2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/media/dvb/frontends/stv0297.c
Patrick Boettcher dea74869f3 V4L/DVB (4028): Change dvb_frontend_ops to be a real field instead of a pointer field inside dvb_frontend
The dvb_frontend_ops is a pointer inside dvb_frontend. That's why every demod-driver
is having a field of dvb_frontend_ops in its private-state-struct and
using the reference for filling the pointer-field in dvb_frontend.
- It saves at least two lines of code per demod-driver,
- reduces object size (one less dereference per frontend_ops-access),
- be coherent with dvb_tuner_ops,
- makes it a little bit easier for newbies to understand how it works and
- avoids stupid mistakes because you would have to copy the dvb_frontend_ops
  always, before you could assign the static pointer directly, which was
  dangerous.

Signed-off-by: Patrick Boettcher <pb@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2006-06-25 02:00:42 -03:00

701 lines
17 KiB
C

/*
Driver for STV0297 demodulator
Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
Copyright (C) 2003-2004 Dennis Noermann <dennis.noermann@noernet.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "stv0297.h"
struct stv0297_state {
struct i2c_adapter *i2c;
const struct stv0297_config *config;
struct dvb_frontend frontend;
unsigned long base_freq;
};
#if 1
#define dprintk(x...) printk(x)
#else
#define dprintk(x...)
#endif
#define STV0297_CLOCK_KHZ 28900
static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
"ret == %i)\n", __FUNCTION__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int stv0297_readreg(struct stv0297_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg, ret);
return -1;
}
}
return b1[0];
}
static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data)
{
int val;
val = stv0297_readreg(state, reg);
val &= ~mask;
val |= (data & mask);
stv0297_writereg(state, reg, val);
return 0;
}
static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len)
{
int ret;
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf =
&reg1,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __FUNCTION__, reg1, ret);
return -1;
}
}
return 0;
}
static u32 stv0297_get_symbolrate(struct stv0297_state *state)
{
u64 tmp;
tmp = stv0297_readreg(state, 0x55);
tmp |= stv0297_readreg(state, 0x56) << 8;
tmp |= stv0297_readreg(state, 0x57) << 16;
tmp |= stv0297_readreg(state, 0x58) << 24;
tmp *= STV0297_CLOCK_KHZ;
tmp >>= 32;
return (u32) tmp;
}
static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate)
{
long tmp;
tmp = 131072L * srate; /* 131072 = 2^17 */
tmp = tmp / (STV0297_CLOCK_KHZ / 4); /* 1/4 = 2^-2 */
tmp = tmp * 8192L; /* 8192 = 2^13 */
stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16));
stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24));
}
static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate)
{
long tmp;
tmp = (long) fshift *262144L; /* 262144 = 2*18 */
tmp /= symrate;
tmp *= 1024; /* 1024 = 2*10 */
// adjust
if (tmp >= 0) {
tmp += 500000;
} else {
tmp -= 500000;
}
tmp /= 1000000;
stv0297_writereg(state, 0x60, tmp & 0xFF);
stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0);
}
static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset)
{
long tmp;
/* symrate is hardcoded to 10000 */
tmp = offset * 26844L; /* (2**28)/10000 */
if (tmp < 0)
tmp += 0x10000000;
tmp &= 0x0FFFFFFF;
stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16));
stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f);
}
/*
static long stv0297_get_carrieroffset(struct stv0297_state *state)
{
s64 tmp;
stv0297_writereg(state, 0x6B, 0x00);
tmp = stv0297_readreg(state, 0x66);
tmp |= (stv0297_readreg(state, 0x67) << 8);
tmp |= (stv0297_readreg(state, 0x68) << 16);
tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24;
tmp *= stv0297_get_symbolrate(state);
tmp >>= 28;
return (s32) tmp;
}
*/
static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq)
{
s32 tmp;
if (freq > 10000)
freq -= STV0297_CLOCK_KHZ;
tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16);
tmp = (freq * 1000) / tmp;
if (tmp > 0xffff)
tmp = 0xffff;
stv0297_writereg_mask(state, 0x25, 0x80, 0x80);
stv0297_writereg(state, 0x21, tmp >> 8);
stv0297_writereg(state, 0x20, tmp);
}
static int stv0297_set_qam(struct stv0297_state *state, fe_modulation_t modulation)
{
int val = 0;
switch (modulation) {
case QAM_16:
val = 0;
break;
case QAM_32:
val = 1;
break;
case QAM_64:
val = 4;
break;
case QAM_128:
val = 2;
break;
case QAM_256:
val = 3;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x00, 0x70, val << 4);
