2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/lib/xarray.c
Matthew Wilcox (Oracle) 7e934cf5ac xarray: Fix early termination of xas_for_each_marked
xas_for_each_marked() is using entry == NULL as a termination condition
of the iteration. When xas_for_each_marked() is used protected only by
RCU, this can however race with xas_store(xas, NULL) in the following
way:

TASK1                                   TASK2
page_cache_delete()         	        find_get_pages_range_tag()
                                          xas_for_each_marked()
                                            xas_find_marked()
                                              off = xas_find_chunk()

  xas_store(&xas, NULL)
    xas_init_marks(&xas);
    ...
    rcu_assign_pointer(*slot, NULL);
                                              entry = xa_entry(off);

And thus xas_for_each_marked() terminates prematurely possibly leading
to missed entries in the iteration (translating to missing writeback of
some pages or a similar problem).

If we find a NULL entry that has been marked, skip it (unless we're trying
to allocate an entry).

Reported-by: Jan Kara <jack@suse.cz>
CC: stable@vger.kernel.org
Fixes: ef8e5717db ("page cache: Convert delete_batch to XArray")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2020-03-12 17:42:08 -04:00

2085 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* XArray implementation
* Copyright (c) 2017-2018 Microsoft Corporation
* Copyright (c) 2018-2020 Oracle
* Author: Matthew Wilcox <willy@infradead.org>
*/
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/xarray.h>
/*
* Coding conventions in this file:
*
* @xa is used to refer to the entire xarray.
* @xas is the 'xarray operation state'. It may be either a pointer to
* an xa_state, or an xa_state stored on the stack. This is an unfortunate
* ambiguity.
* @index is the index of the entry being operated on
* @mark is an xa_mark_t; a small number indicating one of the mark bits.
* @node refers to an xa_node; usually the primary one being operated on by
* this function.
* @offset is the index into the slots array inside an xa_node.
* @parent refers to the @xa_node closer to the head than @node.
* @entry refers to something stored in a slot in the xarray
*/
static inline unsigned int xa_lock_type(const struct xarray *xa)
{
return (__force unsigned int)xa->xa_flags & 3;
}
static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
{
if (lock_type == XA_LOCK_IRQ)
xas_lock_irq(xas);
else if (lock_type == XA_LOCK_BH)
xas_lock_bh(xas);
else
xas_lock(xas);
}
static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
{
if (lock_type == XA_LOCK_IRQ)
xas_unlock_irq(xas);
else if (lock_type == XA_LOCK_BH)
xas_unlock_bh(xas);
else
xas_unlock(xas);
}
static inline bool xa_track_free(const struct xarray *xa)
{
return xa->xa_flags & XA_FLAGS_TRACK_FREE;
}
static inline bool xa_zero_busy(const struct xarray *xa)
{
return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
}
static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
{
if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
xa->xa_flags |= XA_FLAGS_MARK(mark);
}
static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
{
if (xa->xa_flags & XA_FLAGS_MARK(mark))
xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
}
static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
{
return node->marks[(__force unsigned)mark];
}
static inline bool node_get_mark(struct xa_node *node,
unsigned int offset, xa_mark_t mark)
{
return test_bit(offset, node_marks(node, mark));
}
/* returns true if the bit was set */
static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
xa_mark_t mark)
{
return __test_and_set_bit(offset, node_marks(node, mark));
}
/* returns true if the bit was set */
static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
xa_mark_t mark)
{
return __test_and_clear_bit(offset, node_marks(node, mark));
}
static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
{
return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
}
static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
{
bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
}
#define mark_inc(mark) do { \
mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
} while (0)
/*
* xas_squash_marks() - Merge all marks to the first entry
* @xas: Array operation state.
*
* Set a mark on the first entry if any entry has it set. Clear marks on
* all sibling entries.
*/
static void xas_squash_marks(const struct xa_state *xas)
{
unsigned int mark = 0;
unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
if (!xas->xa_sibs)
return;
do {
unsigned long *marks = xas->xa_node->marks[mark];
if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
continue;
__set_bit(xas->xa_offset, marks);
bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
} while (mark++ != (__force unsigned)XA_MARK_MAX);
}
/* extracts the offset within this node from the index */
static unsigned int get_offset(unsigned long index, struct xa_node *node)
{
return (index >> node->shift) & XA_CHUNK_MASK;
}
static void xas_set_offset(struct xa_state *xas)
{
xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
}
/* move the index either forwards (find) or backwards (sibling slot) */
static void xas_move_index(struct xa_state *xas, unsigned long offset)
{
unsigned int shift = xas->xa_node->shift;
xas->xa_index &= ~XA_CHUNK_MASK << shift;
xas->xa_index += offset << shift;
}
static void xas_advance(struct xa_state *xas)
{
xas->xa_offset++;
xas_move_index(xas, xas->xa_offset);
}
static void *set_bounds(struct xa_state *xas)
{
xas->xa_node = XAS_BOUNDS;
return NULL;
}
/*
* Starts a walk. If the @xas is already valid, we assume that it's on
* the right path and just return where we've got to. If we're in an
* error state, return NULL. If the index is outside the current scope
* of the xarray, return NULL without changing @xas->xa_node. Otherwise
* set @xas->xa_node to NULL and return the current head of the array.
*/
static void *xas_start(struct xa_state *xas)
{
void *entry;
if (xas_valid(xas))
return xas_reload(xas);
if (xas_error(xas))
return NULL;
entry = xa_head(xas->xa);
if (!xa_is_node(entry)) {
if (xas->xa_index)
return set_bounds(xas);
} else {
if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
return set_bounds(xas);
}
xas->xa_node = NULL;
return entry;
}
static void *xas_descend(struct xa_state *xas, struct xa_node *node)
{
unsigned int offset = get_offset(xas->xa_index, node);
void *entry = xa_entry(xas->xa, node, offset);
xas->xa_node = node;
if (xa_is_sibling(entry)) {
offset = xa_to_sibling(entry);
entry = xa_entry(xas->xa, node, offset);
}
xas->xa_offset = offset;
return entry;
}
/**
* xas_load() - Load an entry from the XArray (advanced).
* @xas: XArray operation state.
*
* Usually walks the @xas to the appropriate state to load the entry
* stored at xa_index. However, it will do nothing and return %NULL if
* @xas is in an error state. xas_load() will never expand the tree.
*
* If the xa_state is set up to operate on a multi-index entry, xas_load()
* may return %NULL or an internal entry, even if there are entries
* present within the range specified by @xas.
*
* Context: Any context. The caller should hold the xa_lock or the RCU lock.
* Return: Usually an entry in the XArray, but see description for exceptions.
