2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 05:34:29 +08:00
linux-next/drivers/misc/pti.c
Jingoo Han 30399bbfa6 misc: pti: remove unnecessary pci_set_drvdata()
The driver core clears the driver data to NULL after device_release
or on probe failure. Thus, it is not needed to manually clear the
device driver data to NULL.

Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-09-26 09:13:54 -07:00

989 lines
26 KiB
C

/*
* pti.c - PTI driver for cJTAG data extration
*
* Copyright (C) Intel 2010
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The PTI (Parallel Trace Interface) driver directs trace data routed from
* various parts in the system out through the Intel Penwell PTI port and
* out of the mobile device for analysis with a debugging tool
* (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
* compact JTAG, standard.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/console.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/pci.h>
#include <linux/mutex.h>
#include <linux/miscdevice.h>
#include <linux/pti.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#define DRIVERNAME "pti"
#define PCINAME "pciPTI"
#define TTYNAME "ttyPTI"
#define CHARNAME "pti"
#define PTITTY_MINOR_START 0
#define PTITTY_MINOR_NUM 2
#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
#define MODEM_BASE_ID 71 /* modem master ID address */
#define CONTROL_ID 72 /* control master ID address */
#define CONSOLE_ID 73 /* console master ID address */
#define OS_BASE_ID 74 /* base OS master ID address */
#define APP_BASE_ID 80 /* base App master ID address */
#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
#define APERTURE_14 0x3800000 /* offset to first OS write addr */
#define APERTURE_LEN 0x400000 /* address length */
struct pti_tty {
struct pti_masterchannel *mc;
};
struct pti_dev {
struct tty_port port[PTITTY_MINOR_NUM];
unsigned long pti_addr;
unsigned long aperture_base;
void __iomem *pti_ioaddr;
u8 ia_app[MAX_APP_IDS];
u8 ia_os[MAX_OS_IDS];
u8 ia_modem[MAX_MODEM_IDS];
};
/*
* This protects access to ia_app, ia_os, and ia_modem,
* which keeps track of channels allocated in
* an aperture write id.
*/
static DEFINE_MUTEX(alloclock);
static const struct pci_device_id pci_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
{0}
};
static struct tty_driver *pti_tty_driver;
static struct pti_dev *drv_data;
static unsigned int pti_console_channel;
static unsigned int pti_control_channel;
/**
* pti_write_to_aperture()- The private write function to PTI HW.
*
* @mc: The 'aperture'. It's part of a write address that holds
* a master and channel ID.
* @buf: Data being written to the HW that will ultimately be seen
* in a debugging tool (Fido, Lauterbach).
* @len: Size of buffer.
*
* Since each aperture is specified by a unique
* master/channel ID, no two processes will be writing
* to the same aperture at the same time so no lock is required. The
* PTI-Output agent will send these out in the order that they arrived, and
* thus, it will intermix these messages. The debug tool can then later
* regroup the appropriate message segments together reconstituting each
* message.
*/
static void pti_write_to_aperture(struct pti_masterchannel *mc,
u8 *buf,
int len)
{
int dwordcnt;
int final;
int i;
u32 ptiword;
u32 __iomem *aperture;
u8 *p = buf;
/*
* calculate the aperture offset from the base using the master and
* channel id's.
*/
aperture = drv_data->pti_ioaddr + (mc->master << 15)
+ (mc->channel << 8);
dwordcnt = len >> 2;
final = len - (dwordcnt << 2); /* final = trailing bytes */
if (final == 0 && dwordcnt != 0) { /* always need a final dword */
final += 4;
dwordcnt--;
}
for (i = 0; i < dwordcnt; i++) {
ptiword = be32_to_cpu(*(u32 *)p);
p += 4;
iowrite32(ptiword, aperture);
}
aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
ptiword = 0;
for (i = 0; i < final; i++)
ptiword |= *p++ << (24-(8*i));
iowrite32(ptiword, aperture);
return;
}
/**
* pti_control_frame_built_and_sent()- control frame build and send function.
*
* @mc: The master / channel structure on which the function
* built a control frame.
* @thread_name: The thread name associated with the master / channel or
* 'NULL' if using the 'current' global variable.
