2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/drivers/nvmem/core.c
Linus Torvalds b6a7828502 modules-6.4-rc1
The summary of the changes for this pull requests is:
 
  * Song Liu's new struct module_memory replacement
  * Nick Alcock's MODULE_LICENSE() removal for non-modules
  * My cleanups and enhancements to reduce the areas where we vmalloc
    module memory for duplicates, and the respective debug code which
    proves the remaining vmalloc pressure comes from userspace.
 
 Most of the changes have been in linux-next for quite some time except
 the minor fixes I made to check if a module was already loaded
 prior to allocating the final module memory with vmalloc and the
 respective debug code it introduces to help clarify the issue. Although
 the functional change is small it is rather safe as it can only *help*
 reduce vmalloc space for duplicates and is confirmed to fix a bootup
 issue with over 400 CPUs with KASAN enabled. I don't expect stable
 kernels to pick up that fix as the cleanups would have also had to have
 been picked up. Folks on larger CPU systems with modules will want to
 just upgrade if vmalloc space has been an issue on bootup.
 
 Given the size of this request, here's some more elaborate details
 on this pull request.
 
 The functional change change in this pull request is the very first
 patch from Song Liu which replaces the struct module_layout with a new
 struct module memory. The old data structure tried to put together all
 types of supported module memory types in one data structure, the new
 one abstracts the differences in memory types in a module to allow each
 one to provide their own set of details. This paves the way in the
 future so we can deal with them in a cleaner way. If you look at changes
 they also provide a nice cleanup of how we handle these different memory
 areas in a module. This change has been in linux-next since before the
 merge window opened for v6.3 so to provide more than a full kernel cycle
 of testing. It's a good thing as quite a bit of fixes have been found
 for it.
 
 Jason Baron then made dynamic debug a first class citizen module user by
 using module notifier callbacks to allocate / remove module specific
 dynamic debug information.
 
 Nick Alcock has done quite a bit of work cross-tree to remove module
 license tags from things which cannot possibly be module at my request
 so to:
 
   a) help him with his longer term tooling goals which require a
      deterministic evaluation if a piece a symbol code could ever be
      part of a module or not. But quite recently it is has been made
      clear that tooling is not the only one that would benefit.
      Disambiguating symbols also helps efforts such as live patching,
      kprobes and BPF, but for other reasons and R&D on this area
      is active with no clear solution in sight.
 
   b) help us inch closer to the now generally accepted long term goal
      of automating all the MODULE_LICENSE() tags from SPDX license tags
 
 In so far as a) is concerned, although module license tags are a no-op
 for non-modules, tools which would want create a mapping of possible
 modules can only rely on the module license tag after the commit
 8b41fc4454 ("kbuild: create modules.builtin without Makefile.modbuiltin
 or tristate.conf").  Nick has been working on this *for years* and
 AFAICT I was the only one to suggest two alternatives to this approach
 for tooling. The complexity in one of my suggested approaches lies in
 that we'd need a possible-obj-m and a could-be-module which would check
 if the object being built is part of any kconfig build which could ever
 lead to it being part of a module, and if so define a new define
 -DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
 suggested would be to have a tristate in kconfig imply the same new
 -DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
 mapping to modules always, and I don't think that's the case today. I am
 not aware of Nick or anyone exploring either of these options. Quite
 recently Josh Poimboeuf has pointed out that live patching, kprobes and
 BPF would benefit from resolving some part of the disambiguation as
 well but for other reasons. The function granularity KASLR (fgkaslr)
 patches were mentioned but Joe Lawrence has clarified this effort has
 been dropped with no clear solution in sight [1].
 
 In the meantime removing module license tags from code which could never
 be modules is welcomed for both objectives mentioned above. Some
 developers have also welcomed these changes as it has helped clarify
 when a module was never possible and they forgot to clean this up,
 and so you'll see quite a bit of Nick's patches in other pull
 requests for this merge window. I just picked up the stragglers after
 rc3. LWN has good coverage on the motivation behind this work [2] and
 the typical cross-tree issues he ran into along the way. The only
 concrete blocker issue he ran into was that we should not remove the
 MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
 they can never be modules. Nick ended up giving up on his efforts due
 to having to do this vetting and backlash he ran into from folks who
 really did *not understand* the core of the issue nor were providing
 any alternative / guidance. I've gone through his changes and dropped
 the patches which dropped the module license tags where an SPDX
 license tag was missing, it only consisted of 11 drivers.  To see
 if a pull request deals with a file which lacks SPDX tags you
 can just use:
 
   ./scripts/spdxcheck.py -f \
 	$(git diff --name-only commid-id | xargs echo)
 
 You'll see a core module file in this pull request for the above,
 but that's not related to his changes. WE just need to add the SPDX
 license tag for the kernel/module/kmod.c file in the future but
 it demonstrates the effectiveness of the script.
 
 Most of Nick's changes were spread out through different trees,
 and I just picked up the slack after rc3 for the last kernel was out.
 Those changes have been in linux-next for over two weeks.
 
 The cleanups, debug code I added and final fix I added for modules
 were motivated by David Hildenbrand's report of boot failing on
 a systems with over 400 CPUs when KASAN was enabled due to running
 out of virtual memory space. Although the functional change only
 consists of 3 lines in the patch "module: avoid allocation if module is
 already present and ready", proving that this was the best we can
 do on the modules side took quite a bit of effort and new debug code.
 
 The initial cleanups I did on the modules side of things has been
 in linux-next since around rc3 of the last kernel, the actual final
 fix for and debug code however have only been in linux-next for about a
 week or so but I think it is worth getting that code in for this merge
 window as it does help fix / prove / evaluate the issues reported
 with larger number of CPUs. Userspace is not yet fixed as it is taking
 a bit of time for folks to understand the crux of the issue and find a
 proper resolution. Worst come to worst, I have a kludge-of-concept [3]
 of how to make kernel_read*() calls for modules unique / converge them,
 but I'm currently inclined to just see if userspace can fix this
 instead.
 
 [0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
 [1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
 [2] https://lwn.net/Articles/927569/
 [3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
 ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
 hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
 oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
 jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
 YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
 WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
 p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
 Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
 c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
 eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
 tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
 agiwdHUMVN7X
 =56WK
 -----END PGP SIGNATURE-----

Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux

Pull module updates from Luis Chamberlain:
 "The summary of the changes for this pull requests is:

   - Song Liu's new struct module_memory replacement

   - Nick Alcock's MODULE_LICENSE() removal for non-modules

   - My cleanups and enhancements to reduce the areas where we vmalloc
     module memory for duplicates, and the respective debug code which
     proves the remaining vmalloc pressure comes from userspace.

  Most of the changes have been in linux-next for quite some time except
  the minor fixes I made to check if a module was already loaded prior
  to allocating the final module memory with vmalloc and the respective
  debug code it introduces to help clarify the issue. Although the
  functional change is small it is rather safe as it can only *help*
  reduce vmalloc space for duplicates and is confirmed to fix a bootup
  issue with over 400 CPUs with KASAN enabled. I don't expect stable
  kernels to pick up that fix as the cleanups would have also had to
  have been picked up. Folks on larger CPU systems with modules will
  want to just upgrade if vmalloc space has been an issue on bootup.