*/
void *xas_load(struct xa_state *xas)
{
void *entry = xas_start(xas);
while (xa_is_node(entry)) {
struct xa_node *node = xa_to_node(entry);
if (xas->xa_shift > node->shift)
break;
entry = xas_descend(xas, node);
if (node->shift == 0)
break;
}
return entry;
}
EXPORT_SYMBOL_GPL(xas_load);
/* Move the radix tree node cache here */
extern struct kmem_cache *radix_tree_node_cachep;
extern void radix_tree_node_rcu_free(struct rcu_head *head);
#define XA_RCU_FREE ((struct xarray *)1)
static void xa_node_free(struct xa_node *node)
{
XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
node->array = XA_RCU_FREE;
call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}
/*
* xas_destroy() - Free any resources allocated during the XArray operation.
* @xas: XArray operation state.
*
* This function is now internal-only.
*/
static void xas_destroy(struct xa_state *xas)
{
struct xa_node *node = xas->xa_alloc;
if (!node)
return;
XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
kmem_cache_free(radix_tree_node_cachep, node);
xas->xa_alloc = NULL;
}
/**
* xas_nomem() - Allocate memory if needed.
* @xas: XArray operation state.
* @gfp: Memory allocation flags.
*
* If we need to add new nodes to the XArray, we try to allocate memory
* with GFP_NOWAIT while holding the lock, which will usually succeed.
* If it fails, @xas is flagged as needing memory to continue. The caller
* should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
* the caller should retry the operation.
*
* Forward progress is guaranteed as one node is allocated here and
* stored in the xa_state where it will be found by xas_alloc(). More
* nodes will likely be found in the slab allocator, but we do not tie
* them up here.
*
* Return: true if memory was needed, and was successfully allocated.
*/
bool xas_nomem(struct xa_state *xas, gfp_t gfp)
{
if (xas->xa_node != XA_ERROR(-ENOMEM)) {
xas_destroy(xas);
return false;
}
if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
gfp |= __GFP_ACCOUNT;
xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
if (!xas->xa_alloc)
return false;
XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
xas->xa_node = XAS_RESTART;
return true;
}
EXPORT_SYMBOL_GPL(xas_nomem);
/*
* __xas_nomem() - Drop locks and allocate memory if needed.
* @xas: XArray operation state.
* @gfp: Memory allocation flags.
*
* Internal variant of xas_nomem().
*
* Return: true if memory was needed, and was successfully allocated.
*/
static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
__must_hold(xas->xa->xa_lock)
{
unsigned int lock_type = xa_lock_type(xas->xa);
if (xas->xa_node != XA_ERROR(-ENOMEM)) {
xas_destroy(xas);
return false;
}
if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
gfp |= __GFP_ACCOUNT;
if (gfpflags_allow_blocking(gfp)) {
xas_unlock_type(xas, lock_type);
xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
xas_lock_type(xas, lock_type);
} else {
xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
}
if (!xas->xa_alloc)
return false;
XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
xas->xa_node = XAS_RESTART;
return true;
}
static void xas_update(struct xa_state *xas, struct xa_node *node)
{
if (xas->xa_update)
xas->xa_update(node);
else
XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
}
static void *xas_alloc(struct xa_state *xas, unsigned int shift)
{
struct xa_node *parent = xas->xa_node;
struct xa_node *node = xas->xa_alloc;
if (xas_invalid(xas))
return NULL;
if (node) {
xas->xa_alloc = NULL;
} else {
gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
gfp |= __GFP_ACCOUNT;
node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
if (!node) {
xas_set_err(xas, -ENOMEM);
return NULL;
}
}
if (parent) {
node->offset = xas->xa_offset;
parent->count++;
XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
xas_update(xas, parent);
}
XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
node->shift = shift;
node->count = 0;
node->nr_values = 0;
RCU_INIT_POINTER(node->parent, xas->xa_node);
node->array = xas->xa;
return node;
}
#ifdef CONFIG_XARRAY_MULTI
/* Returns the number of indices covered by a given xa_state */
static unsigned long xas_size(const struct xa_state *xas)
{
return (xas->xa_sibs + 1UL) << xas->xa_shift;
}
#endif
/*
* Use this to calculate the maximum index that will need to be created
* in order to add the entry described by @xas. Because we cannot store a
* multiple-index entry at index 0, the calculation is a little more complex
* than you might expect.
*/
static unsigned long xas_max(struct xa_state *xas)
{
unsigned long max = xas->xa_index;
#ifdef CONFIG_XARRAY_MULTI
if (xas->xa_shift || xas->xa_sibs) {
unsigned long mask = xas_size(xas) - 1;
max |= mask;
if (mask == max)
max++;
}
#endif
return max;
}
/* The maximum index that can be contained in the array without expanding it */
static unsigned long max_index(void *entry)
{
if (!xa_is_node(entry))
return 0;
return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
}
static void xas_shrink(struct xa_state *xas)
{
struct xarray *xa = xas->xa;
struct xa_node *node = xas->xa_node;
for (;;) {
void *entry;
XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
if (node->count != 1)
break;
entry = xa_entry_locked(xa, node, 0);
if (!entry)
break;
if (!xa_is_node(entry) && node->shift)
break;
if (xa_is_zero(entry) && xa_zero_busy(xa))
entry = NULL;
xas->xa_node = XAS_BOUNDS;
RCU_INIT_POINTER(xa->xa_head, entry);
if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
xa_mark_clear(xa, XA_FREE_MARK);
node->count = 0;
node->nr_values = 0;
if (!xa_is_node(entry))
RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
xas_update(xas, node);
xa_node_free(node);
if (!xa_is_node(entry))
break;
node = xa_to_node(entry);
node->parent = NULL;
}
}
/*
* xas_delete_node() - Attempt to delete an xa_node
* @xas: Array operation state.
*
* Attempts to delete the @xas->xa_node. This will fail if xa->node has
* a non-zero reference count.
*/
static void xas_delete_node(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
for (;;) {
struct xa_node *parent;
XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
if (node->count)
break;
parent = xa_parent_locked(xas->xa, node);
xas->xa_node = parent;
xas->xa_offset = node->offset;
xa_node_free(node);
if (!parent) {
xas->xa->xa_head = NULL;
xas->xa_node = XAS_BOUNDS;
return;
}
parent->slots[xas->xa_offset] = NULL;
parent->count--;
XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
node = parent;
xas_update(xas, node);
}
if (!node->parent)
xas_shrink(xas);
}
/**
* xas_free_nodes() - Free this node and all nodes that it references
* @xas: Array operation state.
* @top: Node to free
*
* This node has been removed from the tree. We must now free it and all
* of its subnodes. There may be RCU walkers with references into the tree,
* so we must replace all entries with retry markers.
