2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/arch/mips/kvm/entry.c
James Hogan 1934a3ad09 KVM: MIPS/Entry: Update entry code to support VZ
Update MIPS KVM entry code to support VZ:

 - We need to set GuestCtl0.GM while in guest mode.

 - For cores supporting GuestID, we need to set the root GuestID to
   match the main GuestID while in guest mode so that the root TLB
   refill handler writes the correct GuestID into the TLB.

 - For cores without GuestID where the root ASID dealiases RVA/GPA
   mappings, we need to load that ASID from the gpa_mm rather than the
   per-VCPU guest_kernel_mm or guest_user_mm, since the root TLB maps
   guest physical addresses. We also need to restore the normal process
   ASID on exit.

 - The normal linux process pgd needs restoring on exit, as we can't
   leave the GPA mappings active for kernel code.

 - GuestCtl0 needs saving on exit for the GExcCode field, as it may be
   clobbered if a preemption occurs.

We also need to move the TLB refill handler to the XTLB vector at offset
0x80 on 64-bit VZ kernels, as hardware will use Root.Status.KX to
determine whether a TLB refill or XTLB Refill exception is to be taken
on a root TLB miss from guest mode, and KX needs to be set for kernel
code to be able to access the 64-bit segments.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:51 +01:00

944 lines
26 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Generation of main entry point for the guest, exception handling.
*
* Copyright (C) 2012 MIPS Technologies, Inc.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*
* Copyright (C) 2016 Imagination Technologies Ltd.
*/
#include <linux/kvm_host.h>
#include <linux/log2.h>
#include <asm/mmu_context.h>
#include <asm/msa.h>
#include <asm/setup.h>
#include <asm/tlbex.h>
#include <asm/uasm.h>
/* Register names */
#define ZERO 0
#define AT 1
#define V0 2
#define V1 3
#define A0 4
#define A1 5
#if _MIPS_SIM == _MIPS_SIM_ABI32
#define T0 8
#define T1 9
#define T2 10
#define T3 11
#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
#define T0 12
#define T1 13
#define T2 14
#define T3 15
#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
#define S0 16
#define S1 17
#define T9 25
#define K0 26
#define K1 27
#define GP 28
#define SP 29
#define RA 31
/* Some CP0 registers */
#define C0_PWBASE 5, 5
#define C0_HWRENA 7, 0
#define C0_BADVADDR 8, 0
#define C0_BADINSTR 8, 1
#define C0_BADINSTRP 8, 2
#define C0_ENTRYHI 10, 0
#define C0_GUESTCTL1 10, 4
#define C0_STATUS 12, 0
#define C0_GUESTCTL0 12, 6
#define C0_CAUSE 13, 0
#define C0_EPC 14, 0
#define C0_EBASE 15, 1
#define C0_CONFIG5 16, 5
#define C0_DDATA_LO 28, 3
#define C0_ERROREPC 30, 0
#define CALLFRAME_SIZ 32
#ifdef CONFIG_64BIT
#define ST0_KX_IF_64 ST0_KX
#else
#define ST0_KX_IF_64 0
#endif
static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
static unsigned int scratch_tmp[2] = { C0_ERROREPC };
enum label_id {
label_fpu_1 = 1,
label_msa_1,
label_return_to_host,
label_kernel_asid,
label_exit_common,
};
UASM_L_LA(_fpu_1)
UASM_L_LA(_msa_1)
UASM_L_LA(_return_to_host)
UASM_L_LA(_kernel_asid)
UASM_L_LA(_exit_common)
static void *kvm_mips_build_enter_guest(void *addr);
static void *kvm_mips_build_ret_from_exit(void *addr);
static void *kvm_mips_build_ret_to_guest(void *addr);
static void *kvm_mips_build_ret_to_host(void *addr);
/*
* The version of this function in tlbex.c uses current_cpu_type(), but for KVM
* we assume symmetry.
*/
static int c0_kscratch(void)
{
switch (boot_cpu_type()) {
case CPU_XLP:
case CPU_XLR:
return 22;
default:
return 31;
}
}
/**
* kvm_mips_entry_setup() - Perform global setup for entry code.
