2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/arch/mips/mm/uasm-mips.c
Jiong Wang ee94b90c8a mips: bpf: implement jitting of BPF_ALU | BPF_ARSH | BPF_X
Jitting of BPF_K is supported already, but not BPF_X. This patch complete
the support for the latter on both MIPS and microMIPS.

Cc: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Acked-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-07 13:30:48 -08:00

277 lines
11 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include <asm/uasm.h>
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define SCIMM_MASK 0xfffff
#define SCIMM_SH 6
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
/* This macro sets the non-variable bits of an R6 instruction. */
#define M6(a, b, c, d, e) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << SIMM9_SH \
| (e) << FUNC_SH)
#include "uasm.c"
static const struct insn insn_table[insn_invalid] = {
[insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
[insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
[insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
[insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
[insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
[insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
[insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
[insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
[insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
[insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
#ifndef CONFIG_CPU_MIPSR6
[insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
[insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9},
#endif
[insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
[insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
[insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
[insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
[insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
[insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
[insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
[insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
[insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
[insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
[insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
[insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
[insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
[insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
[insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
[insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
[insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
[insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
[insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD},
[insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
[insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
[insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD},
[insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
[insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
[insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD},
[insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
[insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0},
[insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
[insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
[insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM},
[insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM},
[insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
#ifndef CONFIG_CPU_MIPSR6
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS},
#else
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS},
#endif
[insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
[insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
[insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
[insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#ifndef CONFIG_CPU_MIPSR6
[insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
[insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9},
[insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9},
#endif
[insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM},
[insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
[insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
[insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
[insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
[insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
[insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
[insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
[insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
#ifndef CONFIG_CPU_MIPSR6
[insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
#else
[insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
#endif
[insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
[insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD},
[insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD},
[insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
#ifndef CONFIG_CPU_MIPSR6
[insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
[insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9},
#endif
[insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0},
[insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE},
[insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#ifndef CONFIG_CPU_MIPSR6
[insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
#else
[insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9},
[insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9},
#endif
[insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE},
[insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD},
[insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD},
[insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
[insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE},
[insn_srav] = {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
[insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE},
[insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD},
[insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD},
[insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
[insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
[insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
[insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0},
[insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0},
[insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0},
[insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0},
[insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
[insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
[insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD},
[insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
[insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
};
#undef M
static inline u32 build_bimm(s32 arg)
{
WARN(arg > 0x1ffff || arg < -0x20000,
KERN_WARNING "Micro-assembler field overflow\n");
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static inline u32 build_jimm(u32 arg)
{
WARN(arg & ~(JIMM_MASK << 2),
KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
const struct insn *ip;
va_list ap;
u32 op;
if (opc < 0 || opc >= insn_invalid ||
(opc == insn_daddiu && r4k_daddiu_bug()) ||
(insn_table[opc].match == 0 && insn_table[opc].fields == 0))
panic("Unsupported Micro-assembler instruction %d", opc);
ip = &insn_table[opc];
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS)
op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT)
op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
if (ip->fields & SCIMM)
op |= build_scimm(va_arg(ap, u32));
if (ip->fields & SIMM9)
op |= build_scimm9(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}