*/
static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
{
unsigned int offset = 0;
struct xa_node *node = top;
for (;;) {
void *entry = xa_entry_locked(xas->xa, node, offset);
if (node->shift && xa_is_node(entry)) {
node = xa_to_node(entry);
offset = 0;
continue;
}
if (entry)
RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
offset++;
while (offset == XA_CHUNK_SIZE) {
struct xa_node *parent;
parent = xa_parent_locked(xas->xa, node);
offset = node->offset + 1;
node->count = 0;
node->nr_values = 0;
xas_update(xas, node);
xa_node_free(node);
if (node == top)
return;
node = parent;
}
}
}
/*
* xas_expand adds nodes to the head of the tree until it has reached
* sufficient height to be able to contain @xas->xa_index
*/
static int xas_expand(struct xa_state *xas, void *head)
{
struct xarray *xa = xas->xa;
struct xa_node *node = NULL;
unsigned int shift = 0;
unsigned long max = xas_max(xas);
if (!head) {
if (max == 0)
return 0;
while ((max >> shift) >= XA_CHUNK_SIZE)
shift += XA_CHUNK_SHIFT;
return shift + XA_CHUNK_SHIFT;
} else if (xa_is_node(head)) {
node = xa_to_node(head);
shift = node->shift + XA_CHUNK_SHIFT;
}
xas->xa_node = NULL;
while (max > max_index(head)) {
xa_mark_t mark = 0;
XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
node = xas_alloc(xas, shift);
if (!node)
return -ENOMEM;
node->count = 1;
if (xa_is_value(head))
node->nr_values = 1;
RCU_INIT_POINTER(node->slots[0], head);
/* Propagate the aggregated mark info to the new child */
for (;;) {
if (xa_track_free(xa) && mark == XA_FREE_MARK) {
node_mark_all(node, XA_FREE_MARK);
if (!xa_marked(xa, XA_FREE_MARK)) {
node_clear_mark(node, 0, XA_FREE_MARK);
xa_mark_set(xa, XA_FREE_MARK);
}
} else if (xa_marked(xa, mark)) {
node_set_mark(node, 0, mark);
}
if (mark == XA_MARK_MAX)
break;
mark_inc(mark);
}
/*
* Now that the new node is fully initialised, we can add
* it to the tree
*/
if (xa_is_node(head)) {
xa_to_node(head)->offset = 0;
rcu_assign_pointer(xa_to_node(head)->parent, node);
}
head = xa_mk_node(node);
rcu_assign_pointer(xa->xa_head, head);
xas_update(xas, node);
shift += XA_CHUNK_SHIFT;
}
xas->xa_node = node;
return shift;
}
/*
* xas_create() - Create a slot to store an entry in.
* @xas: XArray operation state.
* @allow_root: %true if we can store the entry in the root directly
*
* Most users will not need to call this function directly, as it is called
* by xas_store(). It is useful for doing conditional store operations
* (see the xa_cmpxchg() implementation for an example).
*
* Return: If the slot already existed, returns the contents of this slot.
* If the slot was newly created, returns %NULL. If it failed to create the
* slot, returns %NULL and indicates the error in @xas.
*/
static void *xas_create(struct xa_state *xas, bool allow_root)
{
struct xarray *xa = xas->xa;
void *entry;
void __rcu **slot;
struct xa_node *node = xas->xa_node;
int shift;
unsigned int order = xas->xa_shift;
if (xas_top(node)) {
entry = xa_head_locked(xa);
xas->xa_node = NULL;
if (!entry && xa_zero_busy(xa))
entry = XA_ZERO_ENTRY;
shift = xas_expand(xas, entry);
if (shift < 0)
return NULL;
if (!shift && !allow_root)
shift = XA_CHUNK_SHIFT;
entry = xa_head_locked(xa);
slot = &xa->xa_head;
} else if (xas_error(xas)) {
return NULL;
} else if (node) {
unsigned int offset = xas->xa_offset;
shift = node->shift;
entry = xa_entry_locked(xa, node, offset);
slot = &node->slots[offset];
} else {
shift = 0;
entry = xa_head_locked(xa);
slot = &xa->xa_head;
}
while (shift > order) {
shift -= XA_CHUNK_SHIFT;
if (!entry) {
node = xas_alloc(xas, shift);
if (!node)
break;
if (xa_track_free(xa))
node_mark_all(node, XA_FREE_MARK);
rcu_assign_pointer(*slot, xa_mk_node(node));
} else if (xa_is_node(entry)) {
node = xa_to_node(entry);
} else {
break;
}
entry = xas_descend(xas, node);
slot = &node->slots[xas->xa_offset];
}
return entry;
}
/**
* xas_create_range() - Ensure that stores to this range will succeed
* @xas: XArray operation state.
*
* Creates all of the slots in the range covered by @xas. Sets @xas to
* create single-index entries and positions it at the beginning of the
* range. This is for the benefit of users which have not yet been
* converted to use multi-index entries.
*/
void xas_create_range(struct xa_state *xas)
{
unsigned long index = xas->xa_index;
unsigned char shift = xas->xa_shift;
unsigned char sibs = xas->xa_sibs;
xas->xa_index |= ((sibs + 1) << shift) - 1;
if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
xas->xa_offset |= sibs;
xas->xa_shift = 0;
xas->xa_sibs = 0;
for (;;) {
xas_create(xas, true);
if (xas_error(xas))
goto restore;
if (xas->xa_index <= (index | XA_CHUNK_MASK))
goto success;
xas->xa_index -= XA_CHUNK_SIZE;
for (;;) {
struct xa_node *node = xas->xa_node;
xas->xa_node = xa_parent_locked(xas->xa, node);
xas->xa_offset = node->offset - 1;
if (node->offset != 0)
break;
}
}
restore:
xas->xa_shift = shift;
xas->xa_sibs = sibs;
xas->xa_index = index;
return;
success:
xas->xa_index = index;
if (xas->xa_node)
xas_set_offset(xas);
}
EXPORT_SYMBOL_GPL(xas_create_range);
static void update_node(struct xa_state *xas, struct xa_node *node,
int count, int values)
{
if (!node || (!count && !values))
return;
node->count += count;
node->nr_values += values;
XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
xas_update(xas, node);
if (count < 0)
xas_delete_node(xas);
}
/**
* xas_store() - Store this entry in the XArray.
* @xas: XArray operation state.
* @entry: New entry.
*
* If @xas is operating on a multi-index entry, the entry returned by this
* function is essentially meaningless (it may be an internal entry or it
* may be %NULL, even if there are non-NULL entries at some of the indices
* covered by the range). This is not a problem for any current users,
* and can be changed if needed.
*
* Return: The old entry at this index.