*
* Perform global setup for entry code, such as choosing a scratch register.
*
* Returns: 0 on success.
* -errno on failure.
*/
int kvm_mips_entry_setup(void)
{
/*
* We prefer to use KScratchN registers if they are available over the
* defaults above, which may not work on all cores.
*/
unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
if (pgd_reg != -1)
kscratch_mask &= ~BIT(pgd_reg);
/* Pick a scratch register for storing VCPU */
if (kscratch_mask) {
scratch_vcpu[0] = c0_kscratch();
scratch_vcpu[1] = ffs(kscratch_mask) - 1;
kscratch_mask &= ~BIT(scratch_vcpu[1]);
}
/* Pick a scratch register to use as a temp for saving state */
if (kscratch_mask) {
scratch_tmp[0] = c0_kscratch();
scratch_tmp[1] = ffs(kscratch_mask) - 1;
kscratch_mask &= ~BIT(scratch_tmp[1]);
}
return 0;
}
static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
unsigned int frame)
{
/* Save the VCPU scratch register value in cp0_epc of the stack frame */
UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
/* Save the temp scratch register value in cp0_cause of stack frame */
if (scratch_tmp[0] == c0_kscratch()) {
UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
}
}
static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
unsigned int frame)
{
/*
* Restore host scratch register values saved by
* kvm_mips_build_save_scratch().
*/
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
if (scratch_tmp[0] == c0_kscratch()) {
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
}
}
/**
* build_set_exc_base() - Assemble code to write exception base address.
* @p: Code buffer pointer.
* @reg: Source register (generated code may set WG bit in @reg).
*
* Assemble code to modify the exception base address in the EBase register,
* using the appropriately sized access and setting the WG bit if necessary.
*/
static inline void build_set_exc_base(u32 **p, unsigned int reg)
{
if (cpu_has_ebase_wg) {
/* Set WG so that all the bits get written */
uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
UASM_i_MTC0(p, reg, C0_EBASE);
} else {
uasm_i_mtc0(p, reg, C0_EBASE);
}
}
/**
* kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
* @addr: Address to start writing code.
*
* Assemble the start of the vcpu_run function to run a guest VCPU. The function
* conforms to the following prototype:
*
* int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
*
* The exit from the guest and return to the caller is handled by the code
* generated by kvm_mips_build_ret_to_host().
*
* Returns: Next address after end of written function.
*/
void *kvm_mips_build_vcpu_run(void *addr)
{
u32 *p = addr;
unsigned int i;
/*
* A0: run
* A1: vcpu
*/
/* k0/k1 not being used in host kernel context */
UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
for (i = 16; i < 32; ++i) {
if (i == 24)
i = 28;
UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
}
/* Save host status */
uasm_i_mfc0(&p, V0, C0_STATUS);
UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
/* Save scratch registers, will be used to store pointer to vcpu etc */
kvm_mips_build_save_scratch(&p, V1, K1);
/* VCPU scratch register has pointer to vcpu */
UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
/* Offset into vcpu->arch */
UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
/*
* Save the host stack to VCPU, used for exception processing
* when we exit from the Guest
*/
UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
/* Save the kernel gp as well */
UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
/*
* Setup status register for running the guest in UM, interrupts
* are disabled
*/
UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
uasm_i_mtc0(&p, K0, C0_STATUS);
uasm_i_ehb(&p);
/* load up the new EBASE */
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
build_set_exc_base(&p, K0);
/*
* Now that the new EBASE has been loaded, unset BEV, set
* interrupt mask as it was but make sure that timer interrupts
* are enabled
*/
uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
uasm_i_andi(&p, V0, V0, ST0_IM);
uasm_i_or(&p, K0, K0, V0);
uasm_i_mtc0(&p, K0, C0_STATUS);
uasm_i_ehb(&p);
p = kvm_mips_build_enter_guest(p);
return p;
}
/**
* kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
* @addr: Address to start writing code.
*
* Assemble the code to resume guest execution. This code is common between the
* initial entry into the guest from the host, and returning from the exit
* handler back to the guest.
*
* Returns: Next address after end of written function.