return 0;
}
static int stv0297_set_inversion(struct stv0297_state *state, fe_spectral_inversion_t inversion)
{
int val = 0;
switch (inversion) {
case INVERSION_OFF:
val = 0;
break;
case INVERSION_ON:
val = 1;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x83, 0x08, val << 3);
return 0;
}
static int stv0297_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv0297_state *state = fe->demodulator_priv;
if (enable) {
stv0297_writereg(state, 0x87, 0x78);
stv0297_writereg(state, 0x86, 0xc8);
}
return 0;
}
static int stv0297_init(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
int i;
/* load init table */
for (i=0; !(state->config->inittab[i] == 0xff && state->config->inittab[i+1] == 0xff); i+=2)
stv0297_writereg(state, state->config->inittab[i], state->config->inittab[i+1]);
msleep(200);
return 0;
}
static int stv0297_sleep(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
stv0297_writereg_mask(state, 0x80, 1, 1);
return 0;
}
static int stv0297_read_status(struct dvb_frontend *fe, fe_status_t * status)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 sync = stv0297_readreg(state, 0xDF);
*status = 0;
if (sync & 0x80)
*status |=
FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK;
return 0;
}
static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 BER[3];
stv0297_writereg(state, 0xA0, 0x80); // Start Counting bit errors for 4096 Bytes
mdelay(25); // Hopefully got 4096 Bytes
stv0297_readregs(state, 0xA0, BER, 3);
mdelay(25);
*ber = (BER[2] << 8 | BER[1]) / (8 * 4096);
return 0;
}
static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 STRENGTH[2];
stv0297_readregs(state, 0x41, STRENGTH, 2);
*strength = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0];
return 0;
}
static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 SNR[2];
stv0297_readregs(state, 0x07, SNR, 2);
*snr = SNR[1] << 8 | SNR[0];
return 0;
}
static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
{
struct stv0297_state *state = fe->demodulator_priv;
*ucblocks = (stv0297_readreg(state, 0xD5) << 8)
| stv0297_readreg(state, 0xD4);
return 0;
}
static int stv0297_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct stv0297_state *state = fe->demodulator_priv;
int u_threshold;
int initial_u;
int blind_u;
int delay;
int sweeprate;
int carrieroffset;
unsigned long starttime;
unsigned long timeout;
fe_spectral_inversion_t inversion;
switch (p->u.qam.modulation) {
case QAM_16:
case QAM_32:
case QAM_64:
delay = 100;
sweeprate = 1000;
break;
case QAM_128:
case QAM_256:
delay = 200;
sweeprate = 500;
break;
default:
return -EINVAL;
}
// determine inversion dependant parameters
inversion = p->inversion;
if (state->config->invert)
inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
carrieroffset = -330;
switch (inversion) {
case INVERSION_OFF:
break;
case INVERSION_ON:
sweeprate = -sweeprate;
carrieroffset = -carrieroffset;
break;
default:
return -EINVAL;
}
stv0297_init(fe);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
/* clear software interrupts */
stv0297_writereg(state, 0x82, 0x0);
/* set initial demodulation frequency */
stv0297_set_initialdemodfreq(state, 7250);
/* setup AGC */
stv0297_writereg_mask(state, 0x43, 0x10, 0x00);
stv0297_writereg(state, 0x41, 0x00);
stv0297_writereg_mask(state, 0x42, 0x03, 0x01);
stv0297_writereg_mask(state, 0x36, 0x60, 0x00);
stv0297_writereg_mask(state, 0x36, 0x18, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x80);
stv0297_writereg(state, 0x72, 0x00);
stv0297_writereg(state, 0x73, 0x00);
stv0297_writereg_mask(state, 0x74, 0x0F, 0x00);
stv0297_writereg_mask(state, 0x43, 0x08, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x00);
/* setup STL */
stv0297_writereg_mask(state, 0x5a, 0x20, 0x20);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x02);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x00);
stv0297_writereg_mask(state, 0x5b, 0x01, 0x00);
stv0297_writereg_mask(state, 0x5a, 0x40, 0x40);
/* disable frequency sweep */
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
/* reset deinterleaver */
stv0297_writereg_mask(state, 0x81, 0x01, 0x01);
stv0297_writereg_mask(state, 0x81, 0x01, 0x00);
/* ??? */
stv0297_writereg_mask(state, 0x83, 0x20, 0x20);
stv0297_writereg_mask(state, 0x83, 0x20, 0x00);
/* reset equaliser */
u_threshold = stv0297_readreg(state, 0x00) & 0xf;
initial_u = stv0297_readreg(state, 0x01) >> 4;
blind_u = stv0297_readreg(state, 0x01) & 0xf;
stv0297_writereg_mask(state, 0x84, 0x01, 0x01);
stv0297_writereg_mask(state, 0x84, 0x01, 0x00);
stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold);
stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4);
stv0297_writereg_mask(state, 0x01, 0x0f, blind_u);
/* data comes from internal A/D */
stv0297_writereg_mask(state, 0x87, 0x80, 0x00);
/* clear phase registers */
stv0297_writereg(state, 0x63, 0x00);
stv0297_writereg(state, 0x64, 0x00);
stv0297_writereg(state, 0x65, 0x00);
stv0297_writereg(state, 0x66, 0x00);
stv0297_writereg(state, 0x67, 0x00);
stv0297_writereg(state, 0x68, 0x00);
stv0297_writereg_mask(state, 0x69, 0x0f, 0x00);
/* set parameters */
stv0297_set_qam(state, p->u.qam.modulation);
stv0297_set_symbolrate(state, p->u.qam.symbol_rate / 1000);
stv0297_set_sweeprate(state, sweeprate, p->u.qam.symbol_rate / 1000);
stv0297_set_carrieroffset(state, carrieroffset);
stv0297_set_inversion(state, inversion);
/* kick off lock */
/* Disable corner detection for higher QAMs */
if (p->u.qam.modulation == QAM_128 ||
p->u.qam.modulation == QAM_256)
stv0297_writereg_mask(state, 0x88, 0x08, 0x00);
else
stv0297_writereg_mask(state, 0x88, 0x08, 0x08);
stv0297_writereg_mask(state, 0x5a, 0x20, 0x00);
stv0297_writereg_mask(state, 0x6a, 0x01, 0x01);
stv0297_writereg_mask(state, 0x43, 0x40, 0x40);
stv0297_writereg_mask(state, 0x5b, 0x30, 0x00);
stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c);
stv0297_writereg_mask(state, 0x03, 0x03, 0x03);
stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
/* wait for WGAGC lock */
starttime = jiffies;
timeout = jiffies + msecs_to_jiffies(2000);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x43) & 0x08)
break;
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(20);
/* wait for equaliser partial convergence */
timeout = jiffies + msecs_to_jiffies(500);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x04) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* wait for equaliser full convergence */
timeout = jiffies + msecs_to_jiffies(delay);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x08) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* disable sweep */
stv0297_writereg_mask(state, 0x6a, 1, 0);
stv0297_writereg_mask(state, 0x88, 8, 0);
/* wait for main lock */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0xDF) & 0x80) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(100);
/* is it still locked after that delay? */
if (!(stv0297_readreg(state, 0xDF) & 0x80)) {
goto timeout;
}
/* success!! */
stv0297_writereg_mask(state, 0x5a, 0x40, 0x00);
state->base_freq = p->frequency;
return 0;
timeout:
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
return 0;
}
static int stv0297_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct stv0297_state *state = fe->demodulator_priv;
int reg_00, reg_83;
reg_00 = stv0297_readreg(state, 0x00);
reg_83 = stv0297_readreg(state, 0x83);
p->frequency = state->base_freq;
p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF;
if (state->config->invert)
p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
p->u.qam.symbol_rate = stv0297_get_symbolrate(state) * 1000;
p->u.qam.fec_inner = FEC_NONE;
switch ((reg_00 >> 4) & 0x7) {
case 0:
p->u.qam.modulation = QAM_16;
break;
case 1:
p->u.qam.modulation = QAM_32;
break;
case 2:
p->u.qam.modulation = QAM_128;
break;
case 3:
p->u.qam.modulation = QAM_256;
break;
case 4:
p->u.qam.modulation = QAM_64;
break;
}
return 0;
}
static void stv0297_release(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops stv0297_ops;
struct dvb_frontend *stv0297_attach(const struct stv0297_config *config,
struct i2c_adapter *i2c)
{
struct stv0297_state *state = NULL;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct stv0297_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->base_freq = 0;
/* check if the demod is there */
if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &stv0297_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops stv0297_ops = {
.info = {
.name = "ST STV0297 DVB-C",
.type = FE_QAM,
.frequency_min = 64000000,
.frequency_max = 1300000000,
.frequency_stepsize = 62500,
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO},
.release = stv0297_release,
.init = stv0297_init,
.sleep = stv0297_sleep,
.i2c_gate_ctrl = stv0297_i2c_gate_ctrl,
.set_frontend = stv0297_set_frontend,
.get_frontend = stv0297_get_frontend,
.read_status = stv0297_read_status,
.read_ber = stv0297_read_ber,
.read_signal_strength = stv0297_read_signal_strength,
.read_snr = stv0297_read_snr,
.read_ucblocks = stv0297_read_ucblocks,
};
MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver");
MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(stv0297_attach);