2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/kernel/cpuset.c
Paul Jackson 2efe86b809 [PATCH] cpuset exit NULL dereference fix
There is a race in the kernel cpuset code, between the code
to handle notify_on_release, and the code to remove a cpuset.
The notify_on_release code can end up trying to access a
cpuset that has been removed.  In the most common case, this
causes a NULL pointer dereference from the routine cpuset_path.
However all manner of bad things are possible, in theory at least.

The existing code decrements the cpuset use count, and if the
count goes to zero, processes the notify_on_release request,
if appropriate.  However, once the count goes to zero, unless we
are holding the global cpuset_sem semaphore, there is nothing to
stop another task from immediately removing the cpuset entirely,
and recycling its memory.

The obvious fix would be to always hold the cpuset_sem
semaphore while decrementing the use count and dealing with
notify_on_release.  However we don't want to force a global
semaphore into the mainline task exit path, as that might create
a scaling problem.

The actual fix is almost as easy - since this is only an issue
for cpusets using notify_on_release, which the top level big
cpusets don't normally need to use, only take the cpuset_sem
for cpusets using notify_on_release.

This code has been run for hours without a hiccup, while running
a cpuset create/destroy stress test that could crash the existing
kernel in seconds.  This patch applies to the current -linus
git kernel.

Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Simon Derr <simon.derr@bull.net>
Acked-by: Dinakar Guniguntala <dino@in.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-27 08:07:26 -07:00

1579 lines
40 KiB
C

/*
* kernel/cpuset.c
*
* Processor and Memory placement constraints for sets of tasks.
*
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
* Portions Copyright (c) 2004 Silicon Graphics, Inc.
*
* 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson <pj@sgi.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/config.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <asm/semaphore.h>
#define CPUSET_SUPER_MAGIC 0x27e0eb
struct cpuset {
unsigned long flags; /* "unsigned long" so bitops work */
cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
atomic_t count; /* count tasks using this cpuset */
/*
* We link our 'sibling' struct into our parents 'children'.
* Our children link their 'sibling' into our 'children'.
*/
struct list_head sibling; /* my parents children */
struct list_head children; /* my children */
struct cpuset *parent; /* my parent */
struct dentry *dentry; /* cpuset fs entry */
/*
* Copy of global cpuset_mems_generation as of the most
* recent time this cpuset changed its mems_allowed.
*/
int mems_generation;
};
/* bits in struct cpuset flags field */
typedef enum {
CS_CPU_EXCLUSIVE,
CS_MEM_EXCLUSIVE,
CS_REMOVED,
CS_NOTIFY_ON_RELEASE
} cpuset_flagbits_t;
/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_exclusive(const struct cpuset *cs)
{
return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}
static inline int is_removed(const struct cpuset *cs)
{
return !!test_bit(CS_REMOVED, &cs->flags);
}
static inline int notify_on_release(const struct cpuset *cs)
{
return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
}
/*
* Increment this atomic integer everytime any cpuset changes its
* mems_allowed value. Users of cpusets can track this generation
* number, and avoid having to lock and reload mems_allowed unless
* the cpuset they're using changes generation.
*
* A single, global generation is needed because attach_task() could
* reattach a task to a different cpuset, which must not have its
* generation numbers aliased with those of that tasks previous cpuset.
*
* Generations are needed for mems_allowed because one task cannot
* modify anothers memory placement. So we must enable every task,
* on every visit to __alloc_pages(), to efficiently check whether
* its current->cpuset->mems_allowed has changed, requiring an update
* of its current->mems_allowed.
*/
static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
static struct cpuset top_cpuset = {
.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
.cpus_allowed = CPU_MASK_ALL,
.mems_allowed = NODE_MASK_ALL,
.count = ATOMIC_INIT(0),
.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
.children = LIST_HEAD_INIT(top_cpuset.children),
.parent = NULL,
.dentry = NULL,
.mems_generation = 0,
};
static struct vfsmount *cpuset_mount;
static struct super_block *cpuset_sb = NULL;
/*
* cpuset_sem should be held by anyone who is depending on the children
* or sibling lists of any cpuset, or performing non-atomic operations
* on the flags or *_allowed values of a cpuset, such as raising the
* CS_REMOVED flag bit iff it is not already raised, or reading and
* conditionally modifying the *_allowed values. One kernel global
* cpuset semaphore should be sufficient - these things don't change
* that much.
*
* The code that modifies cpusets holds cpuset_sem across the entire
* operation, from cpuset_common_file_write() down, single threading
* all cpuset modifications (except for counter manipulations from
* fork and exit) across the system. This presumes that cpuset
* modifications are rare - better kept simple and safe, even if slow.
