mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
fb7ccc6180
rc_keydown() can be called from interrupt context, by e.g. an rc scancode driver. Since commit b2c96ba352b5 ("media: cec: move cec autorepeat handling to rc-core"), the del_timer_sync() call is not happy about being called in interrupt connect. del_timer() will suffice. WARNING: CPU: 0 PID: 0 at kernel/time/timer.c:1285 del_timer_sync+0x1d/0x40 CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 4.15.0-rc1+ #1 Hardware name: /DG45ID, BIOS IDG4510H.86A.0135.2011.0225.1100 02/25/2011 task: ffffffffa3e10480 task.stack: ffffffffa3e00000 RIP: 0010:del_timer_sync+0x1d/0x40 RSP: 0018:ffff8b396bc03db0 EFLAGS: 00010046 RAX: 0000000080010000 RBX: ffff8b394d70e410 RCX: 0000000000000073 RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8b394d70e410 RBP: 0000000000000001 R08: ffffffffc0616000 R09: ffff8b396bfa3000 R10: 0000000000000000 R11: 0000000000000390 R12: ffff8b394f003800 R13: 0000000000000000 R14: ffff8b3771c19630 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8b396bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1944469000 CR3: 00000001ebe09000 CR4: 00000000000006f0 Call Trace: <IRQ> ir_do_keyup.part.5+0x22/0x90 [rc_core] rc_keyup+0x37/0x50 [rc_core] usb_rx_callback_intf0+0x79/0x90 [imon] __usb_hcd_giveback_urb+0x90/0x130 uhci_giveback_urb+0xab/0x250 uhci_scan_schedule.part.34+0x806/0xb00 uhci_irq+0xab/0x150 usb_hcd_irq+0x22/0x30 __handle_irq_event_percpu+0x3a/0x180 handle_irq_event_percpu+0x30/0x70 handle_irq_event+0x27/0x50 handle_fasteoi_irq+0x6b/0x110 handle_irq+0xa5/0x100 do_IRQ+0x41/0xc0 common_interrupt+0x96/0x96 </IRQ> RIP: 0010:cpuidle_enter_state+0x9a/0x2d0 RSP: 0018:ffffffffa3e03e88 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffda RAX: ffff8b396bc1a000 RBX: 00000010da7bcd63 RCX: 00000010da7bccf6 RDX: 00000010da7bcd63 RSI: 00000010da7bcd63 RDI: 0000000000000000 RBP: ffff8b394f587400 R08: 0000000000000000 R09: 0000000000000002 R10: ffffffffa3e03e48 R11: 0000000000000390 R12: 0000000000000003 R13: ffffffffa3ebf018 R14: 0000000000000000 R15: 00000010da7ba772 ? cpuidle_enter_state+0x8d/0x2d0 do_idle+0x17b/0x1d0 cpu_startup_entry+0x6f/0x80 start_kernel+0x4a7/0x4c7 secondary_startup_64+0xa5/0xb0 Code: e7 5b 5d 41 5c e9 84 88 05 00 0f 1f 40 00 66 66 66 66 90 65 8b 05 e4 6f ef 5c a9 00 00 0f 00 53 48 89 fb 74 16 f6 47 22 20 75 10 <0f> ff 48 89 df e8 89 f1 ff ff 85 c0 79 0e f3 90 48 89 df e8 7b Fixes: b2c96ba352b5 ("media: cec: move cec autorepeat handling to rc-core") Signed-off-by: Sean Young <sean@mess.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2003 lines
51 KiB
C
2003 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// rc-main.c - Remote Controller core module
|
|
//
|
|
// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <media/rc-core.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/input.h>
|
|
#include <linux/leds.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/device.h>
|
|
#include <linux/module.h>
|
|
#include "rc-core-priv.h"
|
|
|
|
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
|
|
#define IR_TAB_MIN_SIZE 256
|
|
#define IR_TAB_MAX_SIZE 8192
|
|
|
|
static const struct {
|
|
const char *name;
|
|
unsigned int repeat_period;
|
|
unsigned int scancode_bits;
|
|
} protocols[] = {
|
|
[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
|
|
[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
|
|
[RC_PROTO_RC5] = { .name = "rc-5",
|
|
.scancode_bits = 0x1f7f, .repeat_period = 250 },
|
|
[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
|
|
.scancode_bits = 0x1f7f3f, .repeat_period = 250 },
|
|
[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
|
|
.scancode_bits = 0x2fff, .repeat_period = 250 },
|
|
[RC_PROTO_JVC] = { .name = "jvc",
|
|
.scancode_bits = 0xffff, .repeat_period = 250 },
|
|
[RC_PROTO_SONY12] = { .name = "sony-12",
|
|
.scancode_bits = 0x1f007f, .repeat_period = 250 },
|
|
[RC_PROTO_SONY15] = { .name = "sony-15",
|
|
.scancode_bits = 0xff007f, .repeat_period = 250 },
|
|
[RC_PROTO_SONY20] = { .name = "sony-20",
|
|
.scancode_bits = 0x1fff7f, .repeat_period = 250 },
|
|
[RC_PROTO_NEC] = { .name = "nec",
|
|
.scancode_bits = 0xffff, .repeat_period = 250 },
|
|
[RC_PROTO_NECX] = { .name = "nec-x",
|
|
.scancode_bits = 0xffffff, .repeat_period = 250 },
|
|
[RC_PROTO_NEC32] = { .name = "nec-32",
|
|
.scancode_bits = 0xffffffff, .repeat_period = 250 },
|
|
[RC_PROTO_SANYO] = { .name = "sanyo",
|
|
.scancode_bits = 0x1fffff, .repeat_period = 250 },
|
|
[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
|
|
.scancode_bits = 0xffff, .repeat_period = 250 },
|
|
[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
|
|
.scancode_bits = 0x1fffff, .repeat_period = 250 },
|
|
[RC_PROTO_RC6_0] = { .name = "rc-6-0",
|
|
.scancode_bits = 0xffff, .repeat_period = 250 },
|
|
[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
|
|
.scancode_bits = 0xfffff, .repeat_period = 250 },
|
|
[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
|
|
.scancode_bits = 0xffffff, .repeat_period = 250 },
|
|
[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
|
|
.scancode_bits = 0xffffffff, .repeat_period = 250 },
|
|
[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
|
|
.scancode_bits = 0xffff7fff, .repeat_period = 250 },
|
|
[RC_PROTO_SHARP] = { .name = "sharp",
|
|
.scancode_bits = 0x1fff, .repeat_period = 250 },
|
|
[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
|
|
[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
|
|
};
|
|
|
|
/* Used to keep track of known keymaps */
|
|
static LIST_HEAD(rc_map_list);
|
|
static DEFINE_SPINLOCK(rc_map_lock);
|
|
static struct led_trigger *led_feedback;
|
|
|
|
/* Used to keep track of rc devices */
|
|
static DEFINE_IDA(rc_ida);
|
|
|
|
static struct rc_map_list *seek_rc_map(const char *name)
|
|
{
|
|
struct rc_map_list *map = NULL;
|
|
|
|
spin_lock(&rc_map_lock);
|
|
list_for_each_entry(map, &rc_map_list, list) {
|
|
if (!strcmp(name, map->map.name)) {
|
|
spin_unlock(&rc_map_lock);
|
|
return map;
|
|
}
|
|
}
|
|
spin_unlock(&rc_map_lock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct rc_map *rc_map_get(const char *name)
|
|
{
|
|
|
|
struct rc_map_list *map;
|
|
|
|
map = seek_rc_map(name);
|
|
#ifdef CONFIG_MODULES
|
|
if (!map) {
|
|
int rc = request_module("%s", name);
|
|
if (rc < 0) {
|
|
pr_err("Couldn't load IR keymap %s\n", name);
|
|
return NULL;
|
|
}
|
|
msleep(20); /* Give some time for IR to register */
|
|
|
|
map = seek_rc_map(name);
|
|
}
|
|
#endif
|
|
if (!map) {
|
|
pr_err("IR keymap %s not found\n", name);
|
|
return NULL;
|
|
}
|
|
|
|
printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
|
|
|
|
return &map->map;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_get);
|
|
|
|
int rc_map_register(struct rc_map_list *map)
|
|
{
|
|
spin_lock(&rc_map_lock);
|
|
list_add_tail(&map->list, &rc_map_list);
|
|
spin_unlock(&rc_map_lock);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_register);
|
|
|
|
void rc_map_unregister(struct rc_map_list *map)
|
|
{
|
|
spin_lock(&rc_map_lock);
|
|
list_del(&map->list);
|
|
spin_unlock(&rc_map_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_map_unregister);
|
|
|
|
|
|
static struct rc_map_table empty[] = {
|
|
{ 0x2a, KEY_COFFEE },
|
|
};
|
|
|
|
static struct rc_map_list empty_map = {
|
|
.map = {
|
|
.scan = empty,
|
|
.size = ARRAY_SIZE(empty),
|
|
.rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
|
|
.name = RC_MAP_EMPTY,
|
|
}
|
|
};
|
|
|
|
/**
|
|
* ir_create_table() - initializes a scancode table
|
|
* @rc_map: the rc_map to initialize
|
|
* @name: name to assign to the table
|
|
* @rc_proto: ir type to assign to the new table
|
|
* @size: initial size of the table
|
|
*
|
|
* This routine will initialize the rc_map and will allocate
|
|
* memory to hold at least the specified number of elements.