*/
void *xas_store(struct xa_state *xas, void *entry)
{
struct xa_node *node;
void __rcu **slot = &xas->xa->xa_head;
unsigned int offset, max;
int count = 0;
int values = 0;
void *first, *next;
bool value = xa_is_value(entry);
if (entry) {
bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
first = xas_create(xas, allow_root);
} else {
first = xas_load(xas);
}
if (xas_invalid(xas))
return first;
node = xas->xa_node;
if (node && (xas->xa_shift < node->shift))
xas->xa_sibs = 0;
if ((first == entry) && !xas->xa_sibs)
return first;
next = first;
offset = xas->xa_offset;
max = xas->xa_offset + xas->xa_sibs;
if (node) {
slot = &node->slots[offset];
if (xas->xa_sibs)
xas_squash_marks(xas);
}
if (!entry)
xas_init_marks(xas);
for (;;) {
/*
* Must clear the marks before setting the entry to NULL,
* otherwise xas_for_each_marked may find a NULL entry and
* stop early. rcu_assign_pointer contains a release barrier
* so the mark clearing will appear to happen before the
* entry is set to NULL.
*/
rcu_assign_pointer(*slot, entry);
if (xa_is_node(next) && (!node || node->shift))
xas_free_nodes(xas, xa_to_node(next));
if (!node)
break;
count += !next - !entry;
values += !xa_is_value(first) - !value;
if (entry) {
if (offset == max)
break;
if (!xa_is_sibling(entry))
entry = xa_mk_sibling(xas->xa_offset);
} else {
if (offset == XA_CHUNK_MASK)
break;
}
next = xa_entry_locked(xas->xa, node, ++offset);
if (!xa_is_sibling(next)) {
if (!entry && (offset > max))
break;
first = next;
}
slot++;
}
update_node(xas, node, count, values);
return first;
}
EXPORT_SYMBOL_GPL(xas_store);
/**
* xas_get_mark() - Returns the state of this mark.
* @xas: XArray operation state.
* @mark: Mark number.
*
* Return: true if the mark is set, false if the mark is clear or @xas
* is in an error state.
*/
bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
{
if (xas_invalid(xas))
return false;
if (!xas->xa_node)
return xa_marked(xas->xa, mark);
return node_get_mark(xas->xa_node, xas->xa_offset, mark);
}
EXPORT_SYMBOL_GPL(xas_get_mark);
/**
* xas_set_mark() - Sets the mark on this entry and its parents.
* @xas: XArray operation state.
* @mark: Mark number.
*
* Sets the specified mark on this entry, and walks up the tree setting it
* on all the ancestor entries. Does nothing if @xas has not been walked to
* an entry, or is in an error state.
*/
void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
{
struct xa_node *node = xas->xa_node;
unsigned int offset = xas->xa_offset;
if (xas_invalid(xas))
return;
while (node) {
if (node_set_mark(node, offset, mark))
return;
offset = node->offset;
node = xa_parent_locked(xas->xa, node);
}
if (!xa_marked(xas->xa, mark))
xa_mark_set(xas->xa, mark);
}
EXPORT_SYMBOL_GPL(xas_set_mark);
/**
* xas_clear_mark() - Clears the mark on this entry and its parents.
* @xas: XArray operation state.
* @mark: Mark number.
*
* Clears the specified mark on this entry, and walks back to the head
* attempting to clear it on all the ancestor entries. Does nothing if
* @xas has not been walked to an entry, or is in an error state.
*/
void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
{
struct xa_node *node = xas->xa_node;
unsigned int offset = xas->xa_offset;
if (xas_invalid(xas))
return;
while (node) {
if (!node_clear_mark(node, offset, mark))
return;
if (node_any_mark(node, mark))
return;
offset = node->offset;
node = xa_parent_locked(xas->xa, node);
}
if (xa_marked(xas->xa, mark))
xa_mark_clear(xas->xa, mark);
}
EXPORT_SYMBOL_GPL(xas_clear_mark);
/**
* xas_init_marks() - Initialise all marks for the entry
* @xas: Array operations state.
*
* Initialise all marks for the entry specified by @xas. If we're tracking
* free entries with a mark, we need to set it on all entries. All other
* marks are cleared.
*
* This implementation is not as efficient as it could be; we may walk
* up the tree multiple times.
*/
void xas_init_marks(const struct xa_state *xas)
{
xa_mark_t mark = 0;
for (;;) {
if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
xas_set_mark(xas, mark);
else
xas_clear_mark(xas, mark);
if (mark == XA_MARK_MAX)
break;
mark_inc(mark);
}
}
EXPORT_SYMBOL_GPL(xas_init_marks);
/**
* xas_pause() - Pause a walk to drop a lock.
* @xas: XArray operation state.
*
* Some users need to pause a walk and drop the lock they're holding in
* order to yield to a higher priority thread or carry out an operation
* on an entry. Those users should call this function before they drop
* the lock. It resets the @xas to be suitable for the next iteration
* of the loop after the user has reacquired the lock. If most entries
* found during a walk require you to call xas_pause(), the xa_for_each()
* iterator may be more appropriate.
*
* Note that xas_pause() only works for forward iteration. If a user needs
* to pause a reverse iteration, we will need a xas_pause_rev().
*/
void xas_pause(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
if (xas_invalid(xas))
return;
xas->xa_node = XAS_RESTART;
if (node) {
unsigned long offset = xas->xa_offset;
while (++offset < XA_CHUNK_SIZE) {
if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
break;
}
xas->xa_index += (offset - xas->xa_offset) << node->shift;
if (xas->xa_index == 0)
xas->xa_node = XAS_BOUNDS;
} else {
xas->xa_index++;
}
}
EXPORT_SYMBOL_GPL(xas_pause);
/*
* __xas_prev() - Find the previous entry in the XArray.
* @xas: XArray operation state.
*
* Helper function for xas_prev() which handles all the complex cases
* out of line.
*/
void *__xas_prev(struct xa_state *xas)
{
void *entry;
if (!xas_frozen(xas->xa_node))
xas->xa_index--;
if (!xas->xa_node)
return set_bounds(xas);
if (xas_not_node(xas->xa_node))
return xas_load(xas);
if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
xas->xa_offset--;
while (xas->xa_offset == 255) {
xas->xa_offset = xas->xa_node->offset - 1;
xas->xa_node = xa_parent(xas->xa, xas->xa_node);
if (!xas->xa_node)
return set_bounds(xas);
}
for (;;) {
entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
if (!xa_is_node(entry))
return entry;
xas->xa_node = xa_to_node(entry);
xas_set_offset(xas);
}
}
EXPORT_SYMBOL_GPL(__xas_prev);
/*
* __xas_next() - Find the next entry in the XArray.
* @xas: XArray operation state.
*
* Helper function for xas_next() which handles all the complex cases
* out of line.
