mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 18:24:23 +08:00
b8f7918f33
There are lots of registers that can only be updated from the uncached mapping, so we add some helpers for those cases in order to make it easier to ensure that we only make the jump when it's absolutely necessary. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
415 lines
12 KiB
C
415 lines
12 KiB
C
#ifndef __ASM_SH_IO_H
|
|
#define __ASM_SH_IO_H
|
|
/*
|
|
* Convention:
|
|
* read{b,w,l,q}/write{b,w,l,q} are for PCI,
|
|
* while in{b,w,l}/out{b,w,l} are for ISA
|
|
*
|
|
* In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
|
|
* and 'string' versions: ins{b,w,l}/outs{b,w,l}
|
|
*
|
|
* While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
|
|
* automatically, there are also __raw versions, which do not.
|
|
*
|
|
* Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for
|
|
* SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice
|
|
* these have the same semantics as the __raw variants, and as such, all
|
|
* new code should be using the __raw versions.
|
|
*
|
|
* All ISA I/O routines are wrapped through the machine vector. If a
|
|
* board does not provide overrides, a generic set that are copied in
|
|
* from the default machine vector are used instead. These are largely
|
|
* for old compat code for I/O offseting to SuperIOs, all of which are
|
|
* better handled through the machvec ioport mapping routines these days.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/system.h>
|
|
#include <asm/addrspace.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm-generic/iomap.h>
|
|
|
|
#ifdef __KERNEL__
|
|
/*
|
|
* Depending on which platform we are running on, we need different
|
|
* I/O functions.
|
|
*/
|
|
#define __IO_PREFIX generic
|
|
#include <asm/io_generic.h>
|
|
#include <asm/io_trapped.h>
|
|
|
|
#define inb(p) sh_mv.mv_inb((p))
|
|
#define inw(p) sh_mv.mv_inw((p))
|
|
#define inl(p) sh_mv.mv_inl((p))
|
|
#define outb(x,p) sh_mv.mv_outb((x),(p))
|
|
#define outw(x,p) sh_mv.mv_outw((x),(p))
|
|
#define outl(x,p) sh_mv.mv_outl((x),(p))
|
|
|
|
#define inb_p(p) sh_mv.mv_inb_p((p))
|
|
#define inw_p(p) sh_mv.mv_inw_p((p))
|
|
#define inl_p(p) sh_mv.mv_inl_p((p))
|
|
#define outb_p(x,p) sh_mv.mv_outb_p((x),(p))
|
|
#define outw_p(x,p) sh_mv.mv_outw_p((x),(p))
|
|
#define outl_p(x,p) sh_mv.mv_outl_p((x),(p))
|
|
|
|
#define insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
|
|
#define insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
|
|
#define insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
|
|
#define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
|
|
#define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
|
|
#define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
|
|
|
|
#define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
|
|
#define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
|
|
#define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
|
|
#define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
|
|
|
|
#define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
|
|
#define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
|
|
#define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
|
|
#define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
|
|
|
|
#define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; })
|
|
#define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; })
|
|
#define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; })
|
|
#define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; })
|
|
|
|
#define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
|
|
#define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
|
|
#define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
|
|
#define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); })
|
|
|
|
/*
|
|
* Legacy SuperH on-chip I/O functions
|
|
*
|
|
* These are all deprecated, all new (and especially cross-platform) code
|
|
* should be using the __raw_xxx() routines directly.