|
|
*
|
|
* return: zero on success or a negative error code
|
|
*/
|
|
static int ir_create_table(struct rc_map *rc_map,
|
|
const char *name, u64 rc_proto, size_t size)
|
|
{
|
|
rc_map->name = kstrdup(name, GFP_KERNEL);
|
|
if (!rc_map->name)
|
|
return -ENOMEM;
|
|
rc_map->rc_proto = rc_proto;
|
|
rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
|
|
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
|
|
rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
|
|
if (!rc_map->scan) {
|
|
kfree(rc_map->name);
|
|
rc_map->name = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
|
|
rc_map->size, rc_map->alloc);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_free_table() - frees memory allocated by a scancode table
|
|
* @rc_map: the table whose mappings need to be freed
|
|
*
|
|
* This routine will free memory alloctaed for key mappings used by given
|
|
* scancode table.
|
|
*/
|
|
static void ir_free_table(struct rc_map *rc_map)
|
|
{
|
|
rc_map->size = 0;
|
|
kfree(rc_map->name);
|
|
rc_map->name = NULL;
|
|
kfree(rc_map->scan);
|
|
rc_map->scan = NULL;
|
|
}
|
|
|
|
/**
|
|
* ir_resize_table() - resizes a scancode table if necessary
|
|
* @rc_map: the rc_map to resize
|
|
* @gfp_flags: gfp flags to use when allocating memory
|
|
*
|
|
* This routine will shrink the rc_map if it has lots of
|
|
* unused entries and grow it if it is full.
|
|
*
|
|
* return: zero on success or a negative error code
|
|
*/
|
|
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
|
|
{
|
|
unsigned int oldalloc = rc_map->alloc;
|
|
unsigned int newalloc = oldalloc;
|
|
struct rc_map_table *oldscan = rc_map->scan;
|
|
struct rc_map_table *newscan;
|
|
|
|
if (rc_map->size == rc_map->len) {
|
|
/* All entries in use -> grow keytable */
|
|
if (rc_map->alloc >= IR_TAB_MAX_SIZE)
|
|
return -ENOMEM;
|
|
|
|
newalloc *= 2;
|
|
IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
|
|
}
|
|
|
|
if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
|
|
/* Less than 1/3 of entries in use -> shrink keytable */
|
|
newalloc /= 2;
|
|
IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
|
|
}
|
|
|
|
if (newalloc == oldalloc)
|
|
return 0;
|
|
|
|
newscan = kmalloc(newalloc, gfp_flags);
|
|
if (!newscan) {
|
|
IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
|
|
rc_map->scan = newscan;
|
|
rc_map->alloc = newalloc;
|
|
rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
|
|
kfree(oldscan);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_update_mapping() - set a keycode in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @rc_map: scancode table to be adjusted
|
|
* @index: index of the mapping that needs to be updated
|
|
* @new_keycode: the desired keycode
|
|
*
|
|
* This routine is used to update scancode->keycode mapping at given
|
|
* position.
|
|
*
|
|
* return: previous keycode assigned to the mapping
|
|
*
|
|
*/
|
|
static unsigned int ir_update_mapping(struct rc_dev *dev,
|
|
struct rc_map *rc_map,
|
|
unsigned int index,
|
|
unsigned int new_keycode)
|
|
{
|
|
int old_keycode = rc_map->scan[index].keycode;
|
|
int i;
|
|
|
|
/* Did the user wish to remove the mapping? */
|
|
if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
|
|
IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
|
|
index, rc_map->scan[index].scancode);
|
|
rc_map->len--;
|
|
memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
|
|
(rc_map->len - index) * sizeof(struct rc_map_table));
|
|
} else {
|
|
IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
|
|
index,
|
|
old_keycode == KEY_RESERVED ? "New" : "Replacing",
|
|
rc_map->scan[index].scancode, new_keycode);
|
|
rc_map->scan[index].keycode = new_keycode;
|
|
__set_bit(new_keycode, dev->input_dev->keybit);
|
|
}
|
|
|
|
if (old_keycode != KEY_RESERVED) {
|
|
/* A previous mapping was updated... */
|
|
__clear_bit(old_keycode, dev->input_dev->keybit);
|
|
/* ... but another scancode might use the same keycode */
|
|
for (i = 0; i < rc_map->len; i++) {
|
|
if (rc_map->scan[i].keycode == old_keycode) {
|
|
__set_bit(old_keycode, dev->input_dev->keybit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Possibly shrink the keytable, failure is not a problem */
|
|
ir_resize_table(rc_map, GFP_ATOMIC);
|
|
}
|
|
|
|
return old_keycode;
|
|
}
|
|
|
|
/**
|
|
* ir_establish_scancode() - set a keycode in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @rc_map: scancode table to be searched
|
|
* @scancode: the desired scancode
|
|
* @resize: controls whether we allowed to resize the table to
|
|
* accommodate not yet present scancodes
|
|
*
|
|
* This routine is used to locate given scancode in rc_map.
|
|
* If scancode is not yet present the routine will allocate a new slot
|
|
* for it.
|
|
*
|
|
* return: index of the mapping containing scancode in question
|
|
* or -1U in case of failure.
|
|
*/
|
|
static unsigned int ir_establish_scancode(struct rc_dev *dev,
|
|
struct rc_map *rc_map,
|
|
unsigned int scancode,
|
|
bool resize)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Unfortunately, some hardware-based IR decoders don't provide
|
|
* all bits for the complete IR code. In general, they provide only
|
|
* the command part of the IR code. Yet, as it is possible to replace
|
|
* the provided IR with another one, it is needed to allow loading
|
|
* IR tables from other remotes. So, we support specifying a mask to
|
|
* indicate the valid bits of the scancodes.