*/
void *__xas_next(struct xa_state *xas)
{
void *entry;
if (!xas_frozen(xas->xa_node))
xas->xa_index++;
if (!xas->xa_node)
return set_bounds(xas);
if (xas_not_node(xas->xa_node))
return xas_load(xas);
if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
xas->xa_offset++;
while (xas->xa_offset == XA_CHUNK_SIZE) {
xas->xa_offset = xas->xa_node->offset + 1;
xas->xa_node = xa_parent(xas->xa, xas->xa_node);
if (!xas->xa_node)
return set_bounds(xas);
}
for (;;) {
entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
if (!xa_is_node(entry))
return entry;
xas->xa_node = xa_to_node(entry);
xas_set_offset(xas);
}
}
EXPORT_SYMBOL_GPL(__xas_next);
/**
* xas_find() - Find the next present entry in the XArray.
* @xas: XArray operation state.
* @max: Highest index to return.
*
* If the @xas has not yet been walked to an entry, return the entry
* which has an index >= xas.xa_index. If it has been walked, the entry
* currently being pointed at has been processed, and so we move to the
* next entry.
*
* If no entry is found and the array is smaller than @max, the iterator
* is set to the smallest index not yet in the array. This allows @xas
* to be immediately passed to xas_store().
*
* Return: The entry, if found, otherwise %NULL.
*/
void *xas_find(struct xa_state *xas, unsigned long max)
{
void *entry;
if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
return NULL;
if (xas->xa_index > max)
return set_bounds(xas);
if (!xas->xa_node) {
xas->xa_index = 1;
return set_bounds(xas);
} else if (xas->xa_node == XAS_RESTART) {
entry = xas_load(xas);
if (entry || xas_not_node(xas->xa_node))
return entry;
} else if (!xas->xa_node->shift &&
xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
}
xas_advance(xas);
while (xas->xa_node && (xas->xa_index <= max)) {
if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
xas->xa_offset = xas->xa_node->offset + 1;
xas->xa_node = xa_parent(xas->xa, xas->xa_node);
continue;
}
entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
if (xa_is_node(entry)) {
xas->xa_node = xa_to_node(entry);
xas->xa_offset = 0;
continue;
}
if (entry && !xa_is_sibling(entry))
return entry;
xas_advance(xas);
}
if (!xas->xa_node)
xas->xa_node = XAS_BOUNDS;
return NULL;
}
EXPORT_SYMBOL_GPL(xas_find);
/**
* xas_find_marked() - Find the next marked entry in the XArray.
* @xas: XArray operation state.
* @max: Highest index to return.
* @mark: Mark number to search for.
*
* If the @xas has not yet been walked to an entry, return the marked entry
* which has an index >= xas.xa_index. If it has been walked, the entry
* currently being pointed at has been processed, and so we return the
* first marked entry with an index > xas.xa_index.
*
* If no marked entry is found and the array is smaller than @max, @xas is
* set to the bounds state and xas->xa_index is set to the smallest index
* not yet in the array. This allows @xas to be immediately passed to
* xas_store().
*
* If no entry is found before @max is reached, @xas is set to the restart
* state.
*
* Return: The entry, if found, otherwise %NULL.
*/
void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
{
bool advance = true;
unsigned int offset;
void *entry;
if (xas_error(xas))
return NULL;
if (xas->xa_index > max)
goto max;
if (!xas->xa_node) {
xas->xa_index = 1;
goto out;
} else if (xas_top(xas->xa_node)) {
advance = false;
entry = xa_head(xas->xa);
xas->xa_node = NULL;
if (xas->xa_index > max_index(entry))
goto out;
if (!xa_is_node(entry)) {
if (xa_marked(xas->xa, mark))
return entry;
xas->xa_index = 1;
goto out;
}
xas->xa_node = xa_to_node(entry);
xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
}
while (xas->xa_index <= max) {
if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
xas->xa_offset = xas->xa_node->offset + 1;
xas->xa_node = xa_parent(xas->xa, xas->xa_node);
if (!xas->xa_node)
break;
advance = false;
continue;
}
if (!advance) {
entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
if (xa_is_sibling(entry)) {
xas->xa_offset = xa_to_sibling(entry);
xas_move_index(xas, xas->xa_offset);
}
}
offset = xas_find_chunk(xas, advance, mark);
if (offset > xas->xa_offset) {
advance = false;
xas_move_index(xas, offset);
/* Mind the wrap */
if ((xas->xa_index - 1) >= max)
goto max;
xas->xa_offset = offset;
if (offset == XA_CHUNK_SIZE)
continue;
}
entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
continue;
if (!xa_is_node(entry))
return entry;
xas->xa_node = xa_to_node(entry);
xas_set_offset(xas);
}
out:
if (xas->xa_index > max)
goto max;
return set_bounds(xas);
max:
xas->xa_node = XAS_RESTART;
return NULL;
}
EXPORT_SYMBOL_GPL(xas_find_marked);
/**
* xas_find_conflict() - Find the next present entry in a range.
* @xas: XArray operation state.
*
* The @xas describes both a range and a position within that range.
*
* Context: Any context. Expects xa_lock to be held.
* Return: The next entry in the range covered by @xas or %NULL.
*/
void *xas_find_conflict(struct xa_state *xas)
{
void *curr;
if (xas_error(xas))
return NULL;
if (!xas->xa_node)
return NULL;
if (xas_top(xas->xa_node)) {
curr = xas_start(xas);
if (!curr)
return NULL;
while (xa_is_node(curr)) {
struct xa_node *node = xa_to_node(curr);
curr = xas_descend(xas, node);
}
if (curr)
return curr;
}
if (xas->xa_node->shift > xas->xa_shift)
return NULL;
for (;;) {
if (xas->xa_node->shift == xas->xa_shift) {
if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
break;
} else if (xas->xa_offset == XA_CHUNK_MASK) {
xas->xa_offset = xas->xa_node->offset;
xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
if (!xas->xa_node)
break;
continue;
}
curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
if (xa_is_sibling(curr))
continue;
while (xa_is_node(curr)) {
xas->xa_node = xa_to_node(curr);
xas->xa_offset = 0;
curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
}
if (curr)
return curr;
}
xas->xa_offset -= xas->xa_sibs;
return NULL;
}
EXPORT_SYMBOL_GPL(xas_find_conflict);
/**
* xa_load() - Load an entry from an XArray.
* @xa: XArray.
* @index: index into array.
*
* Context: Any context. Takes and releases the RCU lock.
* Return: The entry at @index in @xa.
*/
void *xa_load(struct xarray *xa, unsigned long index)
{
XA_STATE(xas, xa, index);
void *entry;
rcu_read_lock();
do {
entry = xas_load(&xas);
if (xa_is_zero(entry))
entry = NULL;
} while (xas_retry(&xas, entry));
rcu_read_unlock();
return entry;
}
EXPORT_SYMBOL(xa_load);
static void *xas_result(struct xa_state *xas, void *curr)
{
if (xa_is_zero(curr))
return NULL;
if (xas_error(xas))
curr = xas->xa_node;
return curr;
}
/**
* __xa_erase() - Erase this entry from the XArray while locked.
* @xa: XArray.
* @index: Index into array.
*
* After this function returns, loading from @index will return %NULL.