*/
static void *kvm_mips_build_enter_guest(void *addr)
{
u32 *p = addr;
unsigned int i;
struct uasm_label labels[2];
struct uasm_reloc relocs[2];
struct uasm_label __maybe_unused *l = labels;
struct uasm_reloc __maybe_unused *r = relocs;
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
/* Set Guest EPC */
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
UASM_i_MTC0(&p, T0, C0_EPC);
#ifdef CONFIG_KVM_MIPS_VZ
/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
/*
* Set up KVM GPA pgd.
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
* - call tlbmiss_handler_setup_pgd(mm->pgd)
* - write mm->pgd into CP0_PWBase
*
* We keep S0 pointing at struct kvm so we can load the ASID below.
*/
UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
(int)offsetof(struct kvm_vcpu, arch), K1);
UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
uasm_i_jalr(&p, RA, T9);
/* delay slot */
if (cpu_has_htw)
UASM_i_MTC0(&p, A0, C0_PWBASE);
else
uasm_i_nop(&p);
/* Set GM bit to setup eret to VZ guest context */
uasm_i_addiu(&p, V1, ZERO, 1);
uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
if (cpu_has_guestid) {
/*
* Set root mode GuestID, so that root TLB refill handler can
* use the correct GuestID in the root TLB.
*/
/* Get current GuestID */
uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
/* Set GuestCtl1.RID = GuestCtl1.ID */
uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
MIPS_GCTL1_ID_WIDTH);
uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
MIPS_GCTL1_RID_WIDTH);
uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
/* GuestID handles dealiasing so we don't need to touch ASID */
goto skip_asid_restore;
}
/* Root ASID Dealias (RAD) */
/* Save host ASID */
UASM_i_MFC0(&p, K0, C0_ENTRYHI);
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
K1);
/* Set the root ASID for the Guest */
UASM_i_ADDIU(&p, T1, S0,
offsetof(struct kvm, arch.gpa_mm.context.asid));
#else
/* Set the ASID for the Guest Kernel or User */
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
T0);
uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
uasm_i_xori(&p, T0, T0, KSU_USER);
uasm_il_bnez(&p, &r, T0, label_kernel_asid);
UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
guest_kernel_mm.context.asid));
/* else user */
UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
guest_user_mm.context.asid));
uasm_l_kernel_asid(&l, p);
#endif
/* t1: contains the base of the ASID array, need to get the cpu id */
/* smp_processor_id */
uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
/* index the ASID array */
uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
UASM_i_ADDU(&p, T3, T1, T2);
UASM_i_LW(&p, K0, 0, T3);
#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
/*
* reuse ASID array offset
* cpuinfo_mips is a multiple of sizeof(long)
*/
uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
uasm_i_mul(&p, T2, T2, T3);
UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
UASM_i_ADDU(&p, AT, AT, T2);
UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
uasm_i_and(&p, K0, K0, T2);
#else
uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
#endif
#ifndef CONFIG_KVM_MIPS_VZ
/*
* Set up KVM T&E GVA pgd.
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
* - call tlbmiss_handler_setup_pgd(mm->pgd)
* - but skips write into CP0_PWBase for now
*/
UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
(int)offsetof(struct mm_struct, context.asid), T1);
UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
uasm_i_jalr(&p, RA, T9);
uasm_i_mtc0(&p, K0, C0_ENTRYHI);
#else
/* Set up KVM VZ root ASID (!guestid) */
uasm_i_mtc0(&p, K0, C0_ENTRYHI);
skip_asid_restore:
#endif
uasm_i_ehb(&p);
/* Disable RDHWR access */
uasm_i_mtc0(&p, ZERO, C0_HWRENA);
/* load the guest context from VCPU and return */
for (i = 1; i < 32; ++i) {
/* Guest k0/k1 loaded later */
if (i == K0 || i == K1)
continue;
UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
}
#ifndef CONFIG_CPU_MIPSR6
/* Restore hi/lo */
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
uasm_i_mthi(&p, K0);
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
uasm_i_mtlo(&p, K0);
#endif
/* Restore the guest's k0/k1 registers */
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
/* Jump to guest */
uasm_i_eret(&p);
uasm_resolve_relocs(relocs, labels);
return p;
}
/**
* kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
* @addr: Address to start writing code.