|
|
*/
|
|
if (dev->scancode_mask)
|
|
scancode &= dev->scancode_mask;
|
|
|
|
/* First check if we already have a mapping for this ir command */
|
|
for (i = 0; i < rc_map->len; i++) {
|
|
if (rc_map->scan[i].scancode == scancode)
|
|
return i;
|
|
|
|
/* Keytable is sorted from lowest to highest scancode */
|
|
if (rc_map->scan[i].scancode >= scancode)
|
|
break;
|
|
}
|
|
|
|
/* No previous mapping found, we might need to grow the table */
|
|
if (rc_map->size == rc_map->len) {
|
|
if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
|
|
return -1U;
|
|
}
|
|
|
|
/* i is the proper index to insert our new keycode */
|
|
if (i < rc_map->len)
|
|
memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
|
|
(rc_map->len - i) * sizeof(struct rc_map_table));
|
|
rc_map->scan[i].scancode = scancode;
|
|
rc_map->scan[i].keycode = KEY_RESERVED;
|
|
rc_map->len++;
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* ir_setkeycode() - set a keycode in the scancode->keycode table
|
|
* @idev: the struct input_dev device descriptor
|
|
* @ke: Input keymap entry
|
|
* @old_keycode: result
|
|
*
|
|
* This routine is used to handle evdev EVIOCSKEY ioctl.
|
|
*
|
|
* return: -EINVAL if the keycode could not be inserted, otherwise zero.
|
|
*/
|
|
static int ir_setkeycode(struct input_dev *idev,
|
|
const struct input_keymap_entry *ke,
|
|
unsigned int *old_keycode)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
struct rc_map *rc_map = &rdev->rc_map;
|
|
unsigned int index;
|
|
unsigned int scancode;
|
|
int retval = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
|
|
index = ke->index;
|
|
if (index >= rc_map->len) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
retval = input_scancode_to_scalar(ke, &scancode);
|
|
if (retval)
|
|
goto out;
|
|
|
|
index = ir_establish_scancode(rdev, rc_map, scancode, true);
|
|
if (index >= rc_map->len) {
|
|
retval = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ir_setkeytable() - sets several entries in the scancode->keycode table
|
|
* @dev: the struct rc_dev device descriptor
|
|
* @from: the struct rc_map to copy entries from
|
|
*
|
|
* This routine is used to handle table initialization.
|
|
*
|
|
* return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
|
|
*/
|
|
static int ir_setkeytable(struct rc_dev *dev,
|
|
const struct rc_map *from)
|
|
{
|
|
struct rc_map *rc_map = &dev->rc_map;
|
|
unsigned int i, index;
|
|
int rc;
|
|
|
|
rc = ir_create_table(rc_map, from->name,
|
|
from->rc_proto, from->size);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < from->size; i++) {
|
|
index = ir_establish_scancode(dev, rc_map,
|
|
from->scan[i].scancode, false);
|
|
if (index >= rc_map->len) {
|
|
rc = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
ir_update_mapping(dev, rc_map, index,
|
|
from->scan[i].keycode);
|
|
}
|
|
|
|
if (rc)
|
|
ir_free_table(rc_map);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int rc_map_cmp(const void *key, const void *elt)
|
|
{
|
|
const unsigned int *scancode = key;
|
|
const struct rc_map_table *e = elt;
|
|
|
|
if (*scancode < e->scancode)
|
|
return -1;
|
|
else if (*scancode > e->scancode)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ir_lookup_by_scancode() - locate mapping by scancode
|
|
* @rc_map: the struct rc_map to search
|
|
* @scancode: scancode to look for in the table
|
|
*
|
|
* This routine performs binary search in RC keykeymap table for
|
|
* given scancode.
|
|
*
|
|
* return: index in the table, -1U if not found
|
|
*/
|
|
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
|
|
unsigned int scancode)
|
|
{
|
|
struct rc_map_table *res;
|
|
|
|
res = bsearch(&scancode, rc_map->scan, rc_map->len,
|
|
sizeof(struct rc_map_table), rc_map_cmp);
|
|
if (!res)
|
|
return -1U;
|
|
else
|
|
return res - rc_map->scan;
|
|
}
|
|
|
|
/**
|
|
* ir_getkeycode() - get a keycode from the scancode->keycode table
|
|
* @idev: the struct input_dev device descriptor
|
|
* @ke: Input keymap entry
|
|
*
|
|
* This routine is used to handle evdev EVIOCGKEY ioctl.
|
|
*
|
|
* return: always returns zero.
|
|
*/
|
|
static int ir_getkeycode(struct input_dev *idev,
|
|
struct input_keymap_entry *ke)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
struct rc_map *rc_map = &rdev->rc_map;
|
|
struct rc_map_table *entry;
|
|
unsigned long flags;
|
|
unsigned int index;
|
|
unsigned int scancode;
|
|
int retval;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
|
|
index = ke->index;
|
|
} else {
|
|
retval = input_scancode_to_scalar(ke, &scancode);
|
|
if (retval)
|
|
goto out;
|
|
|
|
index = ir_lookup_by_scancode(rc_map, scancode);
|
|
}
|
|
|
|
if (index < rc_map->len) {
|
|
entry = &rc_map->scan[index];
|
|
|
|
ke->index = index;
|
|
ke->keycode = entry->keycode;
|
|
ke->len = sizeof(entry->scancode);
|
|
memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
|
|
|
|
} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
|
|
/*
|
|
* We do not really know the valid range of scancodes
|
|
* so let's respond with KEY_RESERVED to anything we
|
|
* do not have mapping for [yet].
|
|
*/
|
|
ke->index = index;
|
|
ke->keycode = KEY_RESERVED;
|
|
} else {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
retval = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @scancode: the scancode to look for
|
|
*
|
|
* This routine is used by drivers which need to convert a scancode to a
|
|
* keycode. Normally it should not be used since drivers should have no
|
|
* interest in keycodes.
|
|
*
|
|
* return: the corresponding keycode, or KEY_RESERVED
|
|
*/
|
|
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
|
|
{
|
|
struct rc_map *rc_map = &dev->rc_map;
|
|
unsigned int keycode;
|
|
unsigned int index;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rc_map->lock, flags);
|
|
|
|
index = ir_lookup_by_scancode(rc_map, scancode);
|
|
keycode = index < rc_map->len ?
|
|
rc_map->scan[index].keycode : KEY_RESERVED;
|
|
|
|
spin_unlock_irqrestore(&rc_map->lock, flags);
|
|
|
|
if (keycode != KEY_RESERVED)
|
|
IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
|
|
dev->device_name, scancode, keycode);
|
|
|
|
return keycode;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
|
|
|
|
/**
|
|
* ir_do_keyup() - internal function to signal the release of a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @sync: whether or not to call input_sync
|
|
*
|
|
* This function is used internally to release a keypress, it must be
|
|
* called with keylock held.
|
|
*/
|
|
static void ir_do_keyup(struct rc_dev *dev, bool sync)
|
|
{
|
|
if (!dev->keypressed)
|
|
return;
|
|
|
|
IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
|
|
del_timer(&dev->timer_repeat);
|
|
input_report_key(dev->input_dev, dev->last_keycode, 0);
|
|
led_trigger_event(led_feedback, LED_OFF);
|
|
if (sync)
|
|
input_sync(dev->input_dev);
|
|
dev->keypressed = false;
|
|
}
|
|
|
|
/**
|
|
* rc_keyup() - signals the release of a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
*
|
|
* This routine is used to signal that a key has been released on the
|
|
* remote control.
|
|
*/
|
|
void rc_keyup(struct rc_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keyup(dev, true);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keyup);
|
|
|
|
/**
|
|
* ir_timer_keyup() - generates a keyup event after a timeout
|
|
*
|
|
* @t: a pointer to the struct timer_list
|
|
*
|
|
* This routine will generate a keyup event some time after a keydown event
|
|
* is generated when no further activity has been detected.
