tgt);
int generation, node_id, local_node_id;
if (fw_device_is_shutdown(device))
goto out;
generation = device->generation;
smp_rmb(); /* node IDs must not be older than generation */
node_id = device->node_id;
local_node_id = device->card->node_id;
if (sbp2_send_management_orb(lu, node_id, generation,
SBP2_RECONNECT_REQUEST,
lu->login_id, NULL) < 0) {
/*
* If reconnect was impossible even though we are in the
* current generation, fall back and try to log in again.
*
* We could check for "Function rejected" status, but
* looking at the bus generation as simpler and more general.
*/
smp_rmb(); /* get current card generation */
if (generation == device->card->generation ||
lu->retries++ >= 5) {
fw_error("%s: failed to reconnect\n", tgt->bus_id);
lu->retries = 0;
PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
}
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
goto out;
}
tgt->node_id = node_id;
tgt->address_high = local_node_id << 16;
smp_wmb(); /* node IDs must not be older than generation */
lu->generation = generation;
fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
tgt->bus_id, lu->lun, lu->retries);
sbp2_agent_reset(lu);
sbp2_cancel_orbs(lu);
sbp2_conditionally_unblock(lu);
out:
sbp2_target_put(tgt);
}
static void sbp2_update(struct fw_unit *unit)
{
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
struct sbp2_logical_unit *lu;
fw_device_enable_phys_dma(fw_parent_device(unit));
/*
* Fw-core serializes sbp2_update() against sbp2_remove().
* Iteration over tgt->lu_list is therefore safe here.
*/
list_for_each_entry(lu, &tgt->lu_list, link) {
sbp2_conditionally_block(lu);
lu->retries = 0;
sbp2_queue_work(lu, 0);
}
}
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
#define SBP2_SW_VERSION_ENTRY 0x00010483
static const struct ieee1394_device_id sbp2_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
.version = SBP2_SW_VERSION_ENTRY,
},
{ }
};
static struct fw_driver sbp2_driver = {
.driver = {
.owner = THIS_MODULE,
.name = sbp2_driver_name,
.bus = &fw_bus_type,
.probe = sbp2_probe,
.remove = sbp2_remove,
},
.update = sbp2_update,
.id_table = sbp2_id_table,
};
static void sbp2_unmap_scatterlist(struct device *card_device,
struct sbp2_command_orb *orb)
{
if (scsi_sg_count(orb->cmd))
dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
scsi_sg_count(orb->cmd),
orb->cmd->sc_data_direction);
if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
dma_unmap_single(card_device, orb->page_table_bus,
sizeof(orb->page_table), DMA_TO_DEVICE);
}
static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
{
int sam_status;
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[1];
sense_data[3] = sbp2_status[4];
sense_data[4] = sbp2_status[5];
sense_data[5] = sbp2_status[6];
sense_data[6] = sbp2_status[7];
sense_data[7] = 10;
sense_data[8] = sbp2_status[8];
sense_data[9] = sbp2_status[9];
sense_data[10] = sbp2_status[10];
sense_data[11] = sbp2_status[11];
sense_data[12] = sbp2_status[2];
sense_data[13] = sbp2_status[3];
sense_data[14] = sbp2_status[12];
sense_data[15] = sbp2_status[13];
sam_status = sbp2_status[0] & 0x3f;
switch (sam_status) {
case SAM_STAT_GOOD:
case SAM_STAT_CHECK_CONDITION:
case SAM_STAT_CONDITION_MET:
case SAM_STAT_BUSY:
case SAM_STAT_RESERVATION_CONFLICT:
case SAM_STAT_COMMAND_TERMINATED:
return DID_OK << 16 | sam_status;
default:
return DID_ERROR << 16;
}
}
static void complete_command_orb(struct sbp2_orb *base_orb,
struct sbp2_status *status)
{
struct sbp2_command_orb *orb =
container_of(base_orb, struct sbp2_command_orb, base);
struct fw_device *device = target_device(orb->lu->tgt);
int result;
if (status != NULL) {
if (STATUS_GET_DEAD(*status))
sbp2_agent_reset_no_wait(orb->lu);
switch (STATUS_GET_RESPONSE(*status)) {
case SBP2_STATUS_REQUEST_COMPLETE:
result = DID_OK << 16;
break;
case SBP2_STATUS_TRANSPORT_FAILURE:
result = DID_BUS_BUSY << 16;
break;
case SBP2_STATUS_ILLEGAL_REQUEST:
case SBP2_STATUS_VENDOR_DEPENDENT:
default:
result = DID_ERROR << 16;
break;
}
if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
orb->cmd->sense_buffer);
} else {
/*
* If the orb completes with status == NULL, something
* went wrong, typically a bus reset happened mid-orb
* or when sending the write (less likely).
*/
result = DID_BUS_BUSY << 16;
sbp2_conditionally_block(orb->lu);
}
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof(orb->request), DMA_TO_DEVICE);
sbp2_unmap_scatterlist(device->card->device, orb);
orb->cmd->result = result;
orb->done(orb->cmd);
}
static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
struct fw_device *device, struct sbp2_logical_unit *lu)
{
struct scatterlist *sg = scsi_sglist(orb->cmd);
int i, n;
n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
orb->cmd->sc_data_direction);
if (n == 0)
goto fail;
/*
* Handle the special case where there is only one element in
* the scatter list by converting it to an immediate block
* request. This is also a workaround for broken devices such
* as the second generation iPod which doesn't support page
* tables.