  Given the size of this request, here's some more elaborate details:

  The functional change change in this pull request is the very first
  patch from Song Liu which replaces the 'struct module_layout' with a
  new 'struct module_memory'. The old data structure tried to put
  together all types of supported module memory types in one data
  structure, the new one abstracts the differences in memory types in a
  module to allow each one to provide their own set of details. This
  paves the way in the future so we can deal with them in a cleaner way.
  If you look at changes they also provide a nice cleanup of how we
  handle these different memory areas in a module. This change has been
  in linux-next since before the merge window opened for v6.3 so to
  provide more than a full kernel cycle of testing. It's a good thing as
  quite a bit of fixes have been found for it.

  Jason Baron then made dynamic debug a first class citizen module user
  by using module notifier callbacks to allocate / remove module
  specific dynamic debug information.

  Nick Alcock has done quite a bit of work cross-tree to remove module
  license tags from things which cannot possibly be module at my request
  so to:

   a) help him with his longer term tooling goals which require a
      deterministic evaluation if a piece a symbol code could ever be
      part of a module or not. But quite recently it is has been made
      clear that tooling is not the only one that would benefit.
      Disambiguating symbols also helps efforts such as live patching,
      kprobes and BPF, but for other reasons and R&D on this area is
      active with no clear solution in sight.

   b) help us inch closer to the now generally accepted long term goal
      of automating all the MODULE_LICENSE() tags from SPDX license tags

  In so far as a) is concerned, although module license tags are a no-op
  for non-modules, tools which would want create a mapping of possible
  modules can only rely on the module license tag after the commit
  8b41fc4454 ("kbuild: create modules.builtin without
  Makefile.modbuiltin or tristate.conf").

  Nick has been working on this *for years* and AFAICT I was the only
  one to suggest two alternatives to this approach for tooling. The
  complexity in one of my suggested approaches lies in that we'd need a
  possible-obj-m and a could-be-module which would check if the object
  being built is part of any kconfig build which could ever lead to it
  being part of a module, and if so define a new define
  -DPOSSIBLE_MODULE [0].

  A more obvious yet theoretical approach I've suggested would be to
  have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
  well but that means getting kconfig symbol names mapping to modules
  always, and I don't think that's the case today. I am not aware of
  Nick or anyone exploring either of these options. Quite recently Josh
  Poimboeuf has pointed out that live patching, kprobes and BPF would
  benefit from resolving some part of the disambiguation as well but for
  other reasons. The function granularity KASLR (fgkaslr) patches were
  mentioned but Joe Lawrence has clarified this effort has been dropped
  with no clear solution in sight [1].

  In the meantime removing module license tags from code which could
  never be modules is welcomed for both objectives mentioned above. Some
  developers have also welcomed these changes as it has helped clarify
  when a module was never possible and they forgot to clean this up, and
  so you'll see quite a bit of Nick's patches in other pull requests for
  this merge window. I just picked up the stragglers after rc3. LWN has
  good coverage on the motivation behind this work [2] and the typical
  cross-tree issues he ran into along the way. The only concrete blocker
  issue he ran into was that we should not remove the MODULE_LICENSE()
  tags from files which have no SPDX tags yet, even if they can never be
  modules. Nick ended up giving up on his efforts due to having to do
  this vetting and backlash he ran into from folks who really did *not
  understand* the core of the issue nor were providing any alternative /
  guidance. I've gone through his changes and dropped the patches which
  dropped the module license tags where an SPDX license tag was missing,
  it only consisted of 11 drivers. To see if a pull request deals with a
  file which lacks SPDX tags you can just use:

    ./scripts/spdxcheck.py -f \
	$(git diff --name-only commid-id | xargs echo)

  You'll see a core module file in this pull request for the above, but
  that's not related to his changes. WE just need to add the SPDX
  license tag for the kernel/module/kmod.c file in the future but it
  demonstrates the effectiveness of the script.

  Most of Nick's changes were spread out through different trees, and I
  just picked up the slack after rc3 for the last kernel was out. Those
  changes have been in linux-next for over two weeks.

  The cleanups, debug code I added and final fix I added for modules
  were motivated by David Hildenbrand's report of boot failing on a
  systems with over 400 CPUs when KASAN was enabled due to running out
  of virtual memory space. Although the functional change only consists
  of 3 lines in the patch "module: avoid allocation if module is already
  present and ready", proving that this was the best we can do on the
  modules side took quite a bit of effort and new debug code.

  The initial cleanups I did on the modules side of things has been in
  linux-next since around rc3 of the last kernel, the actual final fix
  for and debug code however have only been in linux-next for about a
  week or so but I think it is worth getting that code in for this merge
  window as it does help fix / prove / evaluate the issues reported with
  larger number of CPUs. Userspace is not yet fixed as it is taking a
  bit of time for folks to understand the crux of the issue and find a
  proper resolution. Worst come to worst, I have a kludge-of-concept [3]
  of how to make kernel_read*() calls for modules unique / converge
  them, but I'm currently inclined to just see if userspace can fix this
  instead"

Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]

* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
  module: add debugging auto-load duplicate module support
  module: stats: fix invalid_mod_bytes typo
  module: remove use of uninitialized variable len
  module: fix building stats for 32-bit targets
  module: stats: include uapi/linux/module.h
  module: avoid allocation if module is already present and ready
  module: add debug stats to help identify memory pressure
  module: extract patient module check into helper
  modules/kmod: replace implementation with a semaphore
  Change DEFINE_SEMAPHORE() to take a number argument
  module: fix kmemleak annotations for non init ELF sections
  module: Ignore L0 and rename is_arm_mapping_symbol()
  module: Move is_arm_mapping_symbol() to module_symbol.h
  module: Sync code of is_arm_mapping_symbol()
  scripts/gdb: use mem instead of core_layout to get the module address
  interconnect: remove module-related code
  interconnect: remove MODULE_LICENSE in non-modules
  zswap: remove MODULE_LICENSE in non-modules
  zpool: remove MODULE_LICENSE in non-modules
  x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
  ...
2023-04-27 16:36:55 -07:00