*
* To be able to post process the PTI contents on host side, a control frame
* is added before sending any PTI content. So the host side knows on
* each PTI frame the name of the thread using a dedicated master / channel.
* The thread name is retrieved from 'current' global variable if 'thread_name'
* is 'NULL', else it is retrieved from 'thread_name' parameter.
* This function builds this frame and sends it to a master ID CONTROL_ID.
* The overhead is only 32 bytes since the driver only writes to HW
* in 32 byte chunks.
*/
static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
const char *thread_name)
{
/*
* Since we access the comm member in current's task_struct, we only
* need to be as large as what 'comm' in that structure is.
*/
char comm[TASK_COMM_LEN];
struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
.channel = 0};
const char *thread_name_p;
const char *control_format = "%3d %3d %s";
u8 control_frame[CONTROL_FRAME_LEN];
if (!thread_name) {
if (!in_interrupt())
get_task_comm(comm, current);
else
strncpy(comm, "Interrupt", TASK_COMM_LEN);
/* Absolutely ensure our buffer is zero terminated. */
comm[TASK_COMM_LEN-1] = 0;
thread_name_p = comm;
} else {
thread_name_p = thread_name;
}
mccontrol.channel = pti_control_channel;
pti_control_channel = (pti_control_channel + 1) & 0x7f;
snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
mc->channel, thread_name_p);
pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
}
/**
* pti_write_full_frame_to_aperture()- high level function to
* write to PTI.
*
* @mc: The 'aperture'. It's part of a write address that holds
* a master and channel ID.
* @buf: Data being written to the HW that will ultimately be seen
* in a debugging tool (Fido, Lauterbach).
* @len: Size of buffer.
*
* All threads sending data (either console, user space application, ...)
* are calling the high level function to write to PTI meaning that it is
* possible to add a control frame before sending the content.
*/
static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
const unsigned char *buf,
int len)
{
pti_control_frame_built_and_sent(mc, NULL);
pti_write_to_aperture(mc, (u8 *)buf, len);
}
/**
* get_id()- Allocate a master and channel ID.
*
* @id_array: an array of bits representing what channel
* id's are allocated for writing.
* @max_ids: The max amount of available write IDs to use.
* @base_id: The starting SW channel ID, based on the Intel
* PTI arch.
* @thread_name: The thread name associated with the master / channel or
* 'NULL' if using the 'current' global variable.
*
* Returns:
* pti_masterchannel struct with master, channel ID address
* 0 for error
*
* Each bit in the arrays ia_app and ia_os correspond to a master and
* channel id. The bit is one if the id is taken and 0 if free. For
* every master there are 128 channel id's.
*/
static struct pti_masterchannel *get_id(u8 *id_array,
int max_ids,
int base_id,
const char *thread_name)
{
struct pti_masterchannel *mc;
int i, j, mask;
mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
if (mc == NULL)
return NULL;
/* look for a byte with a free bit */
for (i = 0; i < max_ids; i++)
if (id_array[i] != 0xff)
break;
if (i == max_ids) {
kfree(mc);
return NULL;
}
/* find the bit in the 128 possible channel opportunities */
mask = 0x80;
for (j = 0; j < 8; j++) {
if ((id_array[i] & mask) == 0)
break;
mask >>= 1;
}
/* grab it */
id_array[i] |= mask;
mc->master = base_id;
mc->channel = ((i & 0xf)<<3) + j;
/* write new master Id / channel Id allocation to channel control */
pti_control_frame_built_and_sent(mc, thread_name);
return mc;
}
/*
* The following three functions:
* pti_request_mastercahannel(), mipi_release_masterchannel()
* and pti_writedata() are an API for other kernel drivers to
* access PTI.
*/
/**
* pti_request_masterchannel()- Kernel API function used to allocate
* a master, channel ID address
* to write to PTI HW.
*
* @type: 0- request Application master, channel aperture ID
* write address.
* 1- request OS master, channel aperture ID write
* address.
* 2- request Modem master, channel aperture ID
* write address.
* Other values, error.
* @thread_name: The thread name associated with the master / channel or
* 'NULL' if using the 'current' global variable.