|
|
*/
|
|
static void ir_timer_keyup(struct timer_list *t)
|
|
{
|
|
struct rc_dev *dev = from_timer(dev, t, timer_keyup);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* ir->keyup_jiffies is used to prevent a race condition if a
|
|
* hardware interrupt occurs at this point and the keyup timer
|
|
* event is moved further into the future as a result.
|
|
*
|
|
* The timer will then be reactivated and this function called
|
|
* again in the future. We need to exit gracefully in that case
|
|
* to allow the input subsystem to do its auto-repeat magic or
|
|
* a keyup event might follow immediately after the keydown.
|
|
*/
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
if (time_is_before_eq_jiffies(dev->keyup_jiffies))
|
|
ir_do_keyup(dev, true);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
|
|
/**
|
|
* ir_timer_repeat() - generates a repeat event after a timeout
|
|
*
|
|
* @t: a pointer to the struct timer_list
|
|
*
|
|
* This routine will generate a soft repeat event every REP_PERIOD
|
|
* milliseconds.
|
|
*/
|
|
static void ir_timer_repeat(struct timer_list *t)
|
|
{
|
|
struct rc_dev *dev = from_timer(dev, t, timer_repeat);
|
|
struct input_dev *input = dev->input_dev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
if (dev->keypressed) {
|
|
input_event(input, EV_KEY, dev->last_keycode, 2);
|
|
input_sync(input);
|
|
if (input->rep[REP_PERIOD])
|
|
mod_timer(&dev->timer_repeat, jiffies +
|
|
msecs_to_jiffies(input->rep[REP_PERIOD]));
|
|
}
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
|
|
/**
|
|
* rc_repeat() - signals that a key is still pressed
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
*
|
|
* This routine is used by IR decoders when a repeat message which does
|
|
* not include the necessary bits to reproduce the scancode has been
|
|
* received.
|
|
*/
|
|
void rc_repeat(struct rc_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int timeout = protocols[dev->last_protocol].repeat_period;
|
|
struct lirc_scancode sc = {
|
|
.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
|
|
.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
|
|
.flags = LIRC_SCANCODE_FLAG_REPEAT |
|
|
(dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
|
|
};
|
|
|
|
ir_lirc_scancode_event(dev, &sc);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
|
|
input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
|
|
input_sync(dev->input_dev);
|
|
|
|
if (dev->keypressed) {
|
|
dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
|
|
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_repeat);
|
|
|
|
/**
|
|
* ir_do_keydown() - internal function to process a keypress
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol of the keypress
|
|
* @scancode: the scancode of the keypress
|
|
* @keycode: the keycode of the keypress
|
|
* @toggle: the toggle value of the keypress
|
|
*
|
|
* This function is used internally to register a keypress, it must be
|
|
* called with keylock held.
|
|
*/
|
|
static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
|
|
u32 scancode, u32 keycode, u8 toggle)
|
|
{
|
|
bool new_event = (!dev->keypressed ||
|
|
dev->last_protocol != protocol ||
|
|
dev->last_scancode != scancode ||
|
|
dev->last_toggle != toggle);
|
|
struct lirc_scancode sc = {
|
|
.scancode = scancode, .rc_proto = protocol,
|
|
.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
|
|
.keycode = keycode
|
|
};
|
|
|
|
ir_lirc_scancode_event(dev, &sc);
|
|
|
|
if (new_event && dev->keypressed)
|
|
ir_do_keyup(dev, false);
|
|
|
|
input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
|
|
|
|
dev->last_protocol = protocol;
|
|
dev->last_scancode = scancode;
|
|
dev->last_toggle = toggle;
|
|
dev->last_keycode = keycode;
|
|
|
|
if (new_event && keycode != KEY_RESERVED) {
|
|
/* Register a keypress */
|
|
dev->keypressed = true;
|
|
|
|
IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
|
|
dev->device_name, keycode, protocol, scancode);
|
|
input_report_key(dev->input_dev, keycode, 1);
|
|
|
|
led_trigger_event(led_feedback, LED_FULL);
|
|
}
|
|
|
|
/*
|
|
* For CEC, start sending repeat messages as soon as the first
|
|
* repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
|
|
* is non-zero. Otherwise, the input layer will generate repeat
|
|
* messages.
|
|
*/
|
|
if (!new_event && keycode != KEY_RESERVED &&
|
|
dev->allowed_protocols == RC_PROTO_BIT_CEC &&
|
|
!timer_pending(&dev->timer_repeat) &&
|
|
dev->input_dev->rep[REP_PERIOD] &&
|
|
!dev->input_dev->rep[REP_DELAY]) {
|
|
input_event(dev->input_dev, EV_KEY, keycode, 2);
|
|
mod_timer(&dev->timer_repeat, jiffies +
|
|
msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
|
|
}
|
|
|
|
input_sync(dev->input_dev);
|
|
}
|
|
|
|
/**
|
|
* rc_keydown() - generates input event for a key press
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol for the keypress
|
|
* @scancode: the scancode for the keypress
|
|
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
|
|
* support toggle values, this should be set to zero)
|
|
*
|
|
* This routine is used to signal that a key has been pressed on the
|
|
* remote control.
|
|
*/
|
|
void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
|
|
u8 toggle)
|
|
{
|
|
unsigned long flags;
|
|
u32 keycode = rc_g_keycode_from_table(dev, scancode);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
|
|
|
|
if (dev->keypressed) {
|
|
dev->keyup_jiffies = jiffies +
|
|
msecs_to_jiffies(protocols[protocol].repeat_period);
|
|
mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
|
|
}
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keydown);
|
|
|
|
/**
|
|
* rc_keydown_notimeout() - generates input event for a key press without
|
|
* an automatic keyup event at a later time
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @protocol: the protocol for the keypress
|
|
* @scancode: the scancode for the keypress
|
|
* @toggle: the toggle value (protocol dependent, if the protocol doesn't
|
|
* support toggle values, this should be set to zero)
|
|
*
|
|
* This routine is used to signal that a key has been pressed on the
|
|
* remote control. The driver must manually call rc_keyup() at a later stage.
|
|
*/
|
|
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
|
|
u32 scancode, u8 toggle)
|
|
{
|
|
unsigned long flags;
|
|
u32 keycode = rc_g_keycode_from_table(dev, scancode);
|
|
|
|
spin_lock_irqsave(&dev->keylock, flags);
|
|
ir_do_keydown(dev, protocol, scancode, keycode, toggle);
|
|
spin_unlock_irqrestore(&dev->keylock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
|
|
|
|
/**
|
|
* rc_validate_scancode() - checks that a scancode is valid for a protocol.
|
|
* For nec, it should do the opposite of ir_nec_bytes_to_scancode()
|
|
* @proto: protocol
|
|
* @scancode: scancode
|
|
*/
|
|
bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
|
|
{
|
|
switch (proto) {
|
|
/*
|
|
* NECX has a 16-bit address; if the lower 8 bits match the upper
|
|
* 8 bits inverted, then the address would match regular nec.
|
|
*/
|
|
case RC_PROTO_NECX:
|
|
if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
|
|
return false;
|
|
break;
|
|
/*
|
|
* NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
|
|
* of the command match the upper 8 bits inverted, then it would
|
|
* be either NEC or NECX.