*
* The code that reads cpusets, such as in cpuset_common_file_read()
* and below, only holds cpuset_sem across small pieces of code, such
* as when reading out possibly multi-word cpumasks and nodemasks, as
* the risks are less, and the desire for performance a little greater.
* The proc_cpuset_show() routine needs to hold cpuset_sem to insure
* that no cs->dentry is NULL, as it walks up the cpuset tree to root.
*
* The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
* (usually) grab cpuset_sem. These are the two most performance
* critical pieces of code here. The exception occurs on exit(),
* when a task in a notify_on_release cpuset exits. Then cpuset_sem
* is taken, and if the cpuset count is zero, a usermode call made
* to /sbin/cpuset_release_agent with the name of the cpuset (path
* relative to the root of cpuset file system) as the argument.
*
* A cpuset can only be deleted if both its 'count' of using tasks is
* zero, and its list of 'children' cpusets is empty. Since all tasks
* in the system use _some_ cpuset, and since there is always at least
* one task in the system (init, pid == 1), therefore, top_cpuset
* always has either children cpusets and/or using tasks. So no need
* for any special hack to ensure that top_cpuset cannot be deleted.
*/
static DECLARE_MUTEX(cpuset_sem);
/*
* A couple of forward declarations required, due to cyclic reference loop:
* cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
* -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
*/
static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
static struct backing_dev_info cpuset_backing_dev_info = {
.ra_pages = 0, /* No readahead */
.capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};
static struct inode *cpuset_new_inode(mode_t mode)
{
struct inode *inode = new_inode(cpuset_sb);
if (inode) {
inode->i_mode = mode;
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_blksize = PAGE_CACHE_SIZE;
inode->i_blocks = 0;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
}
return inode;
}
static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
/* is dentry a directory ? if so, kfree() associated cpuset */
if (S_ISDIR(inode->i_mode)) {
struct cpuset *cs = dentry->d_fsdata;
BUG_ON(!(is_removed(cs)));
kfree(cs);
}
iput(inode);
}
static struct dentry_operations cpuset_dops = {
.d_iput = cpuset_diput,
};
static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
struct qstr qstr;
struct dentry *d;
qstr.name = name;
qstr.len = strlen(name);
qstr.hash = full_name_hash(name, qstr.len);
d = lookup_hash(&qstr, parent);
if (!IS_ERR(d))
d->d_op = &cpuset_dops;
return d;
}
static void remove_dir(struct dentry *d)
{
struct dentry *parent = dget(d->d_parent);
d_delete(d);
simple_rmdir(parent->d_inode, d);
dput(parent);
}
/*
* NOTE : the dentry must have been dget()'ed
*/
static void cpuset_d_remove_dir(struct dentry *dentry)
{
struct list_head *node;
spin_lock(&dcache_lock);
node = dentry->d_subdirs.next;
while (node != &dentry->d_subdirs) {
struct dentry *d = list_entry(node, struct dentry, d_child);
list_del_init(node);
if (d->d_inode) {
d = dget_locked(d);
spin_unlock(&dcache_lock);
d_delete(d);
simple_unlink(dentry->d_inode, d);
dput(d);
spin_lock(&dcache_lock);
}
node = dentry->d_subdirs.next;
}
list_del_init(&dentry->d_child);
spin_unlock(&dcache_lock);
remove_dir(dentry);
}
static struct super_operations cpuset_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
};
static int cpuset_fill_super(struct super_block *sb, void *unused_data,
int unused_silent)
{
struct inode *inode;
struct dentry *root;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = CPUSET_SUPER_MAGIC;
sb->s_op = &cpuset_ops;
cpuset_sb = sb;
inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
if (inode) {
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directories start off with i_nlink == 2 (for "." entry) */
inode->i_nlink++;
} else {
return -ENOMEM;
}
root = d_alloc_root(inode);
if (!root) {
iput(inode);
return -ENOMEM;
}
sb->s_root = root;
return 0;
}
static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
return get_sb_single(fs_type, flags, data, cpuset_fill_super);
}
static struct file_system_type cpuset_fs_type = {
.name = "cpuset",
.get_sb = cpuset_get_sb,
.kill_sb = kill_litter_super,
};
/* struct cftype:
*
* The files in the cpuset filesystem mostly have a very simple read/write
* handling, some common function will take care of it. Nevertheless some cases
* (read tasks) are special and therefore I define this structure for every
* kind of file.
*
*
* When reading/writing to a file:
* - the cpuset to use in file->f_dentry->d_parent->d_fsdata
* - the 'cftype' of the file is file->f_dentry->d_fsdata
*/
struct cftype {
char *name;
int private;
int (*open) (struct inode *inode, struct file *file);
ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos);
int (*write) (struct file *file, const char __user *buf, size_t nbytes,
loff_t *ppos);
int (*release) (struct inode *inode, struct file *file);
};
static inline struct cpuset *__d_cs(struct dentry *dentry)
{
return dentry->d_fsdata;
}
static inline struct cftype *__d_cft(struct dentry *dentry)
{
return dentry->d_fsdata;
}
/*
* Call with cpuset_sem held. Writes path of cpuset into buf.