*
* Returns:
* pti_masterchannel struct
* 0 for error
*/
struct pti_masterchannel *pti_request_masterchannel(u8 type,
const char *thread_name)
{
struct pti_masterchannel *mc;
mutex_lock(&alloclock);
switch (type) {
case 0:
mc = get_id(drv_data->ia_app, MAX_APP_IDS,
APP_BASE_ID, thread_name);
break;
case 1:
mc = get_id(drv_data->ia_os, MAX_OS_IDS,
OS_BASE_ID, thread_name);
break;
case 2:
mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
MODEM_BASE_ID, thread_name);
break;
default:
mc = NULL;
}
mutex_unlock(&alloclock);
return mc;
}
EXPORT_SYMBOL_GPL(pti_request_masterchannel);
/**
* pti_release_masterchannel()- Kernel API function used to release
* a master, channel ID address
* used to write to PTI HW.
*
* @mc: master, channel apeture ID address to be released. This
* will de-allocate the structure via kfree().
*/
void pti_release_masterchannel(struct pti_masterchannel *mc)
{
u8 master, channel, i;
mutex_lock(&alloclock);
if (mc) {
master = mc->master;
channel = mc->channel;
if (master == APP_BASE_ID) {
i = channel >> 3;
drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
} else if (master == OS_BASE_ID) {
i = channel >> 3;
drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
} else {
i = channel >> 3;
drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
}
kfree(mc);
}
mutex_unlock(&alloclock);
}
EXPORT_SYMBOL_GPL(pti_release_masterchannel);
/**
* pti_writedata()- Kernel API function used to write trace
* debugging data to PTI HW.
*
* @mc: Master, channel aperture ID address to write to.
* Null value will return with no write occurring.
* @buf: Trace debuging data to write to the PTI HW.
* Null value will return with no write occurring.
* @count: Size of buf. Value of 0 or a negative number will
* return with no write occuring.
*/
void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
{
/*
* since this function is exported, this is treated like an
* API function, thus, all parameters should
* be checked for validity.
*/
if ((mc != NULL) && (buf != NULL) && (count > 0))
pti_write_to_aperture(mc, buf, count);
return;
}
EXPORT_SYMBOL_GPL(pti_writedata);
/*
* for the tty_driver_*() basic function descriptions, see tty_driver.h.
* Specific header comments made for PTI-related specifics.
*/
/**
* pti_tty_driver_open()- Open an Application master, channel aperture
* ID to the PTI device via tty device.
*
* @tty: tty interface.
* @filp: filp interface pased to tty_port_open() call.
*
* Returns:
* int, 0 for success
* otherwise, fail value
*
* The main purpose of using the tty device interface is for
* each tty port to have a unique PTI write aperture. In an
* example use case, ttyPTI0 gets syslogd and an APP aperture
* ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
* modem messages into PTI. Modem trace data does not have to
* go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
* master IDs. These messages go through the PTI HW and out of
* the handheld platform and to the Fido/Lauterbach device.
*/
static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
{
/*
* we actually want to allocate a new channel per open, per
* system arch. HW gives more than plenty channels for a single
* system task to have its own channel to write trace data. This
* also removes a locking requirement for the actual write
* procedure.
*/
return tty_port_open(tty->port, tty, filp);
}
/**
* pti_tty_driver_close()- close tty device and release Application
* master, channel aperture ID to the PTI device via tty device.
*
* @tty: tty interface.
* @filp: filp interface pased to tty_port_close() call.
*
* The main purpose of using the tty device interface is to route
* syslog daemon messages to the PTI HW and out of the handheld platform
* and to the Fido/Lauterbach device.
*/
static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
{
tty_port_close(tty->port, tty, filp);
}
/**
* pti_tty_install()- Used to set up specific master-channels
* to tty ports for organizational purposes when
* tracing viewed from debuging tools.
*
* @driver: tty driver information.
* @tty: tty struct containing pti information.
*
* Returns:
* 0 for success
* otherwise, error
*/
static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
{
int idx = tty->index;
struct pti_tty *pti_tty_data;
int ret = tty_standard_install(driver, tty);
if (ret == 0) {
pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
if (pti_tty_data == NULL)
return -ENOMEM;
if (idx == PTITTY_MINOR_START)
pti_tty_data->mc = pti_request_masterchannel(0, NULL);
else
pti_tty_data->mc = pti_request_masterchannel(2, NULL);
if (pti_tty_data->mc == NULL) {
kfree(pti_tty_data);
return -ENXIO;
}
tty->driver_data = pti_tty_data;
}
return ret;
}
/**
* pti_tty_cleanup()- Used to de-allocate master-channel resources
* tied to tty's of this driver.