* @handler: Address of common handler (within range of @addr).
*
* Assemble TLB refill exception fast path handler for guest execution.
*
* Returns: Next address after end of written function.
*/
void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
{
u32 *p = addr;
struct uasm_label labels[2];
struct uasm_reloc relocs[2];
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
/* Save guest k1 into scratch register */
UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
/* Get the VCPU pointer from the VCPU scratch register */
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
/* Save guest k0 into VCPU structure */
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
/*
* Some of the common tlbex code uses current_cpu_type(). For KVM we
* assume symmetry and just disable preemption to silence the warning.
*/
preempt_disable();
/*
* Now for the actual refill bit. A lot of this can be common with the
* Linux TLB refill handler, however we don't need to handle so many
* cases. We only need to handle user mode refills, and user mode runs
* with 32-bit addressing.
*
* Therefore the branch to label_vmalloc generated by build_get_pmde64()
* that isn't resolved should never actually get taken and is harmless
* to leave in place for now.
*/
#ifdef CONFIG_64BIT
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
#else
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
#endif
/* we don't support huge pages yet */
build_get_ptep(&p, K0, K1);
build_update_entries(&p, K0, K1);
build_tlb_write_entry(&p, &l, &r, tlb_random);
preempt_enable();
/* Get the VCPU pointer from the VCPU scratch register again */
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
/* Restore the guest's k0/k1 registers */
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
uasm_i_ehb(&p);
UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
/* Jump to guest */
uasm_i_eret(&p);
return p;
}
/**
* kvm_mips_build_exception() - Assemble first level guest exception handler.
* @addr: Address to start writing code.
* @handler: Address of common handler (within range of @addr).
*
* Assemble exception vector code for guest execution. The generated vector will
* branch to the common exception handler generated by kvm_mips_build_exit().
*
* Returns: Next address after end of written function.
*/
void *kvm_mips_build_exception(void *addr, void *handler)
{
u32 *p = addr;
struct uasm_label labels[2];
struct uasm_reloc relocs[2];
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
/* Save guest k1 into scratch register */
UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
/* Get the VCPU pointer from the VCPU scratch register */
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
/* Save guest k0 into VCPU structure */
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
/* Branch to the common handler */
uasm_il_b(&p, &r, label_exit_common);
uasm_i_nop(&p);
uasm_l_exit_common(&l, handler);
uasm_resolve_relocs(relocs, labels);
return p;
}
/**
* kvm_mips_build_exit() - Assemble common guest exit handler.
* @addr: Address to start writing code.
*
* Assemble the generic guest exit handling code. This is called by the
* exception vectors (generated by kvm_mips_build_exception()), and calls
* kvm_mips_handle_exit(), then either resumes the guest or returns to the host
* depending on the return value.
*
* Returns: Next address after end of written function.
*/
void *kvm_mips_build_exit(void *addr)
{
u32 *p = addr;
unsigned int i;
struct uasm_label labels[3];
struct uasm_reloc relocs[3];
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
/*
* Generic Guest exception handler. We end up here when the guest
* does something that causes a trap to kernel mode.
*
* Both k0/k1 registers will have already been saved (k0 into the vcpu
* structure, and k1 into the scratch_tmp register).
*
* The k1 register will already contain the kvm_vcpu_arch pointer.