2114 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* nvmem framework core.
*
* Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
* Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/device.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/kref.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/nvmem-provider.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
struct nvmem_device {
struct module *owner;
struct device dev;
int stride;
int word_size;
int id;
struct kref refcnt;
size_t size;
bool read_only;
bool root_only;
int flags;
enum nvmem_type type;
struct bin_attribute eeprom;
struct device *base_dev;
struct list_head cells;
const struct nvmem_keepout *keepout;
unsigned int nkeepout;
nvmem_reg_read_t reg_read;
nvmem_reg_write_t reg_write;
struct gpio_desc *wp_gpio;
struct nvmem_layout *layout;
void *priv;
};
#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
#define FLAG_COMPAT BIT(0)
struct nvmem_cell_entry {
const char *name;
int offset;
size_t raw_len;
int bytes;
int bit_offset;
int nbits;
nvmem_cell_post_process_t read_post_process;
void *priv;
struct device_node *np;
struct nvmem_device *nvmem;
struct list_head node;
};
struct nvmem_cell {
struct nvmem_cell_entry *entry;
const char *id;
int index;
};
static DEFINE_MUTEX(nvmem_mutex);
static DEFINE_IDA(nvmem_ida);
static DEFINE_MUTEX(nvmem_cell_mutex);
static LIST_HEAD(nvmem_cell_tables);
static DEFINE_MUTEX(nvmem_lookup_mutex);
static LIST_HEAD(nvmem_lookup_list);
static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
static DEFINE_SPINLOCK(nvmem_layout_lock);
static LIST_HEAD(nvmem_layouts);
static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
void *val, size_t bytes)
{
if (nvmem->reg_read)
return nvmem->reg_read(nvmem->priv, offset, val, bytes);
return -EINVAL;
}
static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
void *val, size_t bytes)
{
int ret;
if (nvmem->reg_write) {
gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
return ret;
}
return -EINVAL;
}
static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
unsigned int offset, void *val,
size_t bytes, int write)
{
unsigned int end = offset + bytes;
unsigned int kend, ksize;
const struct nvmem_keepout *keepout = nvmem->keepout;
const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
int rc;
/*
* Skip all keepouts before the range being accessed.
* Keepouts are sorted.
*/
while ((keepout < keepoutend) && (keepout->end <= offset))
keepout++;
while ((offset < end) && (keepout < keepoutend)) {
/* Access the valid portion before the keepout. */
if (offset < keepout->start) {
kend = min(end, keepout->start);
ksize = kend - offset;
if (write)
rc = __nvmem_reg_write(nvmem, offset, val, ksize);
else
rc = __nvmem_reg_read(nvmem, offset, val, ksize);
if (rc)
return rc;
offset += ksize;
val += ksize;
}
/*
* Now we're aligned to the start of this keepout zone. Go
* through it.
*/
kend = min(end, keepout->end);
ksize = kend - offset;
if (!write)
memset(val, keepout->value, ksize);
val += ksize;
offset += ksize;
keepout++;
}
/*
* If we ran out of keepouts but there's still stuff to do, send it
* down directly
*/
if (offset < end) {
ksize = end - offset;
if (write)
return __nvmem_reg_write(nvmem, offset, val, ksize);
else
return __nvmem_reg_read(nvmem, offset, val, ksize);
}
return 0;
}
static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
void *val, size_t bytes)
{
if (!nvmem->nkeepout)
return __nvmem_reg_read(nvmem, offset, val, bytes);
return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
}
static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
void *val, size_t bytes)
{
if (!nvmem->nkeepout)
return __nvmem_reg_write(nvmem, offset, val, bytes);
return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
}
#ifdef CONFIG_NVMEM_SYSFS
static const char * const nvmem_type_str[] = {
[NVMEM_TYPE_UNKNOWN] = "Unknown",
[NVMEM_TYPE_EEPROM] = "EEPROM",
[NVMEM_TYPE_OTP] = "OTP",
[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
[NVMEM_TYPE_FRAM] = "FRAM",
};
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key eeprom_lock_key;
#endif
static ssize_t type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvmem_device *nvmem = to_nvmem_device(dev);
return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
}
static DEVICE_ATTR_RO(type);
static struct attribute *nvmem_attrs[] = {
&dev_attr_type.attr,
NULL,
};
static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t pos, size_t count)
{
struct device *dev;
struct nvmem_device *nvmem;
int rc;
if (attr->private)
dev = attr->private;
else
dev = kobj_to_dev(kobj);
nvmem = to_nvmem_device(dev);
/* Stop the user from reading */
if (pos >= nvmem->size)
return 0;
if (!IS_ALIGNED(pos, nvmem->stride))
return -EINVAL;
if (count < nvmem->word_size)
return -EINVAL;
if (pos + count > nvmem->size)
count = nvmem->size - pos;
count = round_down(count, nvmem->word_size);
if (!nvmem->reg_read)
return -EPERM;
rc = nvmem_reg_read(nvmem, pos, buf, count);
if (rc)
return rc;
return count;
}
static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t pos, size_t count)
{
struct device *dev;
struct nvmem_device *nvmem;
int rc;
if (attr->private)
dev = attr->private;
else
dev = kobj_to_dev(kobj);
nvmem = to_nvmem_device(dev);
/* Stop the user from writing */
if (pos >= nvmem->size)
return -EFBIG;
if (!IS_ALIGNED(pos, nvmem->stride))
return -EINVAL;
if (count < nvmem->word_size)
return -EINVAL;
if (pos + count > nvmem->size)
count = nvmem->size - pos;
count = round_down(count, nvmem->word_size);
if (!nvmem->reg_write)
return -EPERM;
rc = nvmem_reg_write(nvmem, pos, buf, count);
if (rc)
return rc;
return count;
}
static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
{
umode_t mode = 0400;
if (!nvmem->root_only)
mode |= 0044;
if (!nvmem->read_only)
mode |= 0200;
if (!nvmem->reg_write)
mode &= ~0200;
if (!nvmem->reg_read)
mode &= ~0444;
return mode;
}
static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
struct bin_attribute *attr, int i)
{
struct device *dev = kobj_to_dev(kobj);
struct nvmem_device *nvmem = to_nvmem_device(dev);
attr->size = nvmem->size;
return nvmem_bin_attr_get_umode(nvmem);
}
/* default read/write permissions */
static struct bin_attribute bin_attr_rw_nvmem = {
.attr = {
.name = "nvmem",
.mode = 0644,
},
.read = bin_attr_nvmem_read,
.write = bin_attr_nvmem_write,
};
static struct bin_attribute *nvmem_bin_attributes[] = {
&bin_attr_rw_nvmem,
NULL,
};
static const struct attribute_group nvmem_bin_group = {
.bin_attrs = nvmem_bin_attributes,
.attrs = nvmem_attrs,
.is_bin_visible = nvmem_bin_attr_is_visible,
};
static const struct attribute_group *nvmem_dev_groups[] = {
&nvmem_bin_group,
NULL,
};
static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
.attr = {
.name = "eeprom",
},
.read = bin_attr_nvmem_read,
.write = bin_attr_nvmem_write,
};
/*
* nvmem_setup_compat() - Create an additional binary entry in
* drivers sys directory, to be backwards compatible with the older
* drivers/misc/eeprom drivers.
*/
static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
const struct nvmem_config *config)
{
int rval;
if (!config->compat)
return 0;
if (!config->base_dev)
return -EINVAL;
if (config->type == NVMEM_TYPE_FRAM)
bin_attr_nvmem_eeprom_compat.attr.name = "fram";
nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
nvmem->eeprom.size = nvmem->size;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
nvmem->eeprom.attr.key = &eeprom_lock_key;
#endif
nvmem->eeprom.private = &nvmem->dev;
nvmem->base_dev = config->base_dev;
rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
if (rval) {
dev_err(&nvmem->dev,
"Failed to create eeprom binary file %d\n", rval);
return rval;
}
nvmem->flags |= FLAG_COMPAT;
return 0;
}
static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
const struct nvmem_config *config)
{
if (config->compat)
device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
}
#else /* CONFIG_NVMEM_SYSFS */
static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
const struct nvmem_config *config)
{
return -ENOSYS;
}
static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
const struct nvmem_config *config)
{
}
#endif /* CONFIG_NVMEM_SYSFS */
static void nvmem_release(struct device *dev)
{
struct nvmem_device *nvmem = to_nvmem_device(dev);
ida_free(&nvmem_ida, nvmem->id);
gpiod_put(nvmem->wp_gpio);
kfree(nvmem);
}
static const struct device_type nvmem_provider_type = {
.release = nvmem_release,
};
static struct bus_type nvmem_bus_type = {
.name = "nvmem",
};
static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
{
blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
mutex_lock(&nvmem_mutex);
list_del(&cell->node);
mutex_unlock(&nvmem_mutex);
of_node_put(cell->np);
kfree_const(cell->name);
kfree(cell);
}
static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
{
struct nvmem_cell_entry *cell, *p;
list_for_each_entry_safe(cell, p, &nvmem->cells, node)
nvmem_cell_entry_drop(cell);
}
static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
{
mutex_lock(&nvmem_mutex);
list_add_tail(&cell->node, &cell->nvmem->cells);
mutex_unlock(&nvmem_mutex);
blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
}
static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
const struct nvmem_cell_info *info,
struct nvmem_cell_entry *cell)
{
cell->nvmem = nvmem;
cell->offset = info->offset;
cell->raw_len = info->raw_len ?: info->bytes;
cell->bytes = info->bytes;
cell->name = info->name;
cell->read_post_process = info->read_post_process;
cell->priv = info->priv;
cell->bit_offset = info->bit_offset;
cell->nbits = info->nbits;
cell->np = info->np;
if (cell->nbits)
cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
BITS_PER_BYTE);
if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
dev_err(&nvmem->dev,
"cell %s unaligned to nvmem stride %d\n",
cell->name ?: "<unknown>", nvmem->stride);
return -EINVAL;
}
return 0;
}
static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
const struct nvmem_cell_info *info,
struct nvmem_cell_entry *cell)
{
int err;
err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
if (err)
return err;
cell->name = kstrdup_const(info->name, GFP_KERNEL);
if (!cell->name)
return -ENOMEM;
return 0;
}
/**
* nvmem_add_one_cell() - Add one cell information to an nvmem device
*
* @nvmem: nvmem device to add cells to.
* @info: nvmem cell info to add to the device
*
* Return: 0 or negative error code on failure.
*/
int nvmem_add_one_cell(struct nvmem_device *nvmem,
const struct nvmem_cell_info *info)
{
struct nvmem_cell_entry *cell;
int rval;
cell = kzalloc(sizeof(*cell), GFP_KERNEL);
if (!cell)
return -ENOMEM;
rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
if (rval) {
kfree(cell);
return rval;
}
nvmem_cell_entry_add(cell);
return 0;
}
EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
/**
* nvmem_add_cells() - Add cell information to an nvmem device
*
* @nvmem: nvmem device to add cells to.
* @info: nvmem cell info to add to the device
* @ncells: number of cells in info
*
* Return: 0 or negative error code on failure.
*/
static int nvmem_add_cells(struct nvmem_device *nvmem,
const struct nvmem_cell_info *info,
int ncells)
{
int i, rval;
for (i = 0; i < ncells; i++) {
rval = nvmem_add_one_cell(nvmem, &info[i]);
if (rval)
return rval;
}
return 0;
}
/**
* nvmem_register_notifier() - Register a notifier block for nvmem events.
*
* @nb: notifier block to be called on nvmem events.
*
* Return: 0 on success, negative error number on failure.
*/
int nvmem_register_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&nvmem_notifier, nb);
}
EXPORT_SYMBOL_GPL(nvmem_register_notifier);
/**
* nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
*
* @nb: notifier block to be unregistered.
*
* Return: 0 on success, negative error number on failure.
*/
int nvmem_unregister_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
}
EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
{
const struct nvmem_cell_info *info;
struct nvmem_cell_table *table;
struct nvmem_cell_entry *cell;
int rval = 0, i;
mutex_lock(&nvmem_cell_mutex);
list_for_each_entry(table, &nvmem_cell_tables, node) {
if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
for (i = 0; i < table->ncells; i++) {
info = &table->cells[i];
cell = kzalloc(sizeof(*cell), GFP_KERNEL);
if (!cell) {
rval = -ENOMEM;
goto out;
}
rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
if (rval) {
kfree(cell);
goto out;
}
nvmem_cell_entry_add(cell);
}
}
}
out:
mutex_unlock(&nvmem_cell_mutex);
return rval;
}
static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
{
struct nvmem_cell_entry *iter, *cell = NULL;
mutex_lock(&nvmem_mutex);
list_for_each_entry(iter, &nvmem->cells, node) {
if (strcmp(cell_id, iter->name) == 0) {
cell = iter;
break;
}
}
mutex_unlock(&nvmem_mutex);
return cell;
}
static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
{
unsigned int cur = 0;
const struct nvmem_keepout *keepout = nvmem->keepout;
const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
while (keepout < keepoutend) {
/* Ensure keepouts are sorted and don't overlap. */
if (keepout->start < cur) {
dev_err(&nvmem->dev,
"Keepout regions aren't sorted or overlap.\n");
return -ERANGE;
}
if (keepout->end < keepout->start) {
dev_err(&nvmem->dev,
"Invalid keepout region.\n");
return -EINVAL;
}
/*
* Validate keepouts (and holes between) don't violate
* word_size constraints.
*/
if ((keepout->end - keepout->start < nvmem->word_size) ||
((keepout->start != cur) &&
(keepout->start - cur < nvmem->word_size))) {
dev_err(&nvmem->dev,
"Keepout regions violate word_size constraints.\n");
return -ERANGE;
}
/* Validate keepouts don't violate stride (alignment). */
if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
!IS_ALIGNED(keepout->end, nvmem->stride)) {
dev_err(&nvmem->dev,
"Keepout regions violate stride.\n");
return -EINVAL;
}
cur = keepout->end;
keepout++;
}
return 0;
}
static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
{
struct nvmem_layout *layout = nvmem->layout;
struct device *dev = &nvmem->dev;
struct device_node *child;
const __be32 *addr;
int len, ret;
for_each_child_of_node(dev->of_node, child) {
struct nvmem_cell_info info = {0};
addr = of_get_property(child, "reg", &len);
if (!addr)
continue;
if (len < 2 * sizeof(u32)) {
dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
of_node_put(child);
return -EINVAL;
}
info.offset = be32_to_cpup(addr++);
info.bytes = be32_to_cpup(addr);
info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