*
* @tty: tty struct containing pti information.
*/
static void pti_tty_cleanup(struct tty_struct *tty)
{
struct pti_tty *pti_tty_data = tty->driver_data;
if (pti_tty_data == NULL)
return;
pti_release_masterchannel(pti_tty_data->mc);
kfree(pti_tty_data);
tty->driver_data = NULL;
}
/**
* pti_tty_driver_write()- Write trace debugging data through the char
* interface to the PTI HW. Part of the misc device implementation.
*
* @filp: Contains private data which is used to obtain
* master, channel write ID.
* @data: trace data to be written.
* @len: # of byte to write.
*
* Returns:
* int, # of bytes written
* otherwise, error
*/
static int pti_tty_driver_write(struct tty_struct *tty,
const unsigned char *buf, int len)
{
struct pti_tty *pti_tty_data = tty->driver_data;
if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
return len;
}
/*
* we can't write to the pti hardware if the private driver_data
* and the mc address is not there.
*/
else
return -EFAULT;
}
/**
* pti_tty_write_room()- Always returns 2048.
*
* @tty: contains tty info of the pti driver.
*/
static int pti_tty_write_room(struct tty_struct *tty)
{
return 2048;
}
/**
* pti_char_open()- Open an Application master, channel aperture
* ID to the PTI device. Part of the misc device implementation.
*
* @inode: not used.
* @filp: Output- will have a masterchannel struct set containing
* the allocated application PTI aperture write address.
*
* Returns:
* int, 0 for success
* otherwise, a fail value
*/
static int pti_char_open(struct inode *inode, struct file *filp)
{
struct pti_masterchannel *mc;
/*
* We really do want to fail immediately if
* pti_request_masterchannel() fails,
* before assigning the value to filp->private_data.
* Slightly easier to debug if this driver needs debugging.
*/
mc = pti_request_masterchannel(0, NULL);
if (mc == NULL)
return -ENOMEM;
filp->private_data = mc;
return 0;
}
/**
* pti_char_release()- Close a char channel to the PTI device. Part
* of the misc device implementation.
*
* @inode: Not used in this implementaiton.
* @filp: Contains private_data that contains the master, channel
* ID to be released by the PTI device.
*
* Returns:
* always 0
*/
static int pti_char_release(struct inode *inode, struct file *filp)
{
pti_release_masterchannel(filp->private_data);
filp->private_data = NULL;
return 0;
}
/**
* pti_char_write()- Write trace debugging data through the char
* interface to the PTI HW. Part of the misc device implementation.
*
* @filp: Contains private data which is used to obtain
* master, channel write ID.
* @data: trace data to be written.
* @len: # of byte to write.
* @ppose: Not used in this function implementation.
*
* Returns:
* int, # of bytes written
* otherwise, error value
*
* Notes: From side discussions with Alan Cox and experimenting
* with PTI debug HW like Nokia's Fido box and Lauterbach
* devices, 8192 byte write buffer used by USER_COPY_SIZE was
* deemed an appropriate size for this type of usage with
* debugging HW.
*/
static ssize_t pti_char_write(struct file *filp, const char __user *data,
size_t len, loff_t *ppose)
{
struct pti_masterchannel *mc;
void *kbuf;
const char __user *tmp;
size_t size = USER_COPY_SIZE;
size_t n = 0;
tmp = data;
mc = filp->private_data;
kbuf = kmalloc(size, GFP_KERNEL);
if (kbuf == NULL) {
pr_err("%s(%d): buf allocation failed\n",
__func__, __LINE__);
return -ENOMEM;
}
do {
if (len - n > USER_COPY_SIZE)
size = USER_COPY_SIZE;
else
size = len - n;
if (copy_from_user(kbuf, tmp, size)) {
kfree(kbuf);
return n ? n : -EFAULT;
}
pti_write_to_aperture(mc, kbuf, size);
n += size;
tmp += size;
} while (len > n);
kfree(kbuf);
return len;
}
static const struct tty_operations pti_tty_driver_ops = {
.open = pti_tty_driver_open,
.close = pti_tty_driver_close,
.write = pti_tty_driver_write,
.write_room = pti_tty_write_room,
.install = pti_tty_install,
.cleanup = pti_tty_cleanup
};
static const struct file_operations pti_char_driver_ops = {
.owner = THIS_MODULE,
.write = pti_char_write,
.open = pti_char_open,
.release = pti_char_release,
};
static struct miscdevice pti_char_driver = {
.minor = MISC_DYNAMIC_MINOR,
.name = CHARNAME,
.fops = &pti_char_driver_ops
};
/**
* pti_console_write()- Write to the console that has been acquired.