|
|
*/
|
|
case RC_PROTO_NEC32:
|
|
if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
|
|
return false;
|
|
break;
|
|
/*
|
|
* If the customer code (top 32-bit) is 0x800f, it is MCE else it
|
|
* is regular mode-6a 32 bit
|
|
*/
|
|
case RC_PROTO_RC6_MCE:
|
|
if ((scancode & 0xffff0000) != 0x800f0000)
|
|
return false;
|
|
break;
|
|
case RC_PROTO_RC6_6A_32:
|
|
if ((scancode & 0xffff0000) == 0x800f0000)
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* rc_validate_filter() - checks that the scancode and mask are valid and
|
|
* provides sensible defaults
|
|
* @dev: the struct rc_dev descriptor of the device
|
|
* @filter: the scancode and mask
|
|
*
|
|
* return: 0 or -EINVAL if the filter is not valid
|
|
*/
|
|
static int rc_validate_filter(struct rc_dev *dev,
|
|
struct rc_scancode_filter *filter)
|
|
{
|
|
u32 mask, s = filter->data;
|
|
enum rc_proto protocol = dev->wakeup_protocol;
|
|
|
|
if (protocol >= ARRAY_SIZE(protocols))
|
|
return -EINVAL;
|
|
|
|
mask = protocols[protocol].scancode_bits;
|
|
|
|
if (!rc_validate_scancode(protocol, s))
|
|
return -EINVAL;
|
|
|
|
filter->data &= mask;
|
|
filter->mask &= mask;
|
|
|
|
/*
|
|
* If we have to raw encode the IR for wakeup, we cannot have a mask
|
|
*/
|
|
if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rc_open(struct rc_dev *rdev)
|
|
{
|
|
int rval = 0;
|
|
|
|
if (!rdev)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rdev->lock);
|
|
|
|
if (!rdev->registered) {
|
|
rval = -ENODEV;
|
|
} else {
|
|
if (!rdev->users++ && rdev->open)
|
|
rval = rdev->open(rdev);
|
|
|
|
if (rval)
|
|
rdev->users--;
|
|
}
|
|
|
|
mutex_unlock(&rdev->lock);
|
|
|
|
return rval;
|
|
}
|
|
|
|
static int ir_open(struct input_dev *idev)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
|
|
return rc_open(rdev);
|
|
}
|
|
|
|
void rc_close(struct rc_dev *rdev)
|
|
{
|
|
if (rdev) {
|
|
mutex_lock(&rdev->lock);
|
|
|
|
if (!--rdev->users && rdev->close && rdev->registered)
|
|
rdev->close(rdev);
|
|
|
|
mutex_unlock(&rdev->lock);
|
|
}
|
|
}
|
|
|
|
static void ir_close(struct input_dev *idev)
|
|
{
|
|
struct rc_dev *rdev = input_get_drvdata(idev);
|
|
rc_close(rdev);
|
|
}
|
|
|
|
/* class for /sys/class/rc */
|
|
static char *rc_devnode(struct device *dev, umode_t *mode)
|
|
{
|
|
return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
|
|
}
|
|
|
|
static struct class rc_class = {
|
|
.name = "rc",
|
|
.devnode = rc_devnode,
|
|
};
|
|
|
|
/*
|
|
* These are the protocol textual descriptions that are
|
|
* used by the sysfs protocols file. Note that the order
|
|
* of the entries is relevant.
|
|
*/
|
|
static const struct {
|
|
u64 type;
|
|
const char *name;
|
|
const char *module_name;
|
|
} proto_names[] = {
|
|
{ RC_PROTO_BIT_NONE, "none", NULL },
|
|
{ RC_PROTO_BIT_OTHER, "other", NULL },
|
|
{ RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
|
|
{ RC_PROTO_BIT_RC5 |
|
|
RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
|
|
{ RC_PROTO_BIT_NEC |
|
|
RC_PROTO_BIT_NECX |
|
|
RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
|
|
{ RC_PROTO_BIT_RC6_0 |
|
|
RC_PROTO_BIT_RC6_6A_20 |
|
|
RC_PROTO_BIT_RC6_6A_24 |
|
|
RC_PROTO_BIT_RC6_6A_32 |
|
|
RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
|
|
{ RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
|
|
{ RC_PROTO_BIT_SONY12 |
|
|
RC_PROTO_BIT_SONY15 |
|
|
RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
|
|
{ RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
|
|
{ RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
|
|
{ RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
|
|
{ RC_PROTO_BIT_MCIR2_KBD |
|
|
RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
|
|
{ RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
|
|
{ RC_PROTO_BIT_CEC, "cec", NULL },
|
|
};
|
|
|
|
/**
|
|
* struct rc_filter_attribute - Device attribute relating to a filter type.
|
|
* @attr: Device attribute.
|
|
* @type: Filter type.
|
|
* @mask: false for filter value, true for filter mask.
|
|
*/
|
|
struct rc_filter_attribute {
|
|
struct device_attribute attr;
|
|
enum rc_filter_type type;
|
|
bool mask;
|
|
};
|
|
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
|
|
|
|
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
|
|
struct rc_filter_attribute dev_attr_##_name = { \
|
|
.attr = __ATTR(_name, _mode, _show, _store), \
|
|
.type = (_type), \
|
|
.mask = (_mask), \
|
|
}
|
|
|
|
/**
|
|
* show_protocols() - shows the current IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine for input read the IR protocol type(s).
|
|
* it is trigged by reading /sys/class/rc/rc?/protocols.
|
|
* It returns the protocol names of supported protocols.
|
|
* Enabled protocols are printed in brackets.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_protocols and show_protocols.
|
|
*/
|
|
static ssize_t show_protocols(struct device *device,
|
|
struct device_attribute *mattr, char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 allowed, enabled;
|
|
char *tmp = buf;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
enabled = dev->enabled_protocols;
|
|
allowed = dev->allowed_protocols;
|
|
if (dev->raw && !allowed)
|
|
allowed = ir_raw_get_allowed_protocols();
|
|
|
|
mutex_unlock(&dev->lock);
|
|
|
|
IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
|
|
__func__, (long long)allowed, (long long)enabled);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (allowed & enabled & proto_names[i].type)
|
|
tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
|
|
else if (allowed & proto_names[i].type)
|
|
tmp += sprintf(tmp, "%s ", proto_names[i].name);
|
|
|
|
if (allowed & proto_names[i].type)
|
|
allowed &= ~proto_names[i].type;
|
|
}
|
|
|
|
#ifdef CONFIG_LIRC
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
tmp += sprintf(tmp, "[lirc] ");
|
|
#endif
|
|
|
|
if (tmp != buf)
|
|
tmp--;
|
|
*tmp = '\n';
|
|
|
|
return tmp + 1 - buf;
|
|
}
|
|
|
|
/**
|
|
* parse_protocol_change() - parses a protocol change request
|
|
* @protocols: pointer to the bitmask of current protocols
|
|
* @buf: pointer to the buffer with a list of changes
|
|
*
|
|
* Writing "+proto" will add a protocol to the protocol mask.
|
|
* Writing "-proto" will remove a protocol from protocol mask.
|
|
* Writing "proto" will enable only "proto".
|
|
* Writing "none" will disable all protocols.
|
|
* Returns the number of changes performed or a negative error code.