* Returns 0 on success, -errno on error.
*/
static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
char *start;
start = buf + buflen;
*--start = '\0';
for (;;) {
int len = cs->dentry->d_name.len;
if ((start -= len) < buf)
return -ENAMETOOLONG;
memcpy(start, cs->dentry->d_name.name, len);
cs = cs->parent;
if (!cs)
break;
if (!cs->parent)
continue;
if (--start < buf)
return -ENAMETOOLONG;
*start = '/';
}
memmove(buf, start, buf + buflen - start);
return 0;
}
/*
* Notify userspace when a cpuset is released, by running
* /sbin/cpuset_release_agent with the name of the cpuset (path
* relative to the root of cpuset file system) as the argument.
*
* Most likely, this user command will try to rmdir this cpuset.
*
* This races with the possibility that some other task will be
* attached to this cpuset before it is removed, or that some other
* user task will 'mkdir' a child cpuset of this cpuset. That's ok.
* The presumed 'rmdir' will fail quietly if this cpuset is no longer
* unused, and this cpuset will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* Note final arg to call_usermodehelper() is 0 - that means
* don't wait. Since we are holding the global cpuset_sem here,
* and we are asking another thread (started from keventd) to rmdir a
* cpuset, we can't wait - or we'd deadlock with the removing thread
* on cpuset_sem.
*/
static int cpuset_release_agent(char *cpuset_str)
{
char *argv[3], *envp[3];
int i;
i = 0;
argv[i++] = "/sbin/cpuset_release_agent";
argv[i++] = cpuset_str;
argv[i] = NULL;
i = 0;
/* minimal command environment */
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[i] = NULL;
return call_usermodehelper(argv[0], argv, envp, 0);
}
/*
* Either cs->count of using tasks transitioned to zero, or the
* cs->children list of child cpusets just became empty. If this
* cs is notify_on_release() and now both the user count is zero and
* the list of children is empty, send notice to user land.
*/
static void check_for_release(struct cpuset *cs)
{
if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
list_empty(&cs->children)) {
char *buf;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return;
if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
goto out;
cpuset_release_agent(buf);
out:
kfree(buf);
}
}
/*
* Return in *pmask the portion of a cpusets's cpus_allowed that
* are online. If none are online, walk up the cpuset hierarchy
* until we find one that does have some online cpus. If we get
* all the way to the top and still haven't found any online cpus,
* return cpu_online_map. Or if passed a NULL cs from an exit'ing
* task, return cpu_online_map.
*
* One way or another, we guarantee to return some non-empty subset
* of cpu_online_map.
*
* Call with cpuset_sem held.
*/
static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
cs = cs->parent;
if (cs)
cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
else
*pmask = cpu_online_map;
BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}
/*
* Return in *pmask the portion of a cpusets's mems_allowed that
* are online. If none are online, walk up the cpuset hierarchy
* until we find one that does have some online mems. If we get
* all the way to the top and still haven't found any online mems,
* return node_online_map.
*
* One way or another, we guarantee to return some non-empty subset
* of node_online_map.
*
* Call with cpuset_sem held.
*/
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
cs = cs->parent;
if (cs)
nodes_and(*pmask, cs->mems_allowed, node_online_map);
else
*pmask = node_online_map;
BUG_ON(!nodes_intersects(*pmask, node_online_map));
}
/*
* Refresh current tasks mems_allowed and mems_generation from
* current tasks cpuset. Call with cpuset_sem held.
*
* Be sure to call refresh_mems() on any cpuset operation which
* (1) holds cpuset_sem, and (2) might possibly alloc memory.
* Call after obtaining cpuset_sem lock, before any possible
* allocation. Otherwise one risks trying to allocate memory
* while the task cpuset_mems_generation is not the same as
* the mems_generation in its cpuset, which would deadlock on
* cpuset_sem in cpuset_update_current_mems_allowed().
*
* Since we hold cpuset_sem, once refresh_mems() is called, the
* test (current->cpuset_mems_generation != cs->mems_generation)
* in cpuset_update_current_mems_allowed() will remain false,
* until we drop cpuset_sem. Anyone else who would change our
* cpusets mems_generation needs to lock cpuset_sem first.