addr = of_get_property(child, "bits", &len);
if (addr && len == (2 * sizeof(u32))) {
info.bit_offset = be32_to_cpup(addr++);
info.nbits = be32_to_cpup(addr);
}
info.np = of_node_get(child);
if (layout && layout->fixup_cell_info)
layout->fixup_cell_info(nvmem, layout, &info);
ret = nvmem_add_one_cell(nvmem, &info);
kfree(info.name);
if (ret) {
of_node_put(child);
return ret;
}
}
return 0;
}
int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
{
layout->owner = owner;
spin_lock(&nvmem_layout_lock);
list_add(&layout->node, &nvmem_layouts);
spin_unlock(&nvmem_layout_lock);
return 0;
}
EXPORT_SYMBOL_GPL(__nvmem_layout_register);
void nvmem_layout_unregister(struct nvmem_layout *layout)
{
spin_lock(&nvmem_layout_lock);
list_del(&layout->node);
spin_unlock(&nvmem_layout_lock);
}
EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
{
struct device_node *layout_np, *np = nvmem->dev.of_node;
struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
layout_np = of_get_child_by_name(np, "nvmem-layout");
if (!layout_np)
return NULL;
/*
* In case the nvmem device was built-in while the layout was built as a
* module, we shall manually request the layout driver loading otherwise
* we'll never have any match.
*/
of_request_module(layout_np);
spin_lock(&nvmem_layout_lock);
list_for_each_entry(l, &nvmem_layouts, node) {
if (of_match_node(l->of_match_table, layout_np)) {
if (try_module_get(l->owner))
layout = l;
break;
}
}
spin_unlock(&nvmem_layout_lock);
of_node_put(layout_np);
return layout;
}
static void nvmem_layout_put(struct nvmem_layout *layout)
{
if (layout)
module_put(layout->owner);
}
static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
{
struct nvmem_layout *layout = nvmem->layout;
int ret;
if (layout && layout->add_cells) {
ret = layout->add_cells(&nvmem->dev, nvmem, layout);
if (ret)
return ret;
}
return 0;
}
#if IS_ENABLED(CONFIG_OF)
/**
* of_nvmem_layout_get_container() - Get OF node to layout container.
*
* @nvmem: nvmem device.
*
* Return: a node pointer with refcount incremented or NULL if no
* container exists. Use of_node_put() on it when done.
*/
struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
{
return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
}
EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
#endif
const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
struct nvmem_layout *layout)
{
struct device_node __maybe_unused *layout_np;
const struct of_device_id *match;
layout_np = of_nvmem_layout_get_container(nvmem);
match = of_match_node(layout->of_match_table, layout_np);
return match ? match->data : NULL;
}
EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
/**
* nvmem_register() - Register a nvmem device for given nvmem_config.
* Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
*
* @config: nvmem device configuration with which nvmem device is created.
*
* Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
* on success.
*/
struct nvmem_device *nvmem_register(const struct nvmem_config *config)
{
struct nvmem_device *nvmem;
int rval;
if (!config->dev)
return ERR_PTR(-EINVAL);
if (!config->reg_read && !config->reg_write)
return ERR_PTR(-EINVAL);
nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
if (!nvmem)
return ERR_PTR(-ENOMEM);
rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
if (rval < 0) {
kfree(nvmem);
return ERR_PTR(rval);
}
nvmem->id = rval;
nvmem->dev.type = &nvmem_provider_type;
nvmem->dev.bus = &nvmem_bus_type;
nvmem->dev.parent = config->dev;
device_initialize(&nvmem->dev);
if (!config->ignore_wp)
nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
GPIOD_OUT_HIGH);
if (IS_ERR(nvmem->wp_gpio)) {
rval = PTR_ERR(nvmem->wp_gpio);
nvmem->wp_gpio = NULL;
goto err_put_device;
}
kref_init(&nvmem->refcnt);
INIT_LIST_HEAD(&nvmem->cells);
nvmem->owner = config->owner;
if (!nvmem->owner && config->dev->driver)
nvmem->owner = config->dev->driver->owner;
nvmem->stride = config->stride ?: 1;
nvmem->word_size = config->word_size ?: 1;
nvmem->size = config->size;
nvmem->root_only = config->root_only;
nvmem->priv = config->priv;
nvmem->type = config->type;
nvmem->reg_read = config->reg_read;
nvmem->reg_write = config->reg_write;
nvmem->keepout = config->keepout;
nvmem->nkeepout = config->nkeepout;
if (config->of_node)
nvmem->dev.of_node = config->of_node;
else if (!config->no_of_node)
nvmem->dev.of_node = config->dev->of_node;
switch (config->id) {
case NVMEM_DEVID_NONE:
rval = dev_set_name(&nvmem->dev, "%s", config->name);
break;
case NVMEM_DEVID_AUTO:
rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
break;
default:
rval = dev_set_name(&nvmem->dev, "%s%d",
config->name ? : "nvmem",
config->name ? config->id : nvmem->id);
break;
}
if (rval)
goto err_put_device;
nvmem->read_only = device_property_present(config->dev, "read-only") ||
config->read_only || !nvmem->reg_write;
#ifdef CONFIG_NVMEM_SYSFS
nvmem->dev.groups = nvmem_dev_groups;
#endif
if (nvmem->nkeepout) {
rval = nvmem_validate_keepouts(nvmem);
if (rval)
goto err_put_device;
}
if (config->compat) {
rval = nvmem_sysfs_setup_compat(nvmem, config);
if (rval)
goto err_put_device;
}
/*
* If the driver supplied a layout by config->layout, the module
* pointer will be NULL and nvmem_layout_put() will be a noop.
*/
nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
if (IS_ERR(nvmem->layout)) {
rval = PTR_ERR(nvmem->layout);
nvmem->layout = NULL;
if (rval == -EPROBE_DEFER)
goto err_teardown_compat;
}
if (config->cells) {
rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
if (rval)
goto err_remove_cells;
}
rval = nvmem_add_cells_from_table(nvmem);
if (rval)
goto err_remove_cells;
rval = nvmem_add_cells_from_of(nvmem);
if (rval)
goto err_remove_cells;
dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
rval = device_add(&nvmem->dev);
if (rval)
goto err_remove_cells;
rval = nvmem_add_cells_from_layout(nvmem);
if (rval)
goto err_remove_cells;
blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
return nvmem;
err_remove_cells:
nvmem_device_remove_all_cells(nvmem);
nvmem_layout_put(nvmem->layout);
err_teardown_compat:
if (config->compat)
nvmem_sysfs_remove_compat(nvmem, config);
err_put_device:
put_device(&nvmem->dev);
return ERR_PTR(rval);
}
EXPORT_SYMBOL_GPL(nvmem_register);
static void nvmem_device_release(struct kref *kref)
{
struct nvmem_device *nvmem;
nvmem = container_of(kref, struct nvmem_device, refcnt);
blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
if (nvmem->flags & FLAG_COMPAT)
device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
nvmem_device_remove_all_cells(nvmem);
nvmem_layout_put(nvmem->layout);
device_unregister(&nvmem->dev);
}
/**
* nvmem_unregister() - Unregister previously registered nvmem device
*
* @nvmem: Pointer to previously registered nvmem device.
*/
void nvmem_unregister(struct nvmem_device *nvmem)
{
if (nvmem)
kref_put(&nvmem->refcnt, nvmem_device_release);
}
EXPORT_SYMBOL_GPL(nvmem_unregister);
static void devm_nvmem_unregister(void *nvmem)
{
nvmem_unregister(nvmem);
}
/**
* devm_nvmem_register() - Register a managed nvmem device for given
* nvmem_config.
* Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
*
* @dev: Device that uses the nvmem device.
* @config: nvmem device configuration with which nvmem device is created.