* If the index is part of a multi-index entry, all indices will be erased
* and none of the entries will be part of a multi-index entry.
*
* Context: Any context. Expects xa_lock to be held on entry.
* Return: The entry which used to be at this index.
*/
void *__xa_erase(struct xarray *xa, unsigned long index)
{
XA_STATE(xas, xa, index);
return xas_result(&xas, xas_store(&xas, NULL));
}
EXPORT_SYMBOL(__xa_erase);
/**
* xa_erase() - Erase this entry from the XArray.
* @xa: XArray.
* @index: Index of entry.
*
* After this function returns, loading from @index will return %NULL.
* If the index is part of a multi-index entry, all indices will be erased
* and none of the entries will be part of a multi-index entry.
*
* Context: Any context. Takes and releases the xa_lock.
* Return: The entry which used to be at this index.
*/
void *xa_erase(struct xarray *xa, unsigned long index)
{
void *entry;
xa_lock(xa);
entry = __xa_erase(xa, index);
xa_unlock(xa);
return entry;
}
EXPORT_SYMBOL(xa_erase);
/**
* __xa_store() - Store this entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* You must already be holding the xa_lock when calling this function.
* It will drop the lock if needed to allocate memory, and then reacquire
* it afterwards.
*
* Context: Any context. Expects xa_lock to be held on entry. May
* release and reacquire xa_lock if @gfp flags permit.
* Return: The old entry at this index or xa_err() if an error happened.
*/
void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
{
XA_STATE(xas, xa, index);
void *curr;
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return XA_ERROR(-EINVAL);
if (xa_track_free(xa) && !entry)
entry = XA_ZERO_ENTRY;
do {
curr = xas_store(&xas, entry);
if (xa_track_free(xa))
xas_clear_mark(&xas, XA_FREE_MARK);
} while (__xas_nomem(&xas, gfp));
return xas_result(&xas, curr);
}
EXPORT_SYMBOL(__xa_store);
/**
* xa_store() - Store this entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* After this function returns, loads from this index will return @entry.
* Storing into an existing multislot entry updates the entry of every index.
* The marks associated with @index are unaffected unless @entry is %NULL.
*
* Context: Any context. Takes and releases the xa_lock.
* May sleep if the @gfp flags permit.
* Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
* cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
* failed.
*/
void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
{
void *curr;
xa_lock(xa);
curr = __xa_store(xa, index, entry, gfp);
xa_unlock(xa);
return curr;
}
EXPORT_SYMBOL(xa_store);
/**
* __xa_cmpxchg() - Store this entry in the XArray.
* @xa: XArray.
* @index: Index into array.
* @old: Old value to test against.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* You must already be holding the xa_lock when calling this function.
* It will drop the lock if needed to allocate memory, and then reacquire
* it afterwards.
*
* Context: Any context. Expects xa_lock to be held on entry. May
* release and reacquire xa_lock if @gfp flags permit.
* Return: The old entry at this index or xa_err() if an error happened.
*/
void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
void *old, void *entry, gfp_t gfp)
{
XA_STATE(xas, xa, index);
void *curr;
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return XA_ERROR(-EINVAL);
do {
curr = xas_load(&xas);
if (curr == old) {
xas_store(&xas, entry);
if (xa_track_free(xa) && entry && !curr)
xas_clear_mark(&xas, XA_FREE_MARK);
}
} while (__xas_nomem(&xas, gfp));
return xas_result(&xas, curr);
}
EXPORT_SYMBOL(__xa_cmpxchg);
/**
* __xa_insert() - Store this entry in the XArray if no entry is present.
* @xa: XArray.
* @index: Index into array.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* Inserting a NULL entry will store a reserved entry (like xa_reserve())
* if no entry is present. Inserting will fail if a reserved entry is
* present, even though loading from this index will return NULL.
*
* Context: Any context. Expects xa_lock to be held on entry. May
* release and reacquire xa_lock if @gfp flags permit.
* Return: 0 if the store succeeded. -EBUSY if another entry was present.
* -ENOMEM if memory could not be allocated.
*/
int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
{
XA_STATE(xas, xa, index);
void *curr;
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return -EINVAL;
if (!entry)
entry = XA_ZERO_ENTRY;
do {
curr = xas_load(&xas);
if (!curr) {
xas_store(&xas, entry);
if (xa_track_free(xa))
xas_clear_mark(&xas, XA_FREE_MARK);
} else {
xas_set_err(&xas, -EBUSY);
}
} while (__xas_nomem(&xas, gfp));
return xas_error(&xas);
}
EXPORT_SYMBOL(__xa_insert);
#ifdef CONFIG_XARRAY_MULTI
static void xas_set_range(struct xa_state *xas, unsigned long first,
unsigned long last)
{
unsigned int shift = 0;
unsigned long sibs = last - first;
unsigned int offset = XA_CHUNK_MASK;
xas_set(xas, first);
while ((first & XA_CHUNK_MASK) == 0) {
if (sibs < XA_CHUNK_MASK)
break;
if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
break;
shift += XA_CHUNK_SHIFT;
if (offset == XA_CHUNK_MASK)
offset = sibs & XA_CHUNK_MASK;
sibs >>= XA_CHUNK_SHIFT;
first >>= XA_CHUNK_SHIFT;
}
offset = first & XA_CHUNK_MASK;
if (offset + sibs > XA_CHUNK_MASK)
sibs = XA_CHUNK_MASK - offset;
if ((((first + sibs + 1) << shift) - 1) > last)
sibs -= 1;
xas->xa_shift = shift;
xas->xa_sibs = sibs;
}
/**
* xa_store_range() - Store this entry at a range of indices in the XArray.
* @xa: XArray.
* @first: First index to affect.
* @last: Last index to affect.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* After this function returns, loads from any index between @first and @last,
* inclusive will return @entry.
* Storing into an existing multislot entry updates the entry of every index.
* The marks associated with @index are unaffected unless @entry is %NULL.
*
* Context: Process context. Takes and releases the xa_lock. May sleep
* if the @gfp flags permit.
* Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
* an XArray, or xa_err(-ENOMEM) if memory allocation failed.
*/
void *xa_store_range(struct xarray *xa, unsigned long first,
unsigned long last, void *entry, gfp_t gfp)
{
XA_STATE(xas, xa, 0);
if (WARN_ON_ONCE(xa_is_internal(entry)))
return XA_ERROR(-EINVAL);
if (last < first)
return XA_ERROR(-EINVAL);
do {
xas_lock(&xas);
if (entry) {
unsigned int order = BITS_PER_LONG;
if (last + 1)
order = __ffs(last + 1);
xas_set_order(&xas, last, order);
xas_create(&xas, true);
if (xas_error(&xas))
goto unlock;
}
do {
xas_set_range(&xas, first, last);
xas_store(&xas, entry);
if (xas_error(&xas))
goto unlock;
first += xas_size(&xas);
} while (first <= last);
unlock:
xas_unlock(&xas);
} while (xas_nomem(&xas, gfp));
return xas_result(&xas, NULL);
}
EXPORT_SYMBOL(xa_store_range);
#endif /* CONFIG_XARRAY_MULTI */
/**
* __xa_alloc() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @limit: Range for allocated ID.