*/
static void refresh_mems(void)
{
struct cpuset *cs = current->cpuset;
if (current->cpuset_mems_generation != cs->mems_generation) {
guarantee_online_mems(cs, &current->mems_allowed);
current->cpuset_mems_generation = cs->mems_generation;
}
}
/*
* is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
*
* One cpuset is a subset of another if all its allowed CPUs and
* Memory Nodes are a subset of the other, and its exclusive flags
* are only set if the other's are set.
*/
static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
nodes_subset(p->mems_allowed, q->mems_allowed) &&
is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
is_mem_exclusive(p) <= is_mem_exclusive(q);
}
/*
* validate_change() - Used to validate that any proposed cpuset change
* follows the structural rules for cpusets.
*
* If we replaced the flag and mask values of the current cpuset
* (cur) with those values in the trial cpuset (trial), would
* our various subset and exclusive rules still be valid? Presumes
* cpuset_sem held.
*
* 'cur' is the address of an actual, in-use cpuset. Operations
* such as list traversal that depend on the actual address of the
* cpuset in the list must use cur below, not trial.
*
* 'trial' is the address of bulk structure copy of cur, with
* perhaps one or more of the fields cpus_allowed, mems_allowed,
* or flags changed to new, trial values.
*
* Return 0 if valid, -errno if not.
*/
static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
struct cpuset *c, *par;
/* Each of our child cpusets must be a subset of us */
list_for_each_entry(c, &cur->children, sibling) {
if (!is_cpuset_subset(c, trial))
return -EBUSY;
}
/* Remaining checks don't apply to root cpuset */
if ((par = cur->parent) == NULL)
return 0;
/* We must be a subset of our parent cpuset */
if (!is_cpuset_subset(trial, par))
return -EACCES;
/* If either I or some sibling (!= me) is exclusive, we can't overlap */
list_for_each_entry(c, &par->children, sibling) {
if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
c != cur &&
cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
return -EINVAL;
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
c != cur &&
nodes_intersects(trial->mems_allowed, c->mems_allowed))
return -EINVAL;
}
return 0;
}
static int update_cpumask(struct cpuset *cs, char *buf)
{
struct cpuset trialcs;
int retval;
trialcs = *cs;
retval = cpulist_parse(buf, trialcs.cpus_allowed);
if (retval < 0)
return retval;
cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
if (cpus_empty(trialcs.cpus_allowed))
return -ENOSPC;
retval = validate_change(cs, &trialcs);
if (retval == 0)
cs->cpus_allowed = trialcs.cpus_allowed;
return retval;
}
static int update_nodemask(struct cpuset *cs, char *buf)
{
struct cpuset trialcs;
int retval;
trialcs = *cs;
retval = nodelist_parse(buf, trialcs.mems_allowed);
if (retval < 0)
return retval;
nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
if (nodes_empty(trialcs.mems_allowed))
return -ENOSPC;
retval = validate_change(cs, &trialcs);
if (retval == 0) {
cs->mems_allowed = trialcs.mems_allowed;
atomic_inc(&cpuset_mems_generation);
cs->mems_generation = atomic_read(&cpuset_mems_generation);
}
return retval;
}
/*
* update_flag - read a 0 or a 1 in a file and update associated flag
* bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
* CS_NOTIFY_ON_RELEASE)
* cs: the cpuset to update
* buf: the buffer where we read the 0 or 1
*/
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
int turning_on;
struct cpuset trialcs;
int err;
turning_on = (simple_strtoul(buf, NULL, 10) != 0);
trialcs = *cs;
if (turning_on)
set_bit(bit, &trialcs.flags);
else
clear_bit(bit, &trialcs.flags);
err = validate_change(cs, &trialcs);
if (err == 0) {
if (turning_on)
set_bit(bit, &cs->flags);
else
clear_bit(bit, &cs->flags);
}
return err;
}
static int attach_task(struct cpuset *cs, char *buf)
{
pid_t pid;
struct task_struct *tsk;
struct cpuset *oldcs;
cpumask_t cpus;
if (sscanf(buf, "%d", &pid) != 1)
return -EIO;
if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
return -ENOSPC;
if (pid) {
read_lock(&tasklist_lock);
tsk = find_task_by_pid(pid);
if (!tsk) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
get_task_struct(tsk);
read_unlock(&tasklist_lock);
if ((current->euid) && (current->euid != tsk->uid)
&& (current->euid != tsk->suid)) {
put_task_struct(tsk);
return -EACCES;
}
} else {
tsk = current;
get_task_struct(tsk);
}
task_lock(tsk);
oldcs = tsk->cpuset;
if (!oldcs) {
task_unlock(tsk);
put_task_struct(tsk);
return -ESRCH;
}
atomic_inc(&cs->count);
tsk->cpuset = cs;
task_unlock(tsk);
guarantee_online_cpus(cs, &cpus);
set_cpus_allowed(tsk, cpus);
put_task_struct(tsk);
if (atomic_dec_and_test(&oldcs->count))
check_for_release(oldcs);
return 0;
}
/* The various types of files and directories in a cpuset file system */
typedef enum {
FILE_ROOT,
FILE_DIR,
FILE_CPULIST,
FILE_MEMLIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,
FILE_NOTIFY_ON_RELEASE,
FILE_TASKLIST,
} cpuset_filetype_t;
static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
size_t nbytes, loff_t *unused_ppos)
{