*
* @c: Not used in this implementaiton.
* @buf: Data to be written.
* @len: Length of buf.
*/
static void pti_console_write(struct console *c, const char *buf, unsigned len)
{
static struct pti_masterchannel mc = {.master = CONSOLE_ID,
.channel = 0};
mc.channel = pti_console_channel;
pti_console_channel = (pti_console_channel + 1) & 0x7f;
pti_write_full_frame_to_aperture(&mc, buf, len);
}
/**
* pti_console_device()- Return the driver tty structure and set the
* associated index implementation.
*
* @c: Console device of the driver.
* @index: index associated with c.
*
* Returns:
* always value of pti_tty_driver structure when this function
* is called.
*/
static struct tty_driver *pti_console_device(struct console *c, int *index)
{
*index = c->index;
return pti_tty_driver;
}
/**
* pti_console_setup()- Initialize console variables used by the driver.
*
* @c: Not used.
* @opts: Not used.
*
* Returns:
* always 0.
*/
static int pti_console_setup(struct console *c, char *opts)
{
pti_console_channel = 0;
pti_control_channel = 0;
return 0;
}
/*
* pti_console struct, used to capture OS printk()'s and shift
* out to the PTI device for debugging. This cannot be
* enabled upon boot because of the possibility of eating
* any serial console printk's (race condition discovered).
* The console should be enabled upon when the tty port is
* used for the first time. Since the primary purpose for
* the tty port is to hook up syslog to it, the tty port
* will be open for a really long time.
*/
static struct console pti_console = {
.name = TTYNAME,
.write = pti_console_write,
.device = pti_console_device,
.setup = pti_console_setup,
.flags = CON_PRINTBUFFER,
.index = 0,
};
/**
* pti_port_activate()- Used to start/initialize any items upon
* first opening of tty_port().
*
* @port- The tty port number of the PTI device.
* @tty- The tty struct associated with this device.
*
* Returns:
* always returns 0
*
* Notes: The primary purpose of the PTI tty port 0 is to hook
* the syslog daemon to it; thus this port will be open for a
* very long time.
*/
static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
{
if (port->tty->index == PTITTY_MINOR_START)
console_start(&pti_console);
return 0;
}
/**
* pti_port_shutdown()- Used to stop/shutdown any items upon the
* last tty port close.
*
* @port- The tty port number of the PTI device.
*
* Notes: The primary purpose of the PTI tty port 0 is to hook
* the syslog daemon to it; thus this port will be open for a
* very long time.
*/
static void pti_port_shutdown(struct tty_port *port)
{
if (port->tty->index == PTITTY_MINOR_START)
console_stop(&pti_console);
}
static const struct tty_port_operations tty_port_ops = {
.activate = pti_port_activate,
.shutdown = pti_port_shutdown,
};
/*
* Note the _probe() call sets everything up and ties the char and tty
* to successfully detecting the PTI device on the pci bus.
*/
/**
* pti_pci_probe()- Used to detect pti on the pci bus and set
* things up in the driver.
*
* @pdev- pci_dev struct values for pti.
* @ent- pci_device_id struct for pti driver.