* @entry: New entry.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
*
* Context: Any context. Expects xa_lock to be held on entry. May
* release and reacquire xa_lock if @gfp flags permit.
* Return: 0 on success, -ENOMEM if memory could not be allocated or
* -EBUSY if there are no free entries in @limit.
*/
int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
struct xa_limit limit, gfp_t gfp)
{
XA_STATE(xas, xa, 0);
if (WARN_ON_ONCE(xa_is_advanced(entry)))
return -EINVAL;
if (WARN_ON_ONCE(!xa_track_free(xa)))
return -EINVAL;
if (!entry)
entry = XA_ZERO_ENTRY;
do {
xas.xa_index = limit.min;
xas_find_marked(&xas, limit.max, XA_FREE_MARK);
if (xas.xa_node == XAS_RESTART)
xas_set_err(&xas, -EBUSY);
else
*id = xas.xa_index;
xas_store(&xas, entry);
xas_clear_mark(&xas, XA_FREE_MARK);
} while (__xas_nomem(&xas, gfp));
return xas_error(&xas);
}
EXPORT_SYMBOL(__xa_alloc);
/**
* __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
* @xa: XArray.
* @id: Pointer to ID.
* @entry: New entry.
* @limit: Range of allocated ID.
* @next: Pointer to next ID to allocate.
* @gfp: Memory allocation flags.
*
* Finds an empty entry in @xa between @limit.min and @limit.max,
* stores the index into the @id pointer, then stores the entry at
* that index. A concurrent lookup will not see an uninitialised @id.
* The search for an empty entry will start at @next and will wrap
* around if necessary.
*
* Context: Any context. Expects xa_lock to be held on entry. May
* release and reacquire xa_lock if @gfp flags permit.
* Return: 0 if the allocation succeeded without wrapping. 1 if the
* allocation succeeded after wrapping, -ENOMEM if memory could not be
* allocated or -EBUSY if there are no free entries in @limit.
*/
int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
struct xa_limit limit, u32 *next, gfp_t gfp)
{
u32 min = limit.min;
int ret;
limit.min = max(min, *next);
ret = __xa_alloc(xa, id, entry, limit, gfp);
if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
ret = 1;
}
if (ret < 0 && limit.min > min) {
limit.min = min;
ret = __xa_alloc(xa, id, entry, limit, gfp);
if (ret == 0)
ret = 1;
}
if (ret >= 0) {
*next = *id + 1;
if (*next == 0)
xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
}
return ret;
}
EXPORT_SYMBOL(__xa_alloc_cyclic);
/**
* __xa_set_mark() - Set this mark on this entry while locked.
* @xa: XArray.
* @index: Index of entry.
* @mark: Mark number.
*
* Attempting to set a mark on a %NULL entry does not succeed.
*
* Context: Any context. Expects xa_lock to be held on entry.
*/
void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
XA_STATE(xas, xa, index);
void *entry = xas_load(&xas);
if (entry)
xas_set_mark(&xas, mark);
}
EXPORT_SYMBOL(__xa_set_mark);
/**
* __xa_clear_mark() - Clear this mark on this entry while locked.
* @xa: XArray.
* @index: Index of entry.
* @mark: Mark number.
*
* Context: Any context. Expects xa_lock to be held on entry.
*/
void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
XA_STATE(xas, xa, index);
void *entry = xas_load(&xas);
if (entry)
xas_clear_mark(&xas, mark);
}
EXPORT_SYMBOL(__xa_clear_mark);
/**
* xa_get_mark() - Inquire whether this mark is set on this entry.
* @xa: XArray.
* @index: Index of entry.
* @mark: Mark number.
*
* This function uses the RCU read lock, so the result may be out of date
* by the time it returns. If you need the result to be stable, use a lock.
*
* Context: Any context. Takes and releases the RCU lock.
* Return: True if the entry at @index has this mark set, false if it doesn't.
*/
bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
XA_STATE(xas, xa, index);
void *entry;
rcu_read_lock();
entry = xas_start(&xas);
while (xas_get_mark(&xas, mark)) {
if (!xa_is_node(entry))
goto found;
entry = xas_descend(&xas, xa_to_node(entry));
}
rcu_read_unlock();
return false;
found:
rcu_read_unlock();
return true;
}
EXPORT_SYMBOL(xa_get_mark);
/**
* xa_set_mark() - Set this mark on this entry.
* @xa: XArray.
* @index: Index of entry.
* @mark: Mark number.
*
* Attempting to set a mark on a %NULL entry does not succeed.
*
* Context: Process context. Takes and releases the xa_lock.
*/
void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
xa_lock(xa);
__xa_set_mark(xa, index, mark);
xa_unlock(xa);
}
EXPORT_SYMBOL(xa_set_mark);
/**
* xa_clear_mark() - Clear this mark on this entry.
* @xa: XArray.
* @index: Index of entry.
* @mark: Mark number.
*
* Clearing a mark always succeeds.
*
* Context: Process context. Takes and releases the xa_lock.
*/
void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
{
xa_lock(xa);
__xa_clear_mark(xa, index, mark);
xa_unlock(xa);
}
EXPORT_SYMBOL(xa_clear_mark);
/**
* xa_find() - Search the XArray for an entry.
* @xa: XArray.
* @indexp: Pointer to an index.
* @max: Maximum index to search to.
* @filter: Selection criterion.
*
* Finds the entry in @xa which matches the @filter, and has the lowest
* index that is at least @indexp and no more than @max.
* If an entry is found, @indexp is updated to be the index of the entry.
* This function is protected by the RCU read lock, so it may not find
* entries which are being simultaneously added. It will not return an
* %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
*
* Context: Any context. Takes and releases the RCU lock.
* Return: The entry, if found, otherwise %NULL.
*/
void *xa_find(struct xarray *xa, unsigned long *indexp,
unsigned long max, xa_mark_t filter)
{
XA_STATE(xas, xa, *indexp);
void *entry;
rcu_read_lock();
do {
if ((__force unsigned int)filter < XA_MAX_MARKS)
entry = xas_find_marked(&xas, max, filter);
else
entry = xas_find(&xas, max);
} while (xas_retry(&xas, entry));
rcu_read_unlock();
if (entry)
*indexp = xas.xa_index;
return entry;
}
EXPORT_SYMBOL(xa_find);
static bool xas_sibling(struct xa_state *xas)
{
struct xa_node *node = xas->xa_node;
unsigned long mask;
if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
return false;
mask = (XA_CHUNK_SIZE << node->shift) - 1;
return (xas->xa_index & mask) >
((unsigned long)xas->xa_offset << node->shift);
}
/**
* xa_find_after() - Search the XArray for a present entry.