*
* Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
* on success.
*/
struct nvmem_device *devm_nvmem_register(struct device *dev,
const struct nvmem_config *config)
{
struct nvmem_device *nvmem;
int ret;
nvmem = nvmem_register(config);
if (IS_ERR(nvmem))
return nvmem;
ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
if (ret)
return ERR_PTR(ret);
return nvmem;
}
EXPORT_SYMBOL_GPL(devm_nvmem_register);
static struct nvmem_device *__nvmem_device_get(void *data,
int (*match)(struct device *dev, const void *data))
{
struct nvmem_device *nvmem = NULL;
struct device *dev;
mutex_lock(&nvmem_mutex);
dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
if (dev)
nvmem = to_nvmem_device(dev);
mutex_unlock(&nvmem_mutex);
if (!nvmem)
return ERR_PTR(-EPROBE_DEFER);
if (!try_module_get(nvmem->owner)) {
dev_err(&nvmem->dev,
"could not increase module refcount for cell %s\n",
nvmem_dev_name(nvmem));
put_device(&nvmem->dev);
return ERR_PTR(-EINVAL);
}
kref_get(&nvmem->refcnt);
return nvmem;
}
static void __nvmem_device_put(struct nvmem_device *nvmem)
{
put_device(&nvmem->dev);
module_put(nvmem->owner);
kref_put(&nvmem->refcnt, nvmem_device_release);
}
#if IS_ENABLED(CONFIG_OF)
/**
* of_nvmem_device_get() - Get nvmem device from a given id
*
* @np: Device tree node that uses the nvmem device.
* @id: nvmem name from nvmem-names property.
*
* Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
* on success.
*/
struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
{
struct device_node *nvmem_np;
struct nvmem_device *nvmem;
int index = 0;
if (id)
index = of_property_match_string(np, "nvmem-names", id);
nvmem_np = of_parse_phandle(np, "nvmem", index);
if (!nvmem_np)
return ERR_PTR(-ENOENT);
nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
of_node_put(nvmem_np);
return nvmem;
}
EXPORT_SYMBOL_GPL(of_nvmem_device_get);
#endif
/**
* nvmem_device_get() - Get nvmem device from a given id
*
* @dev: Device that uses the nvmem device.
* @dev_name: name of the requested nvmem device.
*
* Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
* on success.
*/
struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
{
if (dev->of_node) { /* try dt first */
struct nvmem_device *nvmem;
nvmem = of_nvmem_device_get(dev->of_node, dev_name);
if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
return nvmem;
}
return __nvmem_device_get((void *)dev_name, device_match_name);
}
EXPORT_SYMBOL_GPL(nvmem_device_get);
/**
* nvmem_device_find() - Find nvmem device with matching function
*
* @data: Data to pass to match function
* @match: Callback function to check device
*
* Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
* on success.
*/
struct nvmem_device *nvmem_device_find(void *data,
int (*match)(struct device *dev, const void *data))
{
return __nvmem_device_get(data, match);
}
EXPORT_SYMBOL_GPL(nvmem_device_find);
static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
{
struct nvmem_device **nvmem = res;
if (WARN_ON(!nvmem || !*nvmem))
return 0;
return *nvmem == data;
}
static void devm_nvmem_device_release(struct device *dev, void *res)
{
nvmem_device_put(*(struct nvmem_device **)res);
}
/**
* devm_nvmem_device_put() - put alredy got nvmem device
*
* @dev: Device that uses the nvmem device.
* @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
* that needs to be released.
*/
void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
{
int ret;
ret = devres_release(dev, devm_nvmem_device_release,
devm_nvmem_device_match, nvmem);
WARN_ON(ret);
}
EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
/**
* nvmem_device_put() - put alredy got nvmem device
*
* @nvmem: pointer to nvmem device that needs to be released.
*/
void nvmem_device_put(struct nvmem_device *nvmem)
{
__nvmem_device_put(nvmem);
}
EXPORT_SYMBOL_GPL(nvmem_device_put);
/**
* devm_nvmem_device_get() - Get nvmem cell of device form a given id
*
* @dev: Device that requests the nvmem device.
* @id: name id for the requested nvmem device.
*
* Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
* on success. The nvmem_cell will be freed by the automatically once the
* device is freed.
*/
struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
{
struct nvmem_device **ptr, *nvmem;
ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
nvmem = nvmem_device_get(dev, id);
if (!IS_ERR(nvmem)) {
*ptr = nvmem;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return nvmem;
}
EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
const char *id, int index)
{
struct nvmem_cell *cell;
const char *name = NULL;
cell = kzalloc(sizeof(*cell), GFP_KERNEL);
if (!cell)
return ERR_PTR(-ENOMEM);
if (id) {
name = kstrdup_const(id, GFP_KERNEL);
if (!name) {
kfree(cell);
return ERR_PTR(-ENOMEM);
}
}
cell->id = name;
cell->entry = entry;
cell->index = index;
return cell;
}
static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
{
struct nvmem_cell_entry *cell_entry;
struct nvmem_cell *cell = ERR_PTR(-ENOENT);
struct nvmem_cell_lookup *lookup;
struct nvmem_device *nvmem;
const char *dev_id;
if (!dev)
return ERR_PTR(-EINVAL);
dev_id = dev_name(dev);
mutex_lock(&nvmem_lookup_mutex);
list_for_each_entry(lookup, &nvmem_lookup_list, node) {
if ((strcmp(lookup->dev_id, dev_id) == 0) &&
(strcmp(lookup->con_id, con_id) == 0)) {
/* This is the right entry. */
nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
device_match_name);
if (IS_ERR(nvmem)) {
/* Provider may not be registered yet. */
cell = ERR_CAST(nvmem);
break;
}
cell_entry = nvmem_find_cell_entry_by_name(nvmem,
lookup->cell_name);
if (!cell_entry) {
__nvmem_device_put(nvmem);
cell = ERR_PTR(-ENOENT);
} else {
cell = nvmem_create_cell(cell_entry, con_id, 0);
if (IS_ERR(cell))
__nvmem_device_put(nvmem);
}
break;
}
}
mutex_unlock(&nvmem_lookup_mutex);
return cell;
}
#if IS_ENABLED(CONFIG_OF)
static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
{
struct nvmem_cell_entry *iter, *cell = NULL;
mutex_lock(&nvmem_mutex);
list_for_each_entry(iter, &nvmem->cells, node) {
if (np == iter->np) {
cell = iter;
break;
}
}
mutex_unlock(&nvmem_mutex);
return cell;
}
/**
* of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
*
* @np: Device tree node that uses the nvmem cell.
* @id: nvmem cell name from nvmem-cell-names property, or NULL
* for the cell at index 0 (the lone cell with no accompanying
* nvmem-cell-names property).
*
* Return: Will be an ERR_PTR() on error or a valid pointer
* to a struct nvmem_cell. The nvmem_cell will be freed by the
* nvmem_cell_put().
*/
struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
{
struct device_node *cell_np, *nvmem_np;
struct nvmem_device *nvmem;
struct nvmem_cell_entry *cell_entry;
struct nvmem_cell *cell;
struct of_phandle_args cell_spec;
int index = 0;
int cell_index = 0;
int ret;
/* if cell name exists, find index to the name */
if (id)
index = of_property_match_string(np, "nvmem-cell-names", id);
ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
"#nvmem-cell-cells",
index, &cell_spec);
if (ret)
return ERR_PTR(-ENOENT);
if (cell_spec.args_count > 1)
return ERR_PTR(-EINVAL);
cell_np = cell_spec.np;
if (cell_spec.args_count)
cell_index = cell_spec.args[0];
nvmem_np = of_get_parent(cell_np);
if (!nvmem_np) {
of_node_put(cell_np);
return ERR_PTR(-EINVAL);