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
struct cftype *cft = __d_cft(file->f_dentry);
cpuset_filetype_t type = cft->private;
char *buffer;
int retval = 0;
/* Crude upper limit on largest legitimate cpulist user might write. */
if (nbytes > 100 + 6 * NR_CPUS)
return -E2BIG;
/* +1 for nul-terminator */
if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
return -ENOMEM;
if (copy_from_user(buffer, userbuf, nbytes)) {
retval = -EFAULT;
goto out1;
}
buffer[nbytes] = 0; /* nul-terminate */
down(&cpuset_sem);
if (is_removed(cs)) {
retval = -ENODEV;
goto out2;
}
switch (type) {
case FILE_CPULIST:
retval = update_cpumask(cs, buffer);
break;
case FILE_MEMLIST:
retval = update_nodemask(cs, buffer);
break;
case FILE_CPU_EXCLUSIVE:
retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
break;
case FILE_MEM_EXCLUSIVE:
retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
break;
case FILE_NOTIFY_ON_RELEASE:
retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
break;
case FILE_TASKLIST:
retval = attach_task(cs, buffer);
break;
default:
retval = -EINVAL;
goto out2;
}
if (retval == 0)
retval = nbytes;
out2:
up(&cpuset_sem);
out1:
kfree(buffer);
return retval;
}
static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
ssize_t retval = 0;
struct cftype *cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
/* special function ? */
if (cft->write)
retval = cft->write(file, buf, nbytes, ppos);
else
retval = cpuset_common_file_write(file, buf, nbytes, ppos);
return retval;
}
/*
* These ascii lists should be read in a single call, by using a user
* buffer large enough to hold the entire map. If read in smaller
* chunks, there is no guarantee of atomicity. Since the display format
* used, list of ranges of sequential numbers, is variable length,
* and since these maps can change value dynamically, one could read
* gibberish by doing partial reads while a list was changing.
* A single large read to a buffer that crosses a page boundary is
* ok, because the result being copied to user land is not recomputed
* across a page fault.
*/
static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
cpumask_t mask;
down(&cpuset_sem);
mask = cs->cpus_allowed;
up(&cpuset_sem);
return cpulist_scnprintf(page, PAGE_SIZE, mask);
}
static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
nodemask_t mask;
down(&cpuset_sem);
mask = cs->mems_allowed;
up(&cpuset_sem);
return nodelist_scnprintf(page, PAGE_SIZE, mask);
}
static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct cftype *cft = __d_cft(file->f_dentry);
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
cpuset_filetype_t type = cft->private;
char *page;
ssize_t retval = 0;
char *s;
char *start;
size_t n;
if (!(page = (char *)__get_free_page(GFP_KERNEL)))
return -ENOMEM;
s = page;
switch (type) {
case FILE_CPULIST:
s += cpuset_sprintf_cpulist(s, cs);
break;
case FILE_MEMLIST:
s += cpuset_sprintf_memlist(s, cs);
break;
case FILE_CPU_EXCLUSIVE:
*s++ = is_cpu_exclusive(cs) ? '1' : '0';
break;
case FILE_MEM_EXCLUSIVE:
*s++ = is_mem_exclusive(cs) ? '1' : '0';
break;
case FILE_NOTIFY_ON_RELEASE:
*s++ = notify_on_release(cs) ? '1' : '0';
break;
default:
retval = -EINVAL;
goto out;
}
*s++ = '\n';
*s = '\0';
start = page + *ppos;
n = s - start;
retval = n - copy_to_user(buf, start, min(n, nbytes));
*ppos += retval;
out:
free_page((unsigned long)page);
return retval;
}
static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
ssize_t retval = 0;
struct cftype *cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
/* special function ? */
if (cft->read)
retval = cft->read(file, buf, nbytes, ppos);
else
retval = cpuset_common_file_read(file, buf, nbytes, ppos);
return retval;
}
static int cpuset_file_open(struct inode *inode, struct file *file)
{
int err;
struct cftype *cft;
err = generic_file_open(inode, file);
if (err)
return err;
cft = __d_cft(file->f_dentry);
if (!cft)
return -ENODEV;
if (cft->open)
err = cft->open(inode, file);
else
err = 0;
return err;
}
static int cpuset_file_release(struct inode *inode, struct file *file)
{
struct cftype *cft = __d_cft(file->f_dentry);
if (cft->release)
return cft->release(inode, file);
return 0;
}
static struct file_operations cpuset_file_operations = {
.read = cpuset_file_read,
.write = cpuset_file_write,
.llseek = generic_file_llseek,
.open = cpuset_file_open,
.release = cpuset_file_release,
};
static struct inode_operations cpuset_dir_inode_operations = {
.lookup = simple_lookup,
.mkdir = cpuset_mkdir,
.rmdir = cpuset_rmdir,
};
static int cpuset_create_file(struct dentry *dentry, int mode)
{
struct inode *inode;
if (!dentry)
return -ENOENT;
if (dentry->d_inode)
return -EEXIST;
inode = cpuset_new_inode(mode);
if (!inode)
return -ENOMEM;
if (S_ISDIR(mode)) {
inode->i_op = &cpuset_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* start off with i_nlink == 2 (for "." entry) */
inode->i_nlink++;
} else if (S_ISREG(mode)) {
inode->i_size = 0;
inode->i_fop = &cpuset_file_operations;
}
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
return 0;
}
/*
* cpuset_create_dir - create a directory for an object.