*/
/* Start saving Guest context to VCPU */
for (i = 0; i < 32; ++i) {
/* Guest k0/k1 saved later */
if (i == K0 || i == K1)
continue;
UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
}
#ifndef CONFIG_CPU_MIPSR6
/* We need to save hi/lo and restore them on the way out */
uasm_i_mfhi(&p, T0);
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
uasm_i_mflo(&p, T0);
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
#endif
/* Finally save guest k1 to VCPU */
uasm_i_ehb(&p);
UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
/* Now that context has been saved, we can use other registers */
/* Restore vcpu */
UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
/* Restore run (vcpu->run) */
UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
/*
* Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
* the exception
*/
UASM_i_MFC0(&p, K0, C0_EPC);
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
UASM_i_MFC0(&p, K0, C0_BADVADDR);
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
K1);
uasm_i_mfc0(&p, K0, C0_CAUSE);
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
if (cpu_has_badinstr) {
uasm_i_mfc0(&p, K0, C0_BADINSTR);
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
host_cp0_badinstr), K1);
}
if (cpu_has_badinstrp) {
uasm_i_mfc0(&p, K0, C0_BADINSTRP);
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
host_cp0_badinstrp), K1);
}
/* Now restore the host state just enough to run the handlers */
/* Switch EBASE to the one used by Linux */
/* load up the host EBASE */
uasm_i_mfc0(&p, V0, C0_STATUS);
uasm_i_lui(&p, AT, ST0_BEV >> 16);
uasm_i_or(&p, K0, V0, AT);
uasm_i_mtc0(&p, K0, C0_STATUS);
uasm_i_ehb(&p);
UASM_i_LA_mostly(&p, K0, (long)&ebase);
UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
build_set_exc_base(&p, K0);
if (raw_cpu_has_fpu) {
/*
* If FPU is enabled, save FCR31 and clear it so that later
* ctc1's don't trigger FPE for pending exceptions.
*/
uasm_i_lui(&p, AT, ST0_CU1 >> 16);
uasm_i_and(&p, V1, V0, AT);
uasm_il_beqz(&p, &r, V1, label_fpu_1);
uasm_i_nop(&p);
uasm_i_cfc1(&p, T0, 31);
uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
K1);
uasm_i_ctc1(&p, ZERO, 31);
uasm_l_fpu_1(&l, p);
}
if (cpu_has_msa) {
/*
* If MSA is enabled, save MSACSR and clear it so that later
* instructions don't trigger MSAFPE for pending exceptions.
*/
uasm_i_mfc0(&p, T0, C0_CONFIG5);
uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
uasm_il_beqz(&p, &r, T0, label_msa_1);
uasm_i_nop(&p);
uasm_i_cfcmsa(&p, T0, MSA_CSR);
uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
K1);
uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
uasm_l_msa_1(&l, p);
}
#ifdef CONFIG_KVM_MIPS_VZ
/* Restore host ASID */
if (!cpu_has_guestid) {
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
K1);
UASM_i_MTC0(&p, K0, C0_ENTRYHI);
}
/*
* Set up normal Linux process pgd.
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
* - call tlbmiss_handler_setup_pgd(mm->pgd)
* - write mm->pgd into CP0_PWBase
*/
UASM_i_LW(&p, A0,
offsetof(struct kvm_vcpu_arch, host_pgd), K1);
UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
uasm_i_jalr(&p, RA, T9);
/* delay slot */
if (cpu_has_htw)
UASM_i_MTC0(&p, A0, C0_PWBASE);
else
uasm_i_nop(&p);
/* Clear GM bit so we don't enter guest mode when EXL is cleared */
uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
/* Save GuestCtl0 so we can access GExcCode after CPU migration */
uasm_i_sw(&p, K0,
offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
if (cpu_has_guestid) {
/*
* Clear root mode GuestID, so that root TLB operations use the
* root GuestID in the root TLB.
*/
uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
MIPS_GCTL1_RID_WIDTH);
uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
}
#endif
/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
uasm_i_and(&p, V0, V0, AT);
uasm_i_lui(&p, AT, ST0_CU0 >> 16);
uasm_i_or(&p, V0, V0, AT);
#ifdef CONFIG_64BIT
uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
#endif
uasm_i_mtc0(&p, V0, C0_STATUS);
uasm_i_ehb(&p);
/* Load up host GP */
UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
/* Need a stack before we can jump to "C" */
UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
/* Saved host state */
UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
/*
* XXXKYMA do we need to load the host ASID, maybe not because the
* kernel entries are marked GLOBAL, need to verify
*/
/* Restore host scratch registers, as we'll have clobbered them */
kvm_mips_build_restore_scratch(&p, K0, SP);
/* Restore RDHWR access */
UASM_i_LA_mostly(&p, K0, (long)&hwrena);
uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
uasm_i_mtc0(&p, K0, C0_HWRENA);
/* Jump to handler */
/*
* XXXKYMA: not sure if this is safe, how large is the stack??