* @xa: XArray.
* @indexp: Pointer to an index.
* @max: Maximum index to search to.
* @filter: Selection criterion.
*
* Finds the entry in @xa which matches the @filter and has the lowest
* index that is above @indexp and no more than @max.
* If an entry is found, @indexp is updated to be the index of the entry.
* This function is protected by the RCU read lock, so it may miss entries
* which are being simultaneously added. It will not return an
* %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
*
* Context: Any context. Takes and releases the RCU lock.
* Return: The pointer, if found, otherwise %NULL.
*/
void *xa_find_after(struct xarray *xa, unsigned long *indexp,
unsigned long max, xa_mark_t filter)
{
XA_STATE(xas, xa, *indexp + 1);
void *entry;
if (xas.xa_index == 0)
return NULL;
rcu_read_lock();
for (;;) {
if ((__force unsigned int)filter < XA_MAX_MARKS)
entry = xas_find_marked(&xas, max, filter);
else
entry = xas_find(&xas, max);
if (xas_invalid(&xas))
break;
if (xas_sibling(&xas))
continue;
if (!xas_retry(&xas, entry))
break;
}
rcu_read_unlock();
if (entry)
*indexp = xas.xa_index;
return entry;
}
EXPORT_SYMBOL(xa_find_after);
static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
unsigned long max, unsigned int n)
{
void *entry;
unsigned int i = 0;
rcu_read_lock();
xas_for_each(xas, entry, max) {
if (xas_retry(xas, entry))
continue;
dst[i++] = entry;
if (i == n)
break;
}
rcu_read_unlock();
return i;
}
static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
unsigned long max, unsigned int n, xa_mark_t mark)
{
void *entry;
unsigned int i = 0;
rcu_read_lock();
xas_for_each_marked(xas, entry, max, mark) {
if (xas_retry(xas, entry))
continue;
dst[i++] = entry;
if (i == n)
break;
}
rcu_read_unlock();
return i;
}
/**
* xa_extract() - Copy selected entries from the XArray into a normal array.
* @xa: The source XArray to copy from.
* @dst: The buffer to copy entries into.
* @start: The first index in the XArray eligible to be selected.
* @max: The last index in the XArray eligible to be selected.
* @n: The maximum number of entries to copy.
* @filter: Selection criterion.
*
* Copies up to @n entries that match @filter from the XArray. The
* copied entries will have indices between @start and @max, inclusive.
*
* The @filter may be an XArray mark value, in which case entries which are
* marked with that mark will be copied. It may also be %XA_PRESENT, in
* which case all entries which are not %NULL will be copied.
*
* The entries returned may not represent a snapshot of the XArray at a
* moment in time. For example, if another thread stores to index 5, then
* index 10, calling xa_extract() may return the old contents of index 5
* and the new contents of index 10. Indices not modified while this
* function is running will not be skipped.
*
* If you need stronger guarantees, holding the xa_lock across calls to this
* function will prevent concurrent modification.
*
* Context: Any context. Takes and releases the RCU lock.
* Return: The number of entries copied.
*/
unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
unsigned long max, unsigned int n, xa_mark_t filter)
{
XA_STATE(xas, xa, start);
if (!n)
return 0;
if ((__force unsigned int)filter < XA_MAX_MARKS)
return xas_extract_marked(&xas, dst, max, n, filter);
return xas_extract_present(&xas, dst, max, n);
}
EXPORT_SYMBOL(xa_extract);
/**
* xa_destroy() - Free all internal data structures.
* @xa: XArray.
*
* After calling this function, the XArray is empty and has freed all memory
* allocated for its internal data structures. You are responsible for
* freeing the objects referenced by the XArray.
*
* Context: Any context. Takes and releases the xa_lock, interrupt-safe.
*/
void xa_destroy(struct xarray *xa)
{
XA_STATE(xas, xa, 0);
unsigned long flags;
void *entry;
xas.xa_node = NULL;
xas_lock_irqsave(&xas, flags);
entry = xa_head_locked(xa);
RCU_INIT_POINTER(xa->xa_head, NULL);
xas_init_marks(&xas);
if (xa_zero_busy(xa))
xa_mark_clear(xa, XA_FREE_MARK);
/* lockdep checks we're still holding the lock in xas_free_nodes() */
if (xa_is_node(entry))
xas_free_nodes(&xas, xa_to_node(entry));
xas_unlock_irqrestore(&xas, flags);
}
EXPORT_SYMBOL(xa_destroy);
#ifdef XA_DEBUG
void xa_dump_node(const struct xa_node *node)
{
unsigned i, j;
if (!node)
return;
if ((unsigned long)node & 3) {
pr_cont("node %px\n", node);
return;
}
pr_cont("node %px %s %d parent %px shift %d count %d values %d "
"array %px list %px %px marks",
node, node->parent ? "offset" : "max", node->offset,
node->parent, node->shift, node->count, node->nr_values,
node->array, node->private_list.prev, node->private_list.next);
for (i = 0; i < XA_MAX_MARKS; i++)
for (j = 0; j < XA_MARK_LONGS; j++)
pr_cont(" %lx", node->marks[i][j]);
pr_cont("\n");
}
void xa_dump_index(unsigned long index, unsigned int shift)
{
if (!shift)
pr_info("%lu: ", index);
else if (shift >= BITS_PER_LONG)
pr_info("0-%lu: ", ~0UL);
else
pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
}
void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
{
if (!entry)
return;
xa_dump_index(index, shift);
if (xa_is_node(entry)) {
if (shift == 0) {
pr_cont("%px\n", entry);
} else {
unsigned long i;
struct xa_node *node = xa_to_node(entry);
xa_dump_node(node);
for (i = 0; i < XA_CHUNK_SIZE; i++)
xa_dump_entry(node->slots[i],
index + (i << node->shift), node->shift);
}
} else if (xa_is_value(entry))
pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
xa_to_value(entry), entry);
else if (!xa_is_internal(entry))
pr_cont("%px\n", entry);
else if (xa_is_retry(entry))
pr_cont("retry (%ld)\n", xa_to_internal(entry));
else if (xa_is_sibling(entry))
pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
else if (xa_is_zero(entry))
pr_cont("zero (%ld)\n", xa_to_internal(entry));
else
pr_cont("UNKNOWN ENTRY (%px)\n", entry);
}
void xa_dump(const struct xarray *xa)
{
void *entry = xa->xa_head;
unsigned int shift = 0;
pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
xa->xa_flags, xa_marked(xa, XA_MARK_0),
xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
if (xa_is_node(entry))
shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
xa_dump_entry(entry, 0, shift);
}
#endif