* cs: the cpuset we create the directory for.
* It must have a valid ->parent field
* And we are going to fill its ->dentry field.
* name: The name to give to the cpuset directory. Will be copied.
* mode: mode to set on new directory.
*/
static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
struct dentry *dentry = NULL;
struct dentry *parent;
int error = 0;
parent = cs->parent->dentry;
dentry = cpuset_get_dentry(parent, name);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
error = cpuset_create_file(dentry, S_IFDIR | mode);
if (!error) {
dentry->d_fsdata = cs;
parent->d_inode->i_nlink++;
cs->dentry = dentry;
}
dput(dentry);
return error;
}
static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
struct dentry *dentry;
int error;
down(&dir->d_inode->i_sem);
dentry = cpuset_get_dentry(dir, cft->name);
if (!IS_ERR(dentry)) {
error = cpuset_create_file(dentry, 0644 | S_IFREG);
if (!error)
dentry->d_fsdata = (void *)cft;
dput(dentry);
} else
error = PTR_ERR(dentry);
up(&dir->d_inode->i_sem);
return error;
}
/*
* Stuff for reading the 'tasks' file.
*
* Reading this file can return large amounts of data if a cpuset has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
* Upon tasks file open(), a struct ctr_struct is allocated, that
* will have a pointer to an array (also allocated here). The struct
* ctr_struct * is stored in file->private_data. Its resources will
* be freed by release() when the file is closed. The array is used
* to sprintf the PIDs and then used by read().
*/
/* cpusets_tasks_read array */
struct ctr_struct {
char *buf;
int bufsz;
};
/*
* Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
* Return actual number of pids loaded.
*/
static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
{
int n = 0;
struct task_struct *g, *p;
read_lock(&tasklist_lock);
do_each_thread(g, p) {
if (p->cpuset == cs) {
pidarray[n++] = p->pid;
if (unlikely(n == npids))
goto array_full;
}
} while_each_thread(g, p);
array_full:
read_unlock(&tasklist_lock);
return n;
}
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
/*
* Convert array 'a' of 'npids' pid_t's to a string of newline separated
* decimal pids in 'buf'. Don't write more than 'sz' chars, but return
* count 'cnt' of how many chars would be written if buf were large enough.
*/
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
int cnt = 0;
int i;
for (i = 0; i < npids; i++)
cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
return cnt;
}
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
struct ctr_struct *ctr;
pid_t *pidarray;
int npids;
char c;
if (!(file->f_mode & FMODE_READ))
return 0;
ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
if (!ctr)
goto err0;
/*
* If cpuset gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cpuset users didn't
* show up until sometime later on.