* Now jump to the kvm_mips_handle_exit() to see if we can deal
* with this in the kernel
*/
uasm_i_move(&p, A0, S0);
uasm_i_move(&p, A1, S1);
UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
uasm_i_jalr(&p, RA, T9);
UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
uasm_resolve_relocs(relocs, labels);
p = kvm_mips_build_ret_from_exit(p);
return p;
}
/**
* kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
* @addr: Address to start writing code.
*
* Assemble the code to handle the return from kvm_mips_handle_exit(), either
* resuming the guest or returning to the host depending on the return value.
*
* Returns: Next address after end of written function.
*/
static void *kvm_mips_build_ret_from_exit(void *addr)
{
u32 *p = addr;
struct uasm_label labels[2];
struct uasm_reloc relocs[2];
struct uasm_label *l = labels;
struct uasm_reloc *r = relocs;
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
/* Return from handler Make sure interrupts are disabled */
uasm_i_di(&p, ZERO);
uasm_i_ehb(&p);
/*
* XXXKYMA: k0/k1 could have been blown away if we processed
* an exception while we were handling the exception from the
* guest, reload k1
*/
uasm_i_move(&p, K1, S1);
UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
/*
* Check return value, should tell us if we are returning to the
* host (handle I/O etc)or resuming the guest
*/
uasm_i_andi(&p, T0, V0, RESUME_HOST);
uasm_il_bnez(&p, &r, T0, label_return_to_host);
uasm_i_nop(&p);
p = kvm_mips_build_ret_to_guest(p);
uasm_l_return_to_host(&l, p);
p = kvm_mips_build_ret_to_host(p);
uasm_resolve_relocs(relocs, labels);
return p;
}
/**
* kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
* @addr: Address to start writing code.
*
* Assemble the code to handle return from the guest exit handler
* (kvm_mips_handle_exit()) back to the guest.
*
* Returns: Next address after end of written function.
*/
static void *kvm_mips_build_ret_to_guest(void *addr)
{
u32 *p = addr;
/* Put the saved pointer to vcpu (s1) back into the scratch register */
UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
/* Load up the Guest EBASE to minimize the window where BEV is set */
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
/* Switch EBASE back to the one used by KVM */
uasm_i_mfc0(&p, V1, C0_STATUS);
uasm_i_lui(&p, AT, ST0_BEV >> 16);
uasm_i_or(&p, K0, V1, AT);
uasm_i_mtc0(&p, K0, C0_STATUS);
uasm_i_ehb(&p);
build_set_exc_base(&p, T0);
/* Setup status register for running guest in UM */
uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
uasm_i_and(&p, V1, V1, AT);
uasm_i_mtc0(&p, V1, C0_STATUS);
uasm_i_ehb(&p);
p = kvm_mips_build_enter_guest(p);
return p;
}
/**
* kvm_mips_build_ret_to_host() - Assemble code to return to the host.
* @addr: Address to start writing code.
*
* Assemble the code to handle return from the guest exit handler
* (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
* function generated by kvm_mips_build_vcpu_run().
*
* Returns: Next address after end of written function.
*/
static void *kvm_mips_build_ret_to_host(void *addr)
{
u32 *p = addr;
unsigned int i;
/* EBASE is already pointing to Linux */
UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
/*
* r2/v0 is the return code, shift it down by 2 (arithmetic)
* to recover the err code
*/
uasm_i_sra(&p, K0, V0, 2);
uasm_i_move(&p, V0, K0);
/* Load context saved on the host stack */
for (i = 16; i < 31; ++i) {
if (i == 24)
i = 28;
UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
}
/* Restore RDHWR access */
UASM_i_LA_mostly(&p, K0, (long)&hwrena);
uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
uasm_i_mtc0(&p, K0, C0_HWRENA);
/* Restore RA, which is the address we will return to */
UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
uasm_i_jr(&p, RA);
uasm_i_nop(&p);
return p;
}