|
|
*/
|
|
static int parse_protocol_change(u64 *protocols, const char *buf)
|
|
{
|
|
const char *tmp;
|
|
unsigned count = 0;
|
|
bool enable, disable;
|
|
u64 mask;
|
|
int i;
|
|
|
|
while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
|
|
if (!*tmp)
|
|
break;
|
|
|
|
if (*tmp == '+') {
|
|
enable = true;
|
|
disable = false;
|
|
tmp++;
|
|
} else if (*tmp == '-') {
|
|
enable = false;
|
|
disable = true;
|
|
tmp++;
|
|
} else {
|
|
enable = false;
|
|
disable = false;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (!strcasecmp(tmp, proto_names[i].name)) {
|
|
mask = proto_names[i].type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(proto_names)) {
|
|
if (!strcasecmp(tmp, "lirc"))
|
|
mask = 0;
|
|
else {
|
|
IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
count++;
|
|
|
|
if (enable)
|
|
*protocols |= mask;
|
|
else if (disable)
|
|
*protocols &= ~mask;
|
|
else
|
|
*protocols = mask;
|
|
}
|
|
|
|
if (!count) {
|
|
IR_dprintk(1, "Protocol not specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void ir_raw_load_modules(u64 *protocols)
|
|
{
|
|
u64 available;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
|
|
if (proto_names[i].type == RC_PROTO_BIT_NONE ||
|
|
proto_names[i].type & (RC_PROTO_BIT_OTHER |
|
|
RC_PROTO_BIT_UNKNOWN))
|
|
continue;
|
|
|
|
available = ir_raw_get_allowed_protocols();
|
|
if (!(*protocols & proto_names[i].type & ~available))
|
|
continue;
|
|
|
|
if (!proto_names[i].module_name) {
|
|
pr_err("Can't enable IR protocol %s\n",
|
|
proto_names[i].name);
|
|
*protocols &= ~proto_names[i].type;
|
|
continue;
|
|
}
|
|
|
|
ret = request_module("%s", proto_names[i].module_name);
|
|
if (ret < 0) {
|
|
pr_err("Couldn't load IR protocol module %s\n",
|
|
proto_names[i].module_name);
|
|
*protocols &= ~proto_names[i].type;
|
|
continue;
|
|
}
|
|
msleep(20);
|
|
available = ir_raw_get_allowed_protocols();
|
|
if (!(*protocols & proto_names[i].type & ~available))
|
|
continue;
|
|
|
|
pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
|
|
proto_names[i].module_name,
|
|
proto_names[i].name);
|
|
*protocols &= ~proto_names[i].type;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* store_protocols() - changes the current/wakeup IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing the IR protocol type.
|
|
* It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
|
|
* See parse_protocol_change() for the valid commands.
|
|
* Returns @len on success or a negative error code.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_protocols and show_protocols.
|
|
*/
|
|
static ssize_t store_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 *current_protocols;
|
|
struct rc_scancode_filter *filter;
|
|
u64 old_protocols, new_protocols;
|
|
ssize_t rc;
|
|
|
|
IR_dprintk(1, "Normal protocol change requested\n");
|
|
current_protocols = &dev->enabled_protocols;
|
|
filter = &dev->scancode_filter;
|
|
|
|
if (!dev->change_protocol) {
|
|
IR_dprintk(1, "Protocol switching not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
old_protocols = *current_protocols;
|
|
new_protocols = old_protocols;
|
|
rc = parse_protocol_change(&new_protocols, buf);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = dev->change_protocol(dev, &new_protocols);
|
|
if (rc < 0) {
|
|
IR_dprintk(1, "Error setting protocols to 0x%llx\n",
|
|
(long long)new_protocols);
|
|
goto out;
|
|
}
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_load_modules(&new_protocols);
|
|
|
|
if (new_protocols != old_protocols) {
|
|
*current_protocols = new_protocols;
|
|
IR_dprintk(1, "Protocols changed to 0x%llx\n",
|
|
(long long)new_protocols);
|
|
}
|
|
|
|
/*
|
|
* If a protocol change was attempted the filter may need updating, even
|
|
* if the actual protocol mask hasn't changed (since the driver may have
|
|
* cleared the filter).
|
|
* Try setting the same filter with the new protocol (if any).
|
|
* Fall back to clearing the filter.
|
|
*/
|
|
if (dev->s_filter && filter->mask) {
|
|
if (new_protocols)
|
|
rc = dev->s_filter(dev, filter);
|
|
else
|
|
rc = -1;
|
|
|
|
if (rc < 0) {
|
|
filter->data = 0;
|
|
filter->mask = 0;
|
|
dev->s_filter(dev, filter);
|
|
}
|
|
}
|
|
|
|
rc = len;
|
|
|
|
out:
|
|
mutex_unlock(&dev->lock);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* show_filter() - shows the current scancode filter value or mask
|
|
* @device: the device descriptor
|
|
* @attr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine to read a scancode filter value or mask.
|
|
* It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
|
|
* It prints the current scancode filter value or mask of the appropriate filter
|
|
* type in hexadecimal into @buf and returns the size of the buffer.
|
|
*
|
|
* Bits of the filter value corresponding to set bits in the filter mask are
|
|
* compared against input scancodes and non-matching scancodes are discarded.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_filter and show_filter.
|
|
*/
|
|
static ssize_t show_filter(struct device *device,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
|
|
struct rc_scancode_filter *filter;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL)
|
|
filter = &dev->scancode_filter;
|
|
else
|
|
filter = &dev->scancode_wakeup_filter;
|
|
|
|
if (fattr->mask)
|
|
val = filter->mask;
|
|
else
|
|
val = filter->data;
|
|
mutex_unlock(&dev->lock);
|
|
|
|
return sprintf(buf, "%#x\n", val);
|
|
}
|
|
|
|
/**
|
|
* store_filter() - changes the scancode filter value
|
|
* @device: the device descriptor
|
|
* @attr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing a scancode filter value or mask.
|
|
* It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
|
|
* Returns -EINVAL if an invalid filter value for the current protocol was
|
|
* specified or if scancode filtering is not supported by the driver, otherwise
|
|
* returns @len.
|
|
*
|
|
* Bits of the filter value corresponding to set bits in the filter mask are
|
|
* compared against input scancodes and non-matching scancodes are discarded.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_filter and show_filter.
|
|
*/
|
|
static ssize_t store_filter(struct device *device,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
|
|
struct rc_scancode_filter new_filter, *filter;
|
|
int ret;
|
|
unsigned long val;
|
|
int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL) {
|
|
set_filter = dev->s_filter;
|
|
filter = &dev->scancode_filter;
|
|
} else {
|
|
set_filter = dev->s_wakeup_filter;
|
|
filter = &dev->scancode_wakeup_filter;
|
|
}
|
|
|
|
if (!set_filter)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
new_filter = *filter;
|
|
if (fattr->mask)
|
|
new_filter.mask = val;
|
|
else
|
|
new_filter.data = val;
|
|
|
|
if (fattr->type == RC_FILTER_WAKEUP) {
|
|
/*
|
|
* Refuse to set a filter unless a protocol is enabled
|
|
* and the filter is valid for that protocol
|
|
*/
|
|
if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
|
|
ret = rc_validate_filter(dev, &new_filter);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
if (ret != 0)
|
|
goto unlock;
|
|
}
|
|
|
|
if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
|
|
val) {
|
|
/* refuse to set a filter unless a protocol is enabled */
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = set_filter(dev, &new_filter);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
*filter = new_filter;
|
|
|
|
unlock:
|
|
mutex_unlock(&dev->lock);
|
|
return (ret < 0) ? ret : len;
|
|
}
|
|
|
|
/**
|
|
* show_wakeup_protocols() - shows the wakeup IR protocol
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the output buffer
|
|
*
|
|
* This routine is a callback routine for input read the IR protocol type(s).
|
|
* it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
|
|
* It returns the protocol names of supported protocols.
|
|
* The enabled protocols are printed in brackets.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_wakeup_protocols and show_wakeup_protocols.