*/
npids = atomic_read(&cs->count);
pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
if (!pidarray)
goto err1;
npids = pid_array_load(pidarray, npids, cs);
sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
/* Call pid_array_to_buf() twice, first just to get bufsz */
ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
if (!ctr->buf)
goto err2;
ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
kfree(pidarray);
file->private_data = ctr;
return 0;
err2:
kfree(pidarray);
err1:
kfree(ctr);
err0:
return -ENOMEM;
}
static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct ctr_struct *ctr = file->private_data;
if (*ppos + nbytes > ctr->bufsz)
nbytes = ctr->bufsz - *ppos;
if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT;
*ppos += nbytes;
return nbytes;
}
static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
struct ctr_struct *ctr;
if (file->f_mode & FMODE_READ) {
ctr = file->private_data;
kfree(ctr->buf);
kfree(ctr);
}
return 0;
}
/*
* for the common functions, 'private' gives the type of file
*/
static struct cftype cft_tasks = {
.name = "tasks",
.open = cpuset_tasks_open,
.read = cpuset_tasks_read,
.release = cpuset_tasks_release,
.private = FILE_TASKLIST,
};
static struct cftype cft_cpus = {
.name = "cpus",
.private = FILE_CPULIST,
};
static struct cftype cft_mems = {
.name = "mems",
.private = FILE_MEMLIST,
};
static struct cftype cft_cpu_exclusive = {
.name = "cpu_exclusive",
.private = FILE_CPU_EXCLUSIVE,
};
static struct cftype cft_mem_exclusive = {
.name = "mem_exclusive",
.private = FILE_MEM_EXCLUSIVE,
};
static struct cftype cft_notify_on_release = {
.name = "notify_on_release",
.private = FILE_NOTIFY_ON_RELEASE,
};
static int cpuset_populate_dir(struct dentry *cs_dentry)
{
int err;
if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
return err;
if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
return err;
return 0;
}
/*
* cpuset_create - create a cpuset
* parent: cpuset that will be parent of the new cpuset.
* name: name of the new cpuset. Will be strcpy'ed.
* mode: mode to set on new inode
*
* Must be called with the semaphore on the parent inode held
*/
static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
struct cpuset *cs;
int err;
cs = kmalloc(sizeof(*cs), GFP_KERNEL);
if (!cs)
return -ENOMEM;
down(&cpuset_sem);
refresh_mems();
cs->flags = 0;
if (notify_on_release(parent))
set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
cs->cpus_allowed = CPU_MASK_NONE;
cs->mems_allowed = NODE_MASK_NONE;
atomic_set(&cs->count, 0);
INIT_LIST_HEAD(&cs->sibling);
INIT_LIST_HEAD(&cs->children);
atomic_inc(&cpuset_mems_generation);
cs->mems_generation = atomic_read(&cpuset_mems_generation);
cs->parent = parent;
list_add(&cs->sibling, &cs->parent->children);
err = cpuset_create_dir(cs, name, mode);
if (err < 0)
goto err;
/*
* Release cpuset_sem before cpuset_populate_dir() because it
* will down() this new directory's i_sem and if we race with
* another mkdir, we might deadlock.
*/
up(&cpuset_sem);
err = cpuset_populate_dir(cs->dentry);
/* If err < 0, we have a half-filled directory - oh well ;) */
return 0;
err:
list_del(&cs->sibling);
up(&cpuset_sem);
kfree(cs);
return err;
}
static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
struct cpuset *c_parent = dentry->d_parent->d_fsdata;
/* the vfs holds inode->i_sem already */
return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
struct cpuset *cs = dentry->d_fsdata;
struct dentry *d;
struct cpuset *parent;
/* the vfs holds both inode->i_sem already */
down(&cpuset_sem);
refresh_mems();
if (atomic_read(&cs->count) > 0) {
up(&cpuset_sem);
return -EBUSY;
}
if (!list_empty(&cs->children)) {
up(&cpuset_sem);
return -EBUSY;
}
spin_lock(&cs->dentry->d_lock);
parent = cs->parent;
set_bit(CS_REMOVED, &cs->flags);
list_del(&cs->sibling); /* delete my sibling from parent->children */
if (list_empty(&parent->children))
check_for_release(parent);
d = dget(cs->dentry);
cs->dentry = NULL;
spin_unlock(&d->d_lock);
cpuset_d_remove_dir(d);
dput(d);
up(&cpuset_sem);
return 0;
}
/**
* cpuset_init - initialize cpusets at system boot
*
* Description: Initialize top_cpuset and the cpuset internal file system,
**/
int __init cpuset_init(void)
{
struct dentry *root;
int err;
top_cpuset.cpus_allowed = CPU_MASK_ALL;
top_cpuset.mems_allowed = NODE_MASK_ALL;
atomic_inc(&cpuset_mems_generation);
top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
init_task.cpuset = &top_cpuset;
err = register_filesystem(&cpuset_fs_type);
if (err < 0)
goto out;
cpuset_mount = kern_mount(&cpuset_fs_type);
if (IS_ERR(cpuset_mount)) {
printk(KERN_ERR "cpuset: could not mount!\n");
err = PTR_ERR(cpuset_mount);
cpuset_mount = NULL;
goto out;
}
root = cpuset_mount->mnt_sb->s_root;
root->d_fsdata = &top_cpuset;
root->d_inode->i_nlink++;
top_cpuset.dentry = root;
root->d_inode->i_op = &cpuset_dir_inode_operations;
err = cpuset_populate_dir(root);
out:
return err;
}
/**
* cpuset_init_smp - initialize cpus_allowed
*
* Description: Finish top cpuset after cpu, node maps are initialized
**/
void __init cpuset_init_smp(void)
{
top_cpuset.cpus_allowed = cpu_online_map;
top_cpuset.mems_allowed = node_online_map;
}
/**
* cpuset_fork - attach newly forked task to its parents cpuset.