}
/* nvmem layouts produce cells within the nvmem-layout container */
if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
nvmem_np = of_get_next_parent(nvmem_np);
if (!nvmem_np) {
of_node_put(cell_np);
return ERR_PTR(-EINVAL);
}
}
nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
of_node_put(nvmem_np);
if (IS_ERR(nvmem)) {
of_node_put(cell_np);
return ERR_CAST(nvmem);
}
cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
of_node_put(cell_np);
if (!cell_entry) {
__nvmem_device_put(nvmem);
return ERR_PTR(-ENOENT);
}
cell = nvmem_create_cell(cell_entry, id, cell_index);
if (IS_ERR(cell))
__nvmem_device_put(nvmem);
return cell;
}
EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
#endif
/**
* nvmem_cell_get() - Get nvmem cell of device form a given cell name
*
* @dev: Device that requests the nvmem cell.
* @id: nvmem cell name to get (this corresponds with the name from the
* nvmem-cell-names property for DT systems and with the con_id from
* the lookup entry for non-DT systems).
*
* Return: Will be an ERR_PTR() on error or a valid pointer
* to a struct nvmem_cell. The nvmem_cell will be freed by the
* nvmem_cell_put().
*/
struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
{
struct nvmem_cell *cell;
if (dev->of_node) { /* try dt first */
cell = of_nvmem_cell_get(dev->of_node, id);
if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
return cell;
}
/* NULL cell id only allowed for device tree; invalid otherwise */
if (!id)
return ERR_PTR(-EINVAL);
return nvmem_cell_get_from_lookup(dev, id);
}
EXPORT_SYMBOL_GPL(nvmem_cell_get);
static void devm_nvmem_cell_release(struct device *dev, void *res)
{
nvmem_cell_put(*(struct nvmem_cell **)res);
}
/**
* devm_nvmem_cell_get() - Get nvmem cell of device form a given id
*
* @dev: Device that requests the nvmem cell.
* @id: nvmem cell name id to get.
*
* Return: Will be an ERR_PTR() on error or a valid pointer
* to a struct nvmem_cell. The nvmem_cell will be freed by the
* automatically once the device is freed.
*/
struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
{
struct nvmem_cell **ptr, *cell;
ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
cell = nvmem_cell_get(dev, id);
if (!IS_ERR(cell)) {
*ptr = cell;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return cell;
}
EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
{
struct nvmem_cell **c = res;
if (WARN_ON(!c || !*c))
return 0;
return *c == data;
}
/**
* devm_nvmem_cell_put() - Release previously allocated nvmem cell
* from devm_nvmem_cell_get.
*
* @dev: Device that requests the nvmem cell.
* @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
*/
void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
{
int ret;
ret = devres_release(dev, devm_nvmem_cell_release,
devm_nvmem_cell_match, cell);
WARN_ON(ret);
}
EXPORT_SYMBOL(devm_nvmem_cell_put);
/**
* nvmem_cell_put() - Release previously allocated nvmem cell.
*
* @cell: Previously allocated nvmem cell by nvmem_cell_get().
*/
void nvmem_cell_put(struct nvmem_cell *cell)
{
struct nvmem_device *nvmem = cell->entry->nvmem;
if (cell->id)
kfree_const(cell->id);
kfree(cell);
__nvmem_device_put(nvmem);
}
EXPORT_SYMBOL_GPL(nvmem_cell_put);
static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
{
u8 *p, *b;
int i, extra, bit_offset = cell->bit_offset;
p = b = buf;
if (bit_offset) {
/* First shift */
*b++ >>= bit_offset;
/* setup rest of the bytes if any */
for (i = 1; i < cell->bytes; i++) {
/* Get bits from next byte and shift them towards msb */
*p |= *b << (BITS_PER_BYTE - bit_offset);
p = b;
*b++ >>= bit_offset;
}
} else {
/* point to the msb */
p += cell->bytes - 1;
}
/* result fits in less bytes */
extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
while (--extra >= 0)
*p-- = 0;
/* clear msb bits if any leftover in the last byte */
if (cell->nbits % BITS_PER_BYTE)
*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
}
static int __nvmem_cell_read(struct nvmem_device *nvmem,
struct nvmem_cell_entry *cell,
void *buf, size_t *len, const char *id, int index)
{
int rc;
rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
if (rc)
return rc;
/* shift bits in-place */
if (cell->bit_offset || cell->nbits)
nvmem_shift_read_buffer_in_place(cell, buf);
if (cell->read_post_process) {
rc = cell->read_post_process(cell->priv, id, index,
cell->offset, buf, cell->raw_len);
if (rc)
return rc;
}
if (len)
*len = cell->bytes;
return 0;
}
/**
* nvmem_cell_read() - Read a given nvmem cell
*
* @cell: nvmem cell to be read.
* @len: pointer to length of cell which will be populated on successful read;
* can be NULL.
*
* Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
* buffer should be freed by the consumer with a kfree().
*/
void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
{
struct nvmem_cell_entry *entry = cell->entry;
struct nvmem_device *nvmem = entry->nvmem;
u8 *buf;
int rc;
if (!nvmem)
return ERR_PTR(-EINVAL);
buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
if (rc) {
kfree(buf);
return ERR_PTR(rc);
}
return buf;
}
EXPORT_SYMBOL_GPL(nvmem_cell_read);
static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
u8 *_buf, int len)
{
struct nvmem_device *nvmem = cell->nvmem;
int i, rc, nbits, bit_offset = cell->bit_offset;
u8 v, *p, *buf, *b, pbyte, pbits;
nbits = cell->nbits;
buf = kzalloc(cell->bytes, GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
memcpy(buf, _buf, len);
p = b = buf;
if (bit_offset) {
pbyte = *b;
*b <<= bit_offset;
/* setup the first byte with lsb bits from nvmem */
rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
if (rc)
goto err;
*b++ |= GENMASK(bit_offset - 1, 0) & v;
/* setup rest of the byte if any */
for (i = 1; i < cell->bytes; i++) {
/* Get last byte bits and shift them towards lsb */
pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
pbyte = *b;
p = b;
*b <<= bit_offset;
*b++ |= pbits;
}
}
/* if it's not end on byte boundary */
if ((nbits + bit_offset) % BITS_PER_BYTE) {
/* setup the last byte with msb bits from nvmem */
rc = nvmem_reg_read(nvmem,
cell->offset + cell->bytes - 1, &v, 1);
if (rc)
goto err;
*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
}
return buf;
err:
kfree(buf);
return ERR_PTR(rc);
}
static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
{
struct nvmem_device *nvmem = cell->nvmem;
int rc;
if (!nvmem || nvmem->read_only ||
(cell->bit_offset == 0 && len != cell->bytes))
return -EINVAL;
/*
* Any cells which have a read_post_process hook are read-only because
* we cannot reverse the operation and it might affect other cells,
* too.
*/
if (cell->read_post_process)
return -EINVAL;
if (cell->bit_offset || cell->nbits) {
buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
if (IS_ERR(buf))
return PTR_ERR(buf);
}
rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
/* free the tmp buffer */
if (cell->bit_offset || cell->nbits)
kfree(buf);
if (rc)
return rc;
return len;
}
/**
* nvmem_cell_write() - Write to a given nvmem cell
*
* @cell: nvmem cell to be written.
* @buf: Buffer to be written.
* @len: length of buffer to be written to nvmem cell.
*
* Return: length of bytes written or negative on failure.
*/
int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
{
return __nvmem_cell_entry_write(cell->entry, buf, len);