|
|
*/
|
|
static inline u8 __deprecated ctrl_inb(unsigned long addr)
|
|
{
|
|
return __raw_readb(addr);
|
|
}
|
|
|
|
static inline u16 __deprecated ctrl_inw(unsigned long addr)
|
|
{
|
|
return __raw_readw(addr);
|
|
}
|
|
|
|
static inline u32 __deprecated ctrl_inl(unsigned long addr)
|
|
{
|
|
return __raw_readl(addr);
|
|
}
|
|
|
|
static inline u64 __deprecated ctrl_inq(unsigned long addr)
|
|
{
|
|
return __raw_readq(addr);
|
|
}
|
|
|
|
static inline void __deprecated ctrl_outb(u8 v, unsigned long addr)
|
|
{
|
|
__raw_writeb(v, addr);
|
|
}
|
|
|
|
static inline void __deprecated ctrl_outw(u16 v, unsigned long addr)
|
|
{
|
|
__raw_writew(v, addr);
|
|
}
|
|
|
|
static inline void __deprecated ctrl_outl(u32 v, unsigned long addr)
|
|
{
|
|
__raw_writel(v, addr);
|
|
}
|
|
|
|
static inline void __deprecated ctrl_outq(u64 v, unsigned long addr)
|
|
{
|
|
__raw_writeq(v, addr);
|
|
}
|
|
|
|
extern unsigned long generic_io_base;
|
|
|
|
static inline void ctrl_delay(void)
|
|
{
|
|
__raw_readw(generic_io_base);
|
|
}
|
|
|
|
#define __BUILD_UNCACHED_IO(bwlq, type) \
|
|
static inline type read##bwlq##_uncached(unsigned long addr) \
|
|
{ \
|
|
type ret; \
|
|
jump_to_uncached(); \
|
|
ret = __raw_read##bwlq(addr); \
|
|
back_to_cached(); \
|
|
return ret; \
|
|
} \
|
|
\
|
|
static inline void write##bwlq##_uncached(type v, unsigned long addr) \
|
|
{ \
|
|
jump_to_uncached(); \
|
|
__raw_write##bwlq(v, addr); \
|
|
back_to_cached(); \
|
|
}
|
|
|
|
__BUILD_UNCACHED_IO(b, u8)
|
|
__BUILD_UNCACHED_IO(w, u16)
|
|
__BUILD_UNCACHED_IO(l, u32)
|
|
__BUILD_UNCACHED_IO(q, u64)
|
|
|
|
#define __BUILD_MEMORY_STRING(bwlq, type) \
|
|
\
|
|
static inline void __raw_writes##bwlq(volatile void __iomem *mem, \
|
|
const void *addr, unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
__raw_write##bwlq(*__addr, mem); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void __raw_reads##bwlq(volatile void __iomem *mem, \
|
|
void *addr, unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = __raw_read##bwlq(mem); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
__BUILD_MEMORY_STRING(b, u8)
|
|
__BUILD_MEMORY_STRING(w, u16)
|
|
|
|
#ifdef CONFIG_SUPERH32
|
|
void __raw_writesl(void __iomem *addr, const void *data, int longlen);
|
|
void __raw_readsl(const void __iomem *addr, void *data, int longlen);
|
|
#else
|
|
__BUILD_MEMORY_STRING(l, u32)
|
|
#endif
|
|
|
|
__BUILD_MEMORY_STRING(q, u64)
|
|
|
|
#define writesb __raw_writesb
|
|
#define writesw __raw_writesw
|
|
#define writesl __raw_writesl
|
|
|
|
#define readsb __raw_readsb
|
|
#define readsw __raw_readsw
|
|
#define readsl __raw_readsl
|
|
|
|
#define readb_relaxed(a) readb(a)
|
|
#define readw_relaxed(a) readw(a)
|
|
#define readl_relaxed(a) readl(a)
|
|
#define readq_relaxed(a) readq(a)
|
|
|
|
#ifndef CONFIG_GENERIC_IOMAP
|
|
/* Simple MMIO */
|
|
#define ioread8(a) __raw_readb(a)
|
|
#define ioread16(a) __raw_readw(a)
|
|
#define ioread16be(a) be16_to_cpu(__raw_readw((a)))
|
|
#define ioread32(a) __raw_readl(a)
|
|
#define ioread32be(a) be32_to_cpu(__raw_readl((a)))
|
|
|
|
#define iowrite8(v,a) __raw_writeb((v),(a))
|
|
#define iowrite16(v,a) __raw_writew((v),(a))
|
|
#define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
|
|
#define iowrite32(v,a) __raw_writel((v),(a))
|
|
#define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
|
|
|
|
#define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c))
|
|
#define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c))
|
|
#define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c))
|
|
|
|
#define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c))
|
|
#define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c))
|
|
#define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c))
|
|
#endif
|
|
|
|
#define mmio_insb(p,d,c) __raw_readsb(p,d,c)
|
|
#define mmio_insw(p,d,c) __raw_readsw(p,d,c)
|
|
#define mmio_insl(p,d,c) __raw_readsl(p,d,c)
|
|
|
|
#define mmio_outsb(p,s,c) __raw_writesb(p,s,c)
|
|
#define mmio_outsw(p,s,c) __raw_writesw(p,s,c)
|
|
#define mmio_outsl(p,s,c) __raw_writesl(p,s,c)
|
|
|
|
/* synco on SH-4A, otherwise a nop */
|
|
#define mmiowb() wmb()
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
/*
|
|
* This function provides a method for the generic case where a
|
|
* board-specific ioport_map simply needs to return the port + some
|
|
* arbitrary port base.
|
|
*
|
|
* We use this at board setup time to implicitly set the port base, and
|
|
* as a result, we can use the generic ioport_map.