* @p: pointer to task_struct of forking parent process.
*
* Description: By default, on fork, a task inherits its
* parents cpuset. The pointer to the shared cpuset is
* automatically copied in fork.c by dup_task_struct().
* This cpuset_fork() routine need only increment the usage
* counter in that cpuset.
**/
void cpuset_fork(struct task_struct *tsk)
{
atomic_inc(&tsk->cpuset->count);
}
/**
* cpuset_exit - detach cpuset from exiting task
* @tsk: pointer to task_struct of exiting process
*
* Description: Detach cpuset from @tsk and release it.
*
* Note that cpusets marked notify_on_release force every task
* in them to take the global cpuset_sem semaphore when exiting.
* This could impact scaling on very large systems. Be reluctant
* to use notify_on_release cpusets where very high task exit
* scaling is required on large systems.
*
* Don't even think about derefencing 'cs' after the cpuset use
* count goes to zero, except inside a critical section guarded
* by the cpuset_sem semaphore. If you don't hold cpuset_sem,
* then a zero cpuset use count is a license to any other task to
* nuke the cpuset immediately.
*
**/
void cpuset_exit(struct task_struct *tsk)
{
struct cpuset *cs;
task_lock(tsk);
cs = tsk->cpuset;
tsk->cpuset = NULL;
task_unlock(tsk);
if (notify_on_release(cs)) {
down(&cpuset_sem);
if (atomic_dec_and_test(&cs->count))
check_for_release(cs);
up(&cpuset_sem);
} else {
atomic_dec(&cs->count);
}
}
/**
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
*
* Description: Returns the cpumask_t cpus_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
* subset of cpu_online_map, even if this means going outside the
* tasks cpuset.
**/
cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
{
cpumask_t mask;
down(&cpuset_sem);
task_lock((struct task_struct *)tsk);
guarantee_online_cpus(tsk->cpuset, &mask);
task_unlock((struct task_struct *)tsk);
up(&cpuset_sem);
return mask;
}
void cpuset_init_current_mems_allowed(void)
{
current->mems_allowed = NODE_MASK_ALL;
}
/*
* If the current tasks cpusets mems_allowed changed behind our backs,
* update current->mems_allowed and mems_generation to the new value.
* Do not call this routine if in_interrupt().
*/
void cpuset_update_current_mems_allowed(void)
{
struct cpuset *cs = current->cpuset;
if (!cs)
return; /* task is exiting */
if (current->cpuset_mems_generation != cs->mems_generation) {
down(&cpuset_sem);
refresh_mems();
up(&cpuset_sem);
}
}
void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
{
bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
MAX_NUMNODES);
}
/*
* Are any of the nodes on zonelist zl allowed in current->mems_allowed?
*/
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
int i;
for (i = 0; zl->zones[i]; i++) {
int nid = zl->zones[i]->zone_pgdat->node_id;
if (node_isset(nid, current->mems_allowed))
return 1;
}
return 0;
}
/*
* Is 'current' valid, and is zone z allowed in current->mems_allowed?
*/
int cpuset_zone_allowed(struct zone *z)
{
return in_interrupt() ||
node_isset(z->zone_pgdat->node_id, current->mems_allowed);
}
/*
* proc_cpuset_show()
* - Print tasks cpuset path into seq_file.
* - Used for /proc/<pid>/cpuset.
*/
static int proc_cpuset_show(struct seq_file *m, void *v)
{
struct cpuset *cs;
struct task_struct *tsk;
char *buf;
int retval = 0;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
tsk = m->private;
down(&cpuset_sem);
task_lock(tsk);
cs = tsk->cpuset;
task_unlock(tsk);
if (!cs) {
retval = -EINVAL;
goto out;
}
retval = cpuset_path(cs, buf, PAGE_SIZE);
if (retval < 0)
goto out;
seq_puts(m, buf);
seq_putc(m, '\n');
out:
up(&cpuset_sem);
kfree(buf);
return retval;
}
static int cpuset_open(struct inode *inode, struct file *file)
{
struct task_struct *tsk = PROC_I(inode)->task;
return single_open(file, proc_cpuset_show, tsk);
}
struct file_operations proc_cpuset_operations = {
.open = cpuset_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
buffer += sprintf(buffer, "Cpus_allowed:\t");
buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
buffer += sprintf(buffer, "\n");
buffer += sprintf(buffer, "Mems_allowed:\t");
buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
buffer += sprintf(buffer, "\n");
return buffer;
}