}
EXPORT_SYMBOL_GPL(nvmem_cell_write);
static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
void *val, size_t count)
{
struct nvmem_cell *cell;
void *buf;
size_t len;
cell = nvmem_cell_get(dev, cell_id);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
if (IS_ERR(buf)) {
nvmem_cell_put(cell);
return PTR_ERR(buf);
}
if (len != count) {
kfree(buf);
nvmem_cell_put(cell);
return -EINVAL;
}
memcpy(val, buf, count);
kfree(buf);
nvmem_cell_put(cell);
return 0;
}
/**
* nvmem_cell_read_u8() - Read a cell value as a u8
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
{
return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
/**
* nvmem_cell_read_u16() - Read a cell value as a u16
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
{
return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
/**
* nvmem_cell_read_u32() - Read a cell value as a u32
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
{
return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
/**
* nvmem_cell_read_u64() - Read a cell value as a u64
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
{
return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
static const void *nvmem_cell_read_variable_common(struct device *dev,
const char *cell_id,
size_t max_len, size_t *len)
{
struct nvmem_cell *cell;
int nbits;
void *buf;
cell = nvmem_cell_get(dev, cell_id);
if (IS_ERR(cell))
return cell;
nbits = cell->entry->nbits;
buf = nvmem_cell_read(cell, len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return buf;
/*
* If nbits is set then nvmem_cell_read() can significantly exaggerate
* the length of the real data. Throw away the extra junk.
*/
if (nbits)
*len = DIV_ROUND_UP(nbits, 8);
if (*len > max_len) {
kfree(buf);
return ERR_PTR(-ERANGE);
}
return buf;
}
/**
* nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
u32 *val)
{
size_t len;
const u8 *buf;
int i;
buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
/* Copy w/ implicit endian conversion */
*val = 0;
for (i = 0; i < len; i++)
*val |= buf[i] << (8 * i);
kfree(buf);
return 0;
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
/**
* nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
*
* @dev: Device that requests the nvmem cell.
* @cell_id: Name of nvmem cell to read.
* @val: pointer to output value.
*
* Return: 0 on success or negative errno.
*/
int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
u64 *val)
{
size_t len;
const u8 *buf;
int i;
buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
/* Copy w/ implicit endian conversion */
*val = 0;
for (i = 0; i < len; i++)
*val |= (uint64_t)buf[i] << (8 * i);
kfree(buf);
return 0;
}
EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
/**
* nvmem_device_cell_read() - Read a given nvmem device and cell
*
* @nvmem: nvmem device to read from.
* @info: nvmem cell info to be read.
* @buf: buffer pointer which will be populated on successful read.
*
* Return: length of successful bytes read on success and negative
* error code on error.
*/
ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf)
{
struct nvmem_cell_entry cell;
int rc;
ssize_t len;
if (!nvmem)
return -EINVAL;
rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
if (rc)
return rc;
rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
if (rc)
return rc;
return len;
}
EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
/**
* nvmem_device_cell_write() - Write cell to a given nvmem device
*
* @nvmem: nvmem device to be written to.
* @info: nvmem cell info to be written.
* @buf: buffer to be written to cell.
*
* Return: length of bytes written or negative error code on failure.
*/
int nvmem_device_cell_write(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf)
{
struct nvmem_cell_entry cell;
int rc;
if (!nvmem)
return -EINVAL;
rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
if (rc)
return rc;
return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
}
EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
/**
* nvmem_device_read() - Read from a given nvmem device
*
* @nvmem: nvmem device to read from.
* @offset: offset in nvmem device.
* @bytes: number of bytes to read.
* @buf: buffer pointer which will be populated on successful read.
*
* Return: length of successful bytes read on success and negative
* error code on error.
*/
int nvmem_device_read(struct nvmem_device *nvmem,
unsigned int offset,
size_t bytes, void *buf)
{
int rc;
if (!nvmem)
return -EINVAL;
rc = nvmem_reg_read(nvmem, offset, buf, bytes);
if (rc)
return rc;
return bytes;
}
EXPORT_SYMBOL_GPL(nvmem_device_read);
/**
* nvmem_device_write() - Write cell to a given nvmem device
*
* @nvmem: nvmem device to be written to.
* @offset: offset in nvmem device.
* @bytes: number of bytes to write.
* @buf: buffer to be written.
*
* Return: length of bytes written or negative error code on failure.
*/
int nvmem_device_write(struct nvmem_device *nvmem,
unsigned int offset,
size_t bytes, void *buf)
{
int rc;
if (!nvmem)
return -EINVAL;
rc = nvmem_reg_write(nvmem, offset, buf, bytes);
if (rc)
return rc;
return bytes;
}
EXPORT_SYMBOL_GPL(nvmem_device_write);
/**
* nvmem_add_cell_table() - register a table of cell info entries
*
* @table: table of cell info entries
*/
void nvmem_add_cell_table(struct nvmem_cell_table *table)
{
mutex_lock(&nvmem_cell_mutex);
list_add_tail(&table->node, &nvmem_cell_tables);
mutex_unlock(&nvmem_cell_mutex);
}
EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
/**
* nvmem_del_cell_table() - remove a previously registered cell info table
*
* @table: table of cell info entries
*/
void nvmem_del_cell_table(struct nvmem_cell_table *table)
{
mutex_lock(&nvmem_cell_mutex);
list_del(&table->node);
mutex_unlock(&nvmem_cell_mutex);
}
EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
/**
* nvmem_add_cell_lookups() - register a list of cell lookup entries
*
* @entries: array of cell lookup entries
* @nentries: number of cell lookup entries in the array
*/
void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
{
int i;
mutex_lock(&nvmem_lookup_mutex);
for (i = 0; i < nentries; i++)
list_add_tail(&entries[i].node, &nvmem_lookup_list);
mutex_unlock(&nvmem_lookup_mutex);
}
EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
/**
* nvmem_del_cell_lookups() - remove a list of previously added cell lookup
* entries
*
* @entries: array of cell lookup entries
* @nentries: number of cell lookup entries in the array
*/
void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
{
int i;
mutex_lock(&nvmem_lookup_mutex);
for (i = 0; i < nentries; i++)
list_del(&entries[i].node);
mutex_unlock(&nvmem_lookup_mutex);
}
EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
/**
* nvmem_dev_name() - Get the name of a given nvmem device.
*
* @nvmem: nvmem device.
*
* Return: name of the nvmem device.
*/
const char *nvmem_dev_name(struct nvmem_device *nvmem)
{
return dev_name(&nvmem->dev);
}
EXPORT_SYMBOL_GPL(nvmem_dev_name);
static int __init nvmem_init(void)
{
return bus_register(&nvmem_bus_type);
}
static void __exit nvmem_exit(void)
{
bus_unregister(&nvmem_bus_type);
}
subsys_initcall(nvmem_init);
module_exit(nvmem_exit);
MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
MODULE_DESCRIPTION("nvmem Driver Core");