*/
if (n == 1) {
orb->request.data_descriptor.high =
cpu_to_be32(lu->tgt->address_high);
orb->request.data_descriptor.low =
cpu_to_be32(sg_dma_address(sg));
orb->request.misc |=
cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
return 0;
}
for_each_sg(sg, sg, n, i) {
orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
}
orb->page_table_bus =
dma_map_single(device->card->device, orb->page_table,
sizeof(orb->page_table), DMA_TO_DEVICE);
if (dma_mapping_error(device->card->device, orb->page_table_bus))
goto fail_page_table;
/*
* The data_descriptor pointer is the one case where we need
* to fill in the node ID part of the address. All other
* pointers assume that the data referenced reside on the
* initiator (i.e. us), but data_descriptor can refer to data
* on other nodes so we need to put our ID in descriptor.high.
*/
orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
COMMAND_ORB_DATA_SIZE(n));
return 0;
fail_page_table:
dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
fail:
return -ENOMEM;
}
/* SCSI stack integration */
static int sbp2_scsi_queuecommand_lck(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
struct sbp2_logical_unit *lu = cmd->device->hostdata;
struct fw_device *device = target_device(lu->tgt);
struct sbp2_command_orb *orb;
int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
/*
* Bidirectional commands are not yet implemented, and unknown
* transfer direction not handled.
*/
if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
cmd->result = DID_ERROR << 16;
done(cmd);
return 0;
}
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
if (orb == NULL) {
fw_notify("failed to alloc orb\n");
return SCSI_MLQUEUE_HOST_BUSY;
}
/* Initialize rcode to something not RCODE_COMPLETE. */
orb->base.rcode = -1;
kref_init(&orb->base.kref);
orb->lu = lu;
orb->done = done;
orb->cmd = cmd;
orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
orb->request.misc = cpu_to_be32(
COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
COMMAND_ORB_SPEED(device->max_speed) |
COMMAND_ORB_NOTIFY);
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
generation = device->generation;
smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
goto out;
memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
orb->base.callback = complete_command_orb;
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof(orb->request), DMA_TO_DEVICE);
if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
sbp2_unmap_scatterlist(device->card->device, orb);
goto out;
}
sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
lu->command_block_agent_address + SBP2_ORB_POINTER);
retval = 0;
out:
kref_put(&orb->base.kref, free_orb);
return retval;
}
static DEF_SCSI_QCMD(sbp2_scsi_queuecommand)
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
struct sbp2_logical_unit *lu = sdev->hostdata;
/* (Re-)Adding logical units via the SCSI stack is not supported. */
if (!lu)
return -ENOSYS;
sdev->allow_restart = 1;
/* SBP-2 requires quadlet alignment of the data buffers. */
blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
sdev->inquiry_len = 36;
return 0;
}
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
struct sbp2_logical_unit *lu = sdev->hostdata;
sdev->use_10_for_rw = 1;
if (sbp2_param_exclusive_login)
sdev->manage_start_stop = 1;
if (sdev->type == TYPE_ROM)
sdev->use_10_for_ms = 1;
if (sdev->type == TYPE_DISK &&
lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
sdev->skip_ms_page_8 = 1;
if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
sdev->fix_capacity = 1;
if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
sdev->start_stop_pwr_cond = 1;
if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
return 0;
}
/*
* Called by scsi stack when something has really gone wrong. Usually
* called when a command has timed-out for some reason.
*/
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
struct sbp2_logical_unit *lu = cmd->device->hostdata;
fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
sbp2_agent_reset(lu);
sbp2_cancel_orbs(lu);
return SUCCESS;
}
/*
* Format of /sys/bus/scsi/devices/.../ieee1394_id:
* u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
*
* This is the concatenation of target port identifier and logical unit
* identifier as per SAM-2...SAM-4 annex A.
*/
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct sbp2_logical_unit *lu;
if (!sdev)
return 0;
lu = sdev->hostdata;
return sprintf(buf, "%016llx:%06x:%04x\n",
(unsigned long long)lu->tgt->guid,
lu->tgt->directory_id, lu->lun);
}
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
&dev_attr_ieee1394_id,
NULL
};
static struct scsi_host_template scsi_driver_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = sbp2_driver_name,
.queuecommand = sbp2_scsi_queuecommand,
.slave_alloc = sbp2_scsi_slave_alloc,
.slave_configure = sbp2_scsi_slave_configure,
.eh_abort_handler = sbp2_scsi_abort,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = 1,
.can_queue = 1,
.sdev_attrs = sbp2_scsi_sysfs_attrs,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif
static int __init sbp2_init(void)
{
sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
if (!sbp2_wq)
return -ENOMEM;
return driver_register(&sbp2_driver.driver);
}
static void __exit sbp2_cleanup(void)
{
driver_unregister(&sbp2_driver.driver);
destroy_workqueue(sbp2_wq);
}
module_init(sbp2_init);
module_exit(sbp2_cleanup);