|
|
*/
|
|
static ssize_t show_wakeup_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
char *buf)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
u64 allowed;
|
|
enum rc_proto enabled;
|
|
char *tmp = buf;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
allowed = dev->allowed_wakeup_protocols;
|
|
enabled = dev->wakeup_protocol;
|
|
|
|
mutex_unlock(&dev->lock);
|
|
|
|
IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
|
|
__func__, (long long)allowed, enabled);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
|
|
if (allowed & (1ULL << i)) {
|
|
if (i == enabled)
|
|
tmp += sprintf(tmp, "[%s] ", protocols[i].name);
|
|
else
|
|
tmp += sprintf(tmp, "%s ", protocols[i].name);
|
|
}
|
|
}
|
|
|
|
if (tmp != buf)
|
|
tmp--;
|
|
*tmp = '\n';
|
|
|
|
return tmp + 1 - buf;
|
|
}
|
|
|
|
/**
|
|
* store_wakeup_protocols() - changes the wakeup IR protocol(s)
|
|
* @device: the device descriptor
|
|
* @mattr: the device attribute struct
|
|
* @buf: a pointer to the input buffer
|
|
* @len: length of the input buffer
|
|
*
|
|
* This routine is for changing the IR protocol type.
|
|
* It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
|
|
* Returns @len on success or a negative error code.
|
|
*
|
|
* dev->lock is taken to guard against races between
|
|
* store_wakeup_protocols and show_wakeup_protocols.
|
|
*/
|
|
static ssize_t store_wakeup_protocols(struct device *device,
|
|
struct device_attribute *mattr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
enum rc_proto protocol;
|
|
ssize_t rc;
|
|
u64 allowed;
|
|
int i;
|
|
|
|
mutex_lock(&dev->lock);
|
|
|
|
allowed = dev->allowed_wakeup_protocols;
|
|
|
|
if (sysfs_streq(buf, "none")) {
|
|
protocol = RC_PROTO_UNKNOWN;
|
|
} else {
|
|
for (i = 0; i < ARRAY_SIZE(protocols); i++) {
|
|
if ((allowed & (1ULL << i)) &&
|
|
sysfs_streq(buf, protocols[i].name)) {
|
|
protocol = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(protocols)) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (dev->encode_wakeup) {
|
|
u64 mask = 1ULL << protocol;
|
|
|
|
ir_raw_load_modules(&mask);
|
|
if (!mask) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dev->wakeup_protocol != protocol) {
|
|
dev->wakeup_protocol = protocol;
|
|
IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
|
|
|
|
if (protocol == RC_PROTO_RC6_MCE)
|
|
dev->scancode_wakeup_filter.data = 0x800f0000;
|
|
else
|
|
dev->scancode_wakeup_filter.data = 0;
|
|
dev->scancode_wakeup_filter.mask = 0;
|
|
|
|
rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
|
|
if (rc == 0)
|
|
rc = len;
|
|
} else {
|
|
rc = len;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&dev->lock);
|
|
return rc;
|
|
}
|
|
|
|
static void rc_dev_release(struct device *device)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
|
|
kfree(dev);
|
|
}
|
|
|
|
#define ADD_HOTPLUG_VAR(fmt, val...) \
|
|
do { \
|
|
int err = add_uevent_var(env, fmt, val); \
|
|
if (err) \
|
|
return err; \
|
|
} while (0)
|
|
|
|
static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
|
|
{
|
|
struct rc_dev *dev = to_rc_dev(device);
|
|
|
|
if (dev->rc_map.name)
|
|
ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
|
|
if (dev->driver_name)
|
|
ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
|
|
if (dev->device_name)
|
|
ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Static device attribute struct with the sysfs attributes for IR's
|
|
*/
|
|
static struct device_attribute dev_attr_ro_protocols =
|
|
__ATTR(protocols, 0444, show_protocols, NULL);
|
|
static struct device_attribute dev_attr_rw_protocols =
|
|
__ATTR(protocols, 0644, show_protocols, store_protocols);
|
|
static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
|
|
store_wakeup_protocols);
|
|
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_NORMAL, false);
|
|
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_NORMAL, true);
|
|
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_WAKEUP, false);
|
|
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
|
|
show_filter, store_filter, RC_FILTER_WAKEUP, true);
|
|
|
|
static struct attribute *rc_dev_rw_protocol_attrs[] = {
|
|
&dev_attr_rw_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
|
|
.attrs = rc_dev_rw_protocol_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_ro_protocol_attrs[] = {
|
|
&dev_attr_ro_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
|
|
.attrs = rc_dev_ro_protocol_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_filter_attrs[] = {
|
|
&dev_attr_filter.attr.attr,
|
|
&dev_attr_filter_mask.attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_filter_attr_grp = {
|
|
.attrs = rc_dev_filter_attrs,
|
|
};
|
|
|
|
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
|
|
&dev_attr_wakeup_filter.attr.attr,
|
|
&dev_attr_wakeup_filter_mask.attr.attr,
|
|
&dev_attr_wakeup_protocols.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
|
|
.attrs = rc_dev_wakeup_filter_attrs,
|
|
};
|
|
|
|
static const struct device_type rc_dev_type = {
|
|
.release = rc_dev_release,
|
|
.uevent = rc_dev_uevent,
|
|
};
|
|
|
|
struct rc_dev *rc_allocate_device(enum rc_driver_type type)
|
|
{
|
|
struct rc_dev *dev;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return NULL;
|
|
|
|
if (type != RC_DRIVER_IR_RAW_TX) {
|
|
dev->input_dev = input_allocate_device();
|
|
if (!dev->input_dev) {
|
|
kfree(dev);
|
|
return NULL;
|
|
}
|
|
|
|
dev->input_dev->getkeycode = ir_getkeycode;
|
|
dev->input_dev->setkeycode = ir_setkeycode;
|
|
input_set_drvdata(dev->input_dev, dev);
|
|
|
|
timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
|
|
timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
|
|
|
|
spin_lock_init(&dev->rc_map.lock);
|
|
spin_lock_init(&dev->keylock);
|
|
}
|
|
mutex_init(&dev->lock);
|
|
|
|
dev->dev.type = &rc_dev_type;
|
|
dev->dev.class = &rc_class;
|
|
device_initialize(&dev->dev);
|
|
|
|
dev->driver_type = type;
|
|
|
|
__module_get(THIS_MODULE);
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_allocate_device);
|
|
|
|
void rc_free_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
input_free_device(dev->input_dev);
|
|
|
|
put_device(&dev->dev);
|
|
|
|
/* kfree(dev) will be called by the callback function
|
|
rc_dev_release() */
|
|
|
|
module_put(THIS_MODULE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_free_device);
|
|
|
|
static void devm_rc_alloc_release(struct device *dev, void *res)
|
|
{
|
|
rc_free_device(*(struct rc_dev **)res);
|
|
}
|
|
|
|
struct rc_dev *devm_rc_allocate_device(struct device *dev,
|
|
enum rc_driver_type type)
|
|
{
|
|
struct rc_dev **dr, *rc;
|
|
|
|
dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return NULL;
|
|
|
|
rc = rc_allocate_device(type);
|
|
if (!rc) {
|
|
devres_free(dr);
|
|
return NULL;
|
|
}
|
|
|
|
rc->dev.parent = dev;
|
|
rc->managed_alloc = true;
|
|
*dr = rc;
|
|
devres_add(dev, dr);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
|
|
|
|
static int rc_prepare_rx_device(struct rc_dev *dev)
|
|
{
|
|
int rc;
|
|
struct rc_map *rc_map;
|
|
u64 rc_proto;
|
|
|
|
if (!dev->map_name)
|
|
return -EINVAL;
|
|
|
|
rc_map = rc_map_get(dev->map_name);
|
|
if (!rc_map)
|
|
rc_map = rc_map_get(RC_MAP_EMPTY);
|
|
if (!rc_map || !rc_map->scan || rc_map->size == 0)
|
|
return -EINVAL;
|
|
|
|
rc = ir_setkeytable(dev, rc_map);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc_proto = BIT_ULL(rc_map->rc_proto);
|
|
|
|
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
|
|
dev->enabled_protocols = dev->allowed_protocols;
|
|
|
|
if (dev->change_protocol) {
|
|
rc = dev->change_protocol(dev, &rc_proto);
|
|
if (rc < 0)
|
|
goto out_table;
|
|
dev->enabled_protocols = rc_proto;
|
|
}
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_load_modules(&rc_proto);
|
|
|
|
set_bit(EV_KEY, dev->input_dev->evbit);
|
|
set_bit(EV_REP, dev->input_dev->evbit);
|
|
set_bit(EV_MSC, dev->input_dev->evbit);
|
|
set_bit(MSC_SCAN, dev->input_dev->mscbit);
|
|
if (dev->open)
|
|
dev->input_dev->open = ir_open;
|
|
if (dev->close)
|
|
dev->input_dev->close = ir_close;
|
|
|
|
dev->input_dev->dev.parent = &dev->dev;
|
|
memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
|
|
dev->input_dev->phys = dev->input_phys;
|
|
dev->input_dev->name = dev->device_name;
|
|
|
|
return 0;
|
|
|
|
out_table:
|
|
ir_free_table(&dev->rc_map);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int rc_setup_rx_device(struct rc_dev *dev)
|
|
{
|
|
int rc;
|
|
|
|
/* rc_open will be called here */
|
|
rc = input_register_device(dev->input_dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Default delay of 250ms is too short for some protocols, especially
|
|
* since the timeout is currently set to 250ms. Increase it to 500ms,
|
|
* to avoid wrong repetition of the keycodes. Note that this must be
|
|
* set after the call to input_register_device().