*
* Returns:
* 0 for success
* otherwise, error
*/
static int pti_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
unsigned int a;
int retval = -EINVAL;
int pci_bar = 1;
dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
__func__, __LINE__, pdev->vendor, pdev->device);
retval = misc_register(&pti_char_driver);
if (retval) {
pr_err("%s(%d): CHAR registration failed of pti driver\n",
__func__, __LINE__);
pr_err("%s(%d): Error value returned: %d\n",
__func__, __LINE__, retval);
goto err;
}
retval = pci_enable_device(pdev);
if (retval != 0) {
dev_err(&pdev->dev,
"%s: pci_enable_device() returned error %d\n",
__func__, retval);
goto err_unreg_misc;
}
drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
if (drv_data == NULL) {
retval = -ENOMEM;
dev_err(&pdev->dev,
"%s(%d): kmalloc() returned NULL memory.\n",
__func__, __LINE__);
goto err_disable_pci;
}
drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
if (retval != 0) {
dev_err(&pdev->dev,
"%s(%d): pci_request_region() returned error %d\n",
__func__, __LINE__, retval);
goto err_free_dd;
}
drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
drv_data->pti_ioaddr =
ioremap_nocache((u32)drv_data->aperture_base,
APERTURE_LEN);
if (!drv_data->pti_ioaddr) {
retval = -ENOMEM;
goto err_rel_reg;
}
pci_set_drvdata(pdev, drv_data);
for (a = 0; a < PTITTY_MINOR_NUM; a++) {
struct tty_port *port = &drv_data->port[a];
tty_port_init(port);
port->ops = &tty_port_ops;
tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
}
register_console(&pti_console);
return 0;
err_rel_reg:
pci_release_region(pdev, pci_bar);
err_free_dd:
kfree(drv_data);
err_disable_pci:
pci_disable_device(pdev);
err_unreg_misc:
misc_deregister(&pti_char_driver);
err:
return retval;
}
/**
* pti_pci_remove()- Driver exit method to remove PTI from
* PCI bus.
* @pdev: variable containing pci info of PTI.
*/
static void pti_pci_remove(struct pci_dev *pdev)
{
struct pti_dev *drv_data = pci_get_drvdata(pdev);
unsigned int a;
unregister_console(&pti_console);
for (a = 0; a < PTITTY_MINOR_NUM; a++) {
tty_unregister_device(pti_tty_driver, a);
tty_port_destroy(&drv_data->port[a]);
}
iounmap(drv_data->pti_ioaddr);
kfree(drv_data);
pci_release_region(pdev, 1);
pci_disable_device(pdev);
misc_deregister(&pti_char_driver);
}
static struct pci_driver pti_pci_driver = {
.name = PCINAME,
.id_table = pci_ids,
.probe = pti_pci_probe,
.remove = pti_pci_remove,
};
/**
*
* pti_init()- Overall entry/init call to the pti driver.
* It starts the registration process with the kernel.
*
* Returns:
* int __init, 0 for success
* otherwise value is an error
*
*/
static int __init pti_init(void)
{
int retval = -EINVAL;
/* First register module as tty device */
pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
if (pti_tty_driver == NULL) {
pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
__func__, __LINE__);
return -ENOMEM;
}
pti_tty_driver->driver_name = DRIVERNAME;
pti_tty_driver->name = TTYNAME;
pti_tty_driver->major = 0;
pti_tty_driver->minor_start = PTITTY_MINOR_START;
pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
TTY_DRIVER_DYNAMIC_DEV;
pti_tty_driver->init_termios = tty_std_termios;
tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
retval = tty_register_driver(pti_tty_driver);
if (retval) {
pr_err("%s(%d): TTY registration failed of pti driver\n",
__func__, __LINE__);
pr_err("%s(%d): Error value returned: %d\n",
__func__, __LINE__, retval);
goto put_tty;
}
retval = pci_register_driver(&pti_pci_driver);
if (retval) {
pr_err("%s(%d): PCI registration failed of pti driver\n",
__func__, __LINE__);
pr_err("%s(%d): Error value returned: %d\n",
__func__, __LINE__, retval);
goto unreg_tty;
}
return 0;
unreg_tty:
tty_unregister_driver(pti_tty_driver);
put_tty:
put_tty_driver(pti_tty_driver);
pti_tty_driver = NULL;
return retval;
}
/**
* pti_exit()- Unregisters this module as a tty and pci driver.
*/
static void __exit pti_exit(void)
{
tty_unregister_driver(pti_tty_driver);
pci_unregister_driver(&pti_pci_driver);
put_tty_driver(pti_tty_driver);
}
module_init(pti_init);
module_exit(pti_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ken Mills, Jay Freyensee");
MODULE_DESCRIPTION("PTI Driver");