|
|
*/
|
|
static inline void __set_io_port_base(unsigned long pbase)
|
|
{
|
|
generic_io_base = pbase;
|
|
}
|
|
|
|
#define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n))
|
|
|
|
/* We really want to try and get these to memcpy etc */
|
|
void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
|
|
void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
|
|
void memset_io(volatile void __iomem *, int, unsigned long);
|
|
|
|
/* Quad-word real-mode I/O, don't ask.. */
|
|
unsigned long long peek_real_address_q(unsigned long long addr);
|
|
unsigned long long poke_real_address_q(unsigned long long addr,
|
|
unsigned long long val);
|
|
|
|
#if !defined(CONFIG_MMU)
|
|
#define virt_to_phys(address) ((unsigned long)(address))
|
|
#define phys_to_virt(address) ((void *)(address))
|
|
#else
|
|
#define virt_to_phys(address) (__pa(address))
|
|
#define phys_to_virt(address) (__va(address))
|
|
#endif
|
|
|
|
/*
|
|
* On 32-bit SH, we traditionally have the whole physical address space
|
|
* mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
|
|
* not need to do anything but place the address in the proper segment.
|
|
* This is true for P1 and P2 addresses, as well as some P3 ones.
|
|
* However, most of the P3 addresses and newer cores using extended
|
|
* addressing need to map through page tables, so the ioremap()
|
|
* implementation becomes a bit more complicated.
|
|
*
|
|
* See arch/sh/mm/ioremap.c for additional notes on this.
|
|
*
|
|
* We cheat a bit and always return uncachable areas until we've fixed
|
|
* the drivers to handle caching properly.
|
|
*
|
|
* On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
|
|
* doesn't exist, so everything must go through page tables.
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
void __iomem *__ioremap_caller(unsigned long offset, unsigned long size,
|
|
pgprot_t prot, void *caller);
|
|
void __iounmap(void __iomem *addr);
|
|
|
|
static inline void __iomem *
|
|
__ioremap(unsigned long offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
|
|
}
|
|
|
|
static inline void __iomem *
|
|
__ioremap_29bit(unsigned long offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
#ifdef CONFIG_29BIT
|
|
unsigned long last_addr = offset + size - 1;
|
|
|
|
/*
|
|
* For P1 and P2 space this is trivial, as everything is already
|
|
* mapped. Uncached access for P1 addresses are done through P2.
|
|
* In the P3 case or for addresses outside of the 29-bit space,
|
|
* mapping must be done by the PMB or by using page tables.
|
|
*/
|
|
if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
|
|
if (unlikely(pgprot_val(prot) & _PAGE_CACHABLE))
|
|
return (void __iomem *)P1SEGADDR(offset);
|
|
|
|
return (void __iomem *)P2SEGADDR(offset);
|
|
}
|
|
|
|
/* P4 above the store queues are always mapped. */
|
|
if (unlikely(offset >= P3_ADDR_MAX))
|
|
return (void __iomem *)P4SEGADDR(offset);
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void __iomem *
|
|
__ioremap_mode(unsigned long offset, unsigned long size, pgprot_t prot)
|
|
{
|
|
void __iomem *ret;
|
|
|
|
ret = __ioremap_trapped(offset, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __ioremap_29bit(offset, size, prot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return __ioremap(offset, size, prot);
|
|
}
|
|
#else
|
|
#define __ioremap(offset, size, prot) ((void __iomem *)(offset))
|
|
#define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
|
|
#define __iounmap(addr) do { } while (0)
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static inline void __iomem *
|
|
ioremap(unsigned long offset, unsigned long size)
|
|
{
|
|
return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
|
|
}
|
|
|
|
static inline void __iomem *
|
|
ioremap_cache(unsigned long offset, unsigned long size)
|
|
{
|
|
return __ioremap_mode(offset, size, PAGE_KERNEL);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_IOREMAP_PROT
|
|
static inline void __iomem *
|
|
ioremap_prot(resource_size_t offset, unsigned long size, unsigned long flags)
|
|
{
|
|
return __ioremap_mode(offset, size, __pgprot(flags));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IOREMAP_FIXED
|
|
extern void __iomem *ioremap_fixed(resource_size_t, unsigned long,
|
|
unsigned long, pgprot_t);
|
|
extern int iounmap_fixed(void __iomem *);
|
|
extern void ioremap_fixed_init(void);
|
|
#else
|
|
static inline void __iomem *
|
|
ioremap_fixed(resource_size_t phys_addr, unsigned long offset,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static inline void ioremap_fixed_init(void) { }
|
|
static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
|
|
#endif
|
|
|
|
#define ioremap_nocache ioremap
|
|
#define iounmap __iounmap
|
|
|
|
#define maybebadio(port) \
|
|
printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
|
|
__func__, __LINE__, (port), (u32)__builtin_return_address(0))
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
|
|
int valid_phys_addr_range(unsigned long addr, size_t size);
|
|
int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* __ASM_SH_IO_H */
|