|
|
*/
|
|
if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
|
|
dev->input_dev->rep[REP_DELAY] = 0;
|
|
else
|
|
dev->input_dev->rep[REP_DELAY] = 500;
|
|
|
|
/*
|
|
* As a repeat event on protocols like RC-5 and NEC take as long as
|
|
* 110/114ms, using 33ms as a repeat period is not the right thing
|
|
* to do.
|
|
*/
|
|
dev->input_dev->rep[REP_PERIOD] = 125;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rc_free_rx_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
if (dev->input_dev) {
|
|
input_unregister_device(dev->input_dev);
|
|
dev->input_dev = NULL;
|
|
}
|
|
|
|
ir_free_table(&dev->rc_map);
|
|
}
|
|
|
|
int rc_register_device(struct rc_dev *dev)
|
|
{
|
|
const char *path;
|
|
int attr = 0;
|
|
int minor;
|
|
int rc;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
|
|
if (minor < 0)
|
|
return minor;
|
|
|
|
dev->minor = minor;
|
|
dev_set_name(&dev->dev, "rc%u", dev->minor);
|
|
dev_set_drvdata(&dev->dev, dev);
|
|
|
|
dev->dev.groups = dev->sysfs_groups;
|
|
if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
|
|
dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
|
|
else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
|
|
dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
|
|
if (dev->s_filter)
|
|
dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
|
|
if (dev->s_wakeup_filter)
|
|
dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
|
|
dev->sysfs_groups[attr++] = NULL;
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW) {
|
|
rc = ir_raw_event_prepare(dev);
|
|
if (rc < 0)
|
|
goto out_minor;
|
|
}
|
|
|
|
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
|
|
rc = rc_prepare_rx_device(dev);
|
|
if (rc)
|
|
goto out_raw;
|
|
}
|
|
|
|
rc = device_add(&dev->dev);
|
|
if (rc)
|
|
goto out_rx_free;
|
|
|
|
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
|
|
dev_info(&dev->dev, "%s as %s\n",
|
|
dev->device_name ?: "Unspecified device", path ?: "N/A");
|
|
kfree(path);
|
|
|
|
if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
|
|
rc = rc_setup_rx_device(dev);
|
|
if (rc)
|
|
goto out_dev;
|
|
}
|
|
|
|
/* Ensure that the lirc kfifo is setup before we start the thread */
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
|
|
rc = ir_lirc_register(dev);
|
|
if (rc < 0)
|
|
goto out_rx;
|
|
}
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW) {
|
|
rc = ir_raw_event_register(dev);
|
|
if (rc < 0)
|
|
goto out_lirc;
|
|
}
|
|
|
|
dev->registered = true;
|
|
|
|
IR_dprintk(1, "Registered rc%u (driver: %s)\n",
|
|
dev->minor,
|
|
dev->driver_name ? dev->driver_name : "unknown");
|
|
|
|
return 0;
|
|
|
|
out_lirc:
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
ir_lirc_unregister(dev);
|
|
out_rx:
|
|
rc_free_rx_device(dev);
|
|
out_dev:
|
|
device_del(&dev->dev);
|
|
out_rx_free:
|
|
ir_free_table(&dev->rc_map);
|
|
out_raw:
|
|
ir_raw_event_free(dev);
|
|
out_minor:
|
|
ida_simple_remove(&rc_ida, minor);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rc_register_device);
|
|
|
|
static void devm_rc_release(struct device *dev, void *res)
|
|
{
|
|
rc_unregister_device(*(struct rc_dev **)res);
|
|
}
|
|
|
|
int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
|
|
{
|
|
struct rc_dev **dr;
|
|
int ret;
|
|
|
|
dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
|
|
if (!dr)
|
|
return -ENOMEM;
|
|
|
|
ret = rc_register_device(dev);
|
|
if (ret) {
|
|
devres_free(dr);
|
|
return ret;
|
|
}
|
|
|
|
*dr = dev;
|
|
devres_add(parent, dr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_rc_register_device);
|
|
|
|
void rc_unregister_device(struct rc_dev *dev)
|
|
{
|
|
if (!dev)
|
|
return;
|
|
|
|
del_timer_sync(&dev->timer_keyup);
|
|
del_timer_sync(&dev->timer_repeat);
|
|
|
|
if (dev->driver_type == RC_DRIVER_IR_RAW)
|
|
ir_raw_event_unregister(dev);
|
|
|
|
rc_free_rx_device(dev);
|
|
|
|
mutex_lock(&dev->lock);
|
|
dev->registered = false;
|
|
mutex_unlock(&dev->lock);
|
|
|
|
/*
|
|
* lirc device should be freed with dev->registered = false, so
|
|
* that userspace polling will get notified.
|
|
*/
|
|
if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
|
|
ir_lirc_unregister(dev);
|
|
|
|
device_del(&dev->dev);
|
|
|
|
ida_simple_remove(&rc_ida, dev->minor);
|
|
|
|
if (!dev->managed_alloc)
|
|
rc_free_device(dev);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rc_unregister_device);
|
|
|
|
/*
|
|
* Init/exit code for the module. Basically, creates/removes /sys/class/rc
|
|
*/
|
|
|
|
static int __init rc_core_init(void)
|
|
{
|
|
int rc = class_register(&rc_class);
|
|
if (rc) {
|
|
pr_err("rc_core: unable to register rc class\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = lirc_dev_init();
|
|
if (rc) {
|
|
pr_err("rc_core: unable to init lirc\n");
|
|
class_unregister(&rc_class);
|
|
return 0;
|
|
}
|
|
|
|
led_trigger_register_simple("rc-feedback", &led_feedback);
|
|
rc_map_register(&empty_map);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit rc_core_exit(void)
|
|
{
|
|
lirc_dev_exit();
|
|
class_unregister(&rc_class);
|
|
led_trigger_unregister_simple(led_feedback);
|
|
rc_map_unregister(&empty_map);
|
|
}
|
|
|
|
subsys_initcall(rc_core_init);
|
|
module_exit(rc_core_exit);
|
|
|
|
int rc_core_debug; /* ir_debug level (0,1,2) */
|
|
EXPORT_SYMBOL_GPL(rc_core_debug);
|
|
module_param_named(debug, rc_core_debug, int, 0644);
|
|
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_LICENSE("